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This paper considers a pressureless Euler-Poisson system with viscosity in plasma physics in the
torus T3. We give a rigorous justification of its asymptotic limit toward the incompressible Navier
Stokes equations via quasi-neutral regime using the modulated energy method.

1. Introduction

We will consider the following system:

∂tuε + (uε · ∇)uε = μΔuε +∇Vε,

∂tn
ε + div (nεuε) = 0,

ΔVε =
nε − 1
ε2

,

(1.1)

for x ∈ T3 and t > 0, nε ∈ R, uε ∈ R
2. ε is small parameter and μ > 0 is a constant viscosity

coefficient. To solve uniquely the Poisson equation, we add the
∫
T3 n

εdx = 1. Passing to the
limit when ε → 0, it is easy to see, at least at a very formal level, that (nε,uε) tends to
(nNS,uNS), where nNS = 1 and

∂tuNS +
(
uNS · ∇

)
uNS = μΔuNS +∇VNS,

div uNS = 0.
(1.2)
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In other words, uNS is a solution of the incompressible Navier-Stokes equations. The
aim of this paper is to give a rigorous justification to this formal computation.

The Euler-Poisson systemwith viscosity (1.1) is a physical model involving dissipation
see [1], which here could be regarded as a viscous approximation of Euler-Poisson. Formally,
it is a kind of new approximation of the incompressible Navier-Stokes equations of viscous
fluid in real world.

It should be pointed out that there have been a lot of interesting results about the topic
on the quasi-neutral (or called zero-Debye length) limit, for the readers to see [2–5] for isen-
tropic Euler-Poisson system, [6, 7] for nonisentropic Euler-Poisson system, [8–10] for Vlasov-
Poisson system, [11, 12] for drift-diffusion system, [13] for Euler-Maxwell equations, and
therein references. We also mention that the above limit has been studied in [14, 15]. But in
this present paper, the convergence result and the method of its proof is different from that
of [14, 15].

The main focus in this paper is on the use of modulated energy techniques and div-
curl for studying incompressible fluids. And for that, we assume that nε(x, ·) has total mass
equal to 1 and the mean values of uε vanish, that is, m(uε) = (1/(2π)3)

∫
T3 u

εdx = 0. We
also restrict ourselves to the case of well-prepared initial data and the case of periodic torus.
Indeed, the quasi-neutral limit is much more difficult without these assumptions.

In this note, we will use some inequalities in Sobolev spaces, such as basic Moser-type
calculus inequalities, Young inequality, and Gronwall inequality.

The paper is organized as follows. In Section 2 we state our main result. Estimates and
proofs are given in Section 3.

2. Main Result

Throughout the paper, we will denote by C a number independent of ε, which actually may
change from line to line. Moreover (·, ·) and ‖ · ‖ stand for the usual L2 scalar product and
norm, ‖ · ‖s is the usual Hs Sobolev norm, and ‖ · ‖s,∞ is the usual Ws,∞ norm.

The study of the asymptotic behavior of the sequence (uε, nε), as ε goes to zero, leads
to the statement of our main result.

Theorem 2.1. Let uNS be a solution of the incompressible Euler equations (1.2) such that uNS ∈
([0, T],Hs+3(T3)) and

∫
T3 uNSdx = 0 for s > (5/2). Assume that (nε

0,u
ε
0) be a sequence of initial

data such that
∫
T3 n

ε
0 dx = 1,

∫
T3 uε

0 dx = 0 and
∥∥∥uε

0 − uNS
0

∥∥∥
s+1

≤ Cε,

∥∥nε
0 − 1

∥∥
s ≤ Cε2

(2.1)

with uNS
0 = uNS |

t=0. Then there is a sequence (nε,uε) ∈ C([0, T],Hs×Hs+1(T3)) of solutions to (1.1)
with initial data (nε

0,u
ε
0) belonging to C([0, Tε],Hs ×Hs+1(T3)) with lim infε→ 0Tε ≥ T . Moreover

for any T1 < T and ε small enough,

∥∥∥uε(t) − uNS(t)
∥∥∥
s
≤ Cε,

‖nε(t) − 1‖s ≤ Cε2,

(2.2)

for any 0 ≤ t ≤ T1.
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3. Proof of the Theorem

If (uε, nε) is a solution to system (1.1), we introduce

uε = uNS + εu,

nε = 1 + ε2
(
n + ΔVNS

)
,

Vε = VNS + V.

(3.1)

Since the pressure VNS in the incompressible Navier-Stokes equation is given by

ΔVNS = ∇uNS : ∇uNS, (3.2)

where, ∇u : ∇v =
∑3

i,j=1(∂xiu/∂xj )(∂xjv/∂xi). Then the vector (u1, n1,V1) solves the system

∂tu + uNS · ∇u =
∇V
ε

− ε(u · ∇)u − (u · ∇)uNS + μΔu,

∂tn + uNS · ∇n = − divu
ε

− εdiv
((

n + ΔVNS
)
u
)
− ∂tΔVNS − uNS · ∇ΔVNS,

ΔV = n.

(3.3)

As in [16], we make the following change of unknowns:

d = divu, c = curlu. (3.4)

By using the last equation and taking the curl and the divergence of the first equation in (3.5),
we get the following system:

∂td + uNS · ∇d =
n

ε
− ε(u · ∇)d − ε∇u : ∇u − ∇u : ∇uNS + μΔd,

∂tc + uNS · ∇c = −ε(u · ∇)c − ε(c · ∇)u − (c · ∇)uNS

+ curl
(
∇uNS · u − u · ∇uNS

)
− εdc + μΔd,

∂tn + uNS · ∇n = −d
ε
− ε(u · ∇)n − ε

(
n + ΔVNS

)
d − u · ∇ΔVNS −

(
∂t + uNS · ∇

)
ΔVNS.

(3.5)

This last system can be written as a singular perturbation of a quasilinear symmetrizable
hyperbolic system. Setting W

ε = (d, c, n)T yields

∂tW
ε +A(t, x, ∂x)Wε =

1
ε
KW

ε − εB(t, x, ∂x)Wε + S(Wε) + μN(Wε) + R, (3.6)
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where

A(t, x, ∂x) = diag
(
uNS · ∇,uNS · ∇I3,uNS · ∇

)
, B(t, x, ∂x) = diag(u · ∇,u · ∇I3,u · ∇),

K =

⎛

⎝
0 0 1
0 0 0
−1 0 0

⎞

⎠, N(Wε) =

⎛

⎝
Δd
Δc
0

⎞

⎠, R =

⎛

⎝
0
0

−(∂t + uNS · ∇)
ΔVNS

⎞

⎠,

S(Wε) =

⎛

⎝
−ε∇u : ∇u − ∇u : ∇uNS

−ε(c · ∇)u − (c · ∇)uNS + curl
(∇uNS · u − u · ∇uNS) − εdc

−ε(n + ΔVNS)d − u · ∇ΔVNS

⎞

⎠.

(3.7)

For |α| ≤ s with s > d/2, we set

Eλ
α,s(t) =

1
2

(
‖∂αxd‖2 + ‖∂αxc‖2 + ‖∂αxn‖2

)
,

Eλ
s(t) =

∑

|α|≤s
Eλ
α,s(t).

(3.8)

Before performing the energy estimate, we apply the operator ∂αx for α ∈ N
3 with |α| ≤ s

to (3.6), to obtain

∂t∂
α
xW

ε +A(t, x, ∂x)∂αxW
ε =

1
ε
K∂αxW

ε − εB(t, x, ∂x)∂αxW
ε + ∂αxS(W

ε) + μ∂αxN(Wε)

+ [∂αx,A(t, x, ∂x)]Wε − ε[∂αx, B(t, x, ∂x)]W
ε + ∂αxR.

(3.9)

Now, we proceed to perform the energy estimates for (3.9) in a classical way by taking the
scalar product of system (3.9) with ∂αxW

ε.
Let us start the estimate of each term. First, sinceA(t, x, ∂x) is symmetric and divuNS =

0, we have that

(A(t, x, ∂x)∂αxW
ε, ∂αxW

ε) = −
∫

T3
divuNS

(
|∂αxd|2 + |∂αxc|2 + |∂αxn|2

)
dx = 0. (3.10)

Next, since K is skew-symmetric, we have that

1
ε
(K∂αxW

ε, ∂αxW
ε) = 0. (3.11)

By integration by parts, we have

−ε(B(t, x, ∂x)∂αxW
ε, ∂αxW

ε) = ε

∫

T3
divu|∂αxW

ε|2dx ≤ ‖divu‖0,∞Eε
s(t) ≤ (Eε

s(t))
3/2. (3.12)

For later estimates in this paper, we recall some results on Moser-type calculus inequalities in
Sobolev spaces [17, 18].
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Lemma 3.1. Let s ≥ 1 be an integer. Suppose u ∈ Hs(T3), ∇u ∈ L∞(T3), and v ∈ Hs−1(T3) ∩
L∞(T3). Then for all multi-indexes |α| ≤ s, one has (∂αx(uv) − u∂αxv) ∈ L2(T3) and

‖∂αx(uv) − u∂αxv‖ ≤ Cs

(
‖∇u‖0,∞

∥
∥∥D|α|−1v

∥
∥∥ +

∥
∥∥D|α|u

∥
∥∥‖v‖0,∞

)
, (3.13)

where

∥∥
∥Dhu

∥∥
∥ =

∑

|α|=h
‖∂αxu‖, ∀h ∈ N. (3.14)

Moreover, if s ≥ 3, then the embedding Hs−1(T3) ↪→ L∞(T3) is continuous and one has

‖uv‖s−1 ≤ Cs‖u‖s−1‖v‖s−1, ‖∂αx(uv) − u∂αxv‖ ≤ Cs‖u‖s‖v‖s−1. (3.15)

By using basic Moser-type calculus inequalities and Sobolev’s lemma, we have

(∂αxS(W
ε), ∂αxW

ε) ≤ CEε
s(t) + Cε(Eε

s(t))
3/2. (3.16)

After a a direct calculation, one gets

μ(∂αxN(Wε), ∂αxW
ε) = −μ

∫

T3

(
|∇∂αxd|2 + |∇∂αxc|2

)
dx. (3.17)

To estimate the commutator, we have

([∂αx,A(t, x, ∂x)]Wε, ∂αxW
ε)

=
∫([

∂αx,u
NS · ∇

]
d∂αxd +

[
∂αx,u

NS · ∇
]
c∂αxc +

[
∂αx,u

NS · ∇
]
n∂αxn

)
dx

≤ C

(∥∥∥uNS
∥∥∥
s
‖∇d‖0,∞ +

∥∥∥uNS
∥∥∥
0,∞

‖∇d‖s−1
)
‖d‖s

+ C

(∥∥∥uNS
∥∥∥
s
‖∇c‖0,∞ +

∥∥∥uNS
∥∥∥
0,∞

‖∇c‖s−1
)
‖c‖s

+ C

(∥∥∥uNS
∥∥∥
s
‖∇n‖0,∞ +

∥∥∥uNS
∥∥∥
0,∞

‖∇n‖s−1
)
‖n‖s

≤ CEs(t).

(3.18)
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Also, we have

− ε([∂αx, B(t, x, ∂x)]W
ε, ∂αxW

ε)

= −ε
∫
([∂x,u · ∇]d∂αxd + [∂x,u · ∇]c∂αxc + [∂x,u · ∇]n∂αxn)dx

≤ Cε
(‖u‖s‖∇d‖0,∞ + ‖u‖0,∞‖∇d‖s−1

)‖d‖s
+ Cε

(‖u‖s‖∇c‖0,∞ + ‖u‖0,∞‖∇c‖s−1
)‖c‖s

+ Cε
(‖u‖s‖∇n‖0,∞ + ‖u‖0,∞‖∇n‖s−1

)‖n‖s
≤ Cε(Eε

s(t))
3/2.

(3.19)

Here, we have used the inequality

‖u‖s ≤ C‖∇u‖s−1 ≤ C(‖d‖s−1 + ‖c‖s−1). (3.20)

Finally, the Young inequality gives

(∂αxR, ∂
α
xW

ε) ≤
∥∥∥∂tΔVNS + uNS · ∇ΔVNS

∥∥∥
s
‖n‖s ≤ C(1 + Eε

s(t)). (3.21)

Notice that, to get the last line, we have used (3.2).
Now, we collect all the previous estimates (3.10)–(3.21) and we sum over α to find

d

dt
Eε
s(t) ≤ C

(
1 + Eε

s(t) + ε(Eε
s)

3/2(t)
)
. (3.22)

We can conclude using a standard Gronwall’s lemma, that if the solution (uNS,VNS) of
Navier-Stokes equations (1.2) is smooth on the time interval [0, T], for any T1 < T there exists
ε0 such that the sequence (Wε)ε<ε0 is bounded in C([0, T1],Hs(T3)). Then we have

W
ε = (divu, curlu, n),

uε = uNS + εu,

nε = 1 + ε2
(
n + ΔVNS

)
.

(3.23)

The assumptions that we havemade on the initial data imply that (1/ε)(uε−uNS), (1/ε2)(n−1)
is bounded. This proves Theorem 2.1.
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