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By using the variational method, under appropriate assumptions on the perturbation terms
f(x, u), g(x, u) such that the associated functional satisfies the global minimizer condition and
the fountain theorem, respectively, the existence and multiple results for the p(x)-Laplacian with
nonlinear boundary condition in bounded domain Ω were studied. The discussion is based on
variable exponent Lebesgue and Sobolev spaces.

1. Introduction

In recent years, increasing attention has been paid to the study of differential and partial
differential equations involving variable exponent conditions. The interest in studying such
problems was stimulated by their applications in elastic mechanics, fluid dynamics, or
calculus of variations. For more information on modeling physical phenomena by equations
involving p(x)-growth condition we refer to [1–3]. The appearance of such physical models
was facilitated by the development of variable exponent Lebesgue and Sobolev spaces,
Lp(x) and W1, p(x), where p(x) is a real-valued function. Variable exponent Lebesgue spaces
appeared for the first time in the literature as early as 1931 in an article by Orlicz [4]. The
spaces Lp(x) are special cases of Orlicz spaces Lϕ originated by Nakano [5] and developed by
Musielak and Orlicz [6, 7], where f ∈ Lϕ if and only if

∫
ϕ(x, |f(x)|)dx < ∞ for a suitable ϕ.

Variable exponent Lebesgue spaces on the real line have been independently developed by
Russian researchers. In that context we refer to the studies of Tsenov [8], Sharapudinov [9],
and Zhikov [10, 11].



2 ISRN Applied Mathematics

In this paper, we consider the following nonlinear elliptic boundary value problem:

−div
(
a(x)|∇u|p(x)−2∇u

)
+ b(x)|u|p(x)−2u = λf(x, u), x ∈ Ω,

a(x)|∇u|p(x)−2 ∂u
∂ν

= c(x)|u|q(x)−2u + μg(x, u), x ∈ ∂Ω,
(1.1)

where Ω ⊂ R
n is a bounded domain with Lipschitz boundary ∂Ω, ∂/∂ν is outer unit normal

derivative, p(x) ∈ C(Ω), q(x) ∈ C(∂Ω), p(x), q(x) > 1, and p(x)/= q(y) for any x ∈ Ω, y ∈
∂Ω; λ, μ ∈ R; f : Ω × R → R, and g : ∂Ω × R → R are Carathédory functions. Throughout
this paper, we assume that a(x), b(x), and c(x) satisfy 0 < a1 ≤ a(x) ≤ a2, 0 < b1 ≤ b(x) ≤ b2,
and 0 ≤ c1 ≤ c(x) ≤ c2.

The operator −Δp(x)u := −div(|∇u|p(x)−2∇u) is called p(x)-Laplacian, which is a
natural extension of the p-Laplace operator, with p being a positive constant. However, such
generalizations are not trivial since the p(x)-Laplace operator possesses a more complicated
structure than the p-Laplace operator, for example, it is inhomogeneous. For related results
involving the Laplace operator, see [12, 13].

In the past decade, many people have studied the nonlinear boundary value problems
involving p-Laplacian. For example, if λ = μ = 1, a(x) = b(x) = c(x) ≡ 1, p(x) ≡ p, and
q(x) ≡ q (a constant), then problem (1.1) becomes

−div
(
|∇u|p−2∇u

)
+ |u|p−2u = f(x, u), x ∈ Ω,

|∇u|p−2 ∂u
∂ν

= |u|q−2u + g(x, u), x ∈ ∂Ω.

(1.2)

Bonder and Rossi [14] considered the existence of nontrivial solutions of problem (1.2)
when f(x, u) ≡ 0 and discussed different cases when g(x, u) is subcritical, critical, and
supercritical with respect to u. We also mention that Martı́nez and Rossi [15] studied the
existence of solutions when p = q and the perturbation terms f(x, u) and g(x, u) satisfy
the Landesman-Lazer-type conditions. Recently, J.-H. Zhao and P.-H. Zhao [16] studied the
nonlinear boundary value problem, assumed that f(x, u) and g(x, u) satisfy the Ambrosetti-
Rabinowitz-type condition, and got the multiple results.

If λ = μ = 1, p(x) ≡ p, and q(x) ≡ q (a constant), then problem (1.1) becomes

−div
(
a(x)|∇u|p−2∇u

)
+ b(x)|u|p−2u = f(x, u), x ∈ Ω,

a(x)|∇u|p−2 ∂u
∂ν

= c(x)|u|q−2u + g(x, u), x ∈ ∂Ω.

(1.3)

There are also many people who studied the p-Laplacian nonlinear boundary value problems
involving (1.3). For example, Cı̂rstea and Rǎdulescu [17] used the weighted Sobolev space to
discuss the existence and nonexistence results and assumed that f(x, u) is a special case in the
problem (1.3), where Ω is an unbounded domain. Pflüger [18], by using the same technique,
considered the existence and multiplicity of solutions when b(x) ≡ 0. The author showed
the existence result when f(x, u) and g(x, u) are superlinear and satisfy the Ambrosetti-
Rabinowitz-type condition and got the multiplicity of solutions when one of f(x, u) and
g(x, u) is sublinear and the other one is superlinear.
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More recently, the study on the nonlinear boundary value problems with variable
exponent has received considerable attention. For example, Deng [19] studied the eigenvalue
of p(x)-Laplacian Steklov problem, and discussed the properties of the eigenvalue sequence
under different conditions. Fan [20] discussed the boundary trace embedding theorems
for variable exponent Sobolev spaces and some applications. Yao [21] constrained the two
nonlinear perturbation terms f(x, u) and g(x, u) in appropriate conditions and got a number
of results for the existence and multiplicity of solutions. Motivated by Yao and problem (1.3),
we consider the more general form of the variable exponent boundary value problem (1.1).
Under appropriate assumptions on the perturbation terms f(x, u) and g(x, u), by using the
global minimizer method and fountain theorem, respectively, the existence and multiplicity
of solutions of (1.1) were obtained. These results extend some of the results in [21] and the
classical results for the p-Laplacian in [14, 16, 22–24].

2. Preliminaries

In order to discuss problem (1.1), we need some results for the spaces W1, p(x)(Ω), which
we call variable exponent Sobolev spaces. We state some basic properties of the spaces
W1, p(x)(Ω), which will be used later (for more details, see [25, 26]). Let Ω be a bounded
domain of R

n, and denote

C+

(
Ω
)
=
{
p(x) | p(x) ∈ C

(
Ω
)
; p(x) > 1, ∀x ∈ Ω

}
. (2.1)

For p(x) ∈ C+(Ω) write

p+ = max
x∈Ω

p(x), p− = min
x∈Ω

p(x). (2.2)

We can also denote C+(∂Ω) and q+, q− for any q(x) ∈ C(∂Ω), and define

Lp(x)(Ω) =
{
u | u is a measurable real-valued function,

∫

Ω
|u(x)|p(x) dx < ∞

}
,

Lp(x)(∂Ω) =
{
u | u : ∂Ω −→ R is a measurable real-valued function,
∫

∂Ω
|u(x)|p(x) dσ < ∞

}
,

(2.3)

with norms on Lp(x)(Ω) and Lp(x)(∂Ω) defined by

|u|Lp(x)(Ω) = |u|p(x) = inf

{

λ > 0 :
∫

Ω

∣∣∣∣
u(x)
λ

∣∣∣∣

p(x)

dx ≤ 1

}

,

|u|Lp(x)(∂Ω) = inf

{

τ > 0 :
∫

∂Ω

∣∣∣∣
u(x)
τ

∣∣∣∣

p(x)

dσ ≤ 1

}

,

(2.4)
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where dσ is the surface measure on ∂Ω. Then, (Lp(x)(Ω), | · |p(x)) and (Lp(x)(∂Ω), | · |Lp(x)(∂Ω))
become Banach spaces, which we call variable exponent Lebesgue spaces. Let us define the
space

W1, p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
, (2.5)

equipped with the norm

‖u‖ = inf

{

λ > 0 :
∫

Ω

(∣
∣
∣
∣
∇u(x)

λ

∣
∣
∣
∣

p(x)

+
∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

p(x)
)

dx ≤ 1

}

. (2.6)

For u ∈ W1, p(x)(Ω), if we define

‖u‖′ = inf

{

λ > 0 :
∫

Ω

(

a(x)
∣∣∣∣
∇u(x)

λ

∣∣∣∣

p(x)

+ b(x)
∣∣∣∣
u(x)
λ

∣∣∣∣

p(x)
)

dx ≤ 1

}

, (2.7)

then, from the assumptions of a(x) and b(x), it is easy to check that ‖u‖′ is an equivalent
norm on W1, p(x)(Ω). For simplicity, we denote

Γ(u) =
∫

Ω

(
a(x)|∇u|p(x) + |u|p(x)

)
dx. (2.8)

Hence, we have (see [27])

(i) if Γ(u) ≥ 1, then ξ1‖u‖p− ≤ Γ(u) ≤ ξ2‖u‖p+ ,
(ii) if Γ(u) ≤ 1, then ζ1‖u‖p+ ≤ Γ(u) ≤ ζ2‖u‖p− ,

where ξ1, ξ2 and ζ1, ζ2 are positive constants independent of u.
Denote byW

1, p(x)
0 (Ω) the closure of C∞

0 (Ω) inW1, p(x)(Ω).

Proposition 2.1 (see [21, 28]). (1) The space (Lp(x)(Ω), | · |p(x)) is a separable, uniformly convex
Banach space, and its conjugate space is Lq(x)(Ω), where 1/q(x) + 1/p(x) = 1. For any u ∈ Lp(x)(Ω)
and v ∈ Lq(x)(Ω), one has

∣∣∣∣

∫

Ω
uv dx

∣∣∣∣ ≤
(

1
p−

+
1
q−

)
|u|p(x)|v|q(x). (2.9)

(2) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x), for any x ∈ Ω, then Lp2(x)(Ω) ↪→ Lp1(x)(Ω) and the
imbedding is continuous.

Proposition 2.2 (see [20, 21, 28]). (1) W1, p(x)(Ω), W1, p(x)
0 (Ω) are separable reflexive Banach

spaces.
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(2) If q(x) ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the embedding from W1, p(x)(Ω)
into Lq(x)(Ω) is compact and continuous, where

p∗(x) =

⎧
⎪⎨

⎪⎩

np(x)
n − p(x)

, if p(x) < n,

∞, if p(x) ≥ n.
(2.10)

(3) If q(x) ∈ C+(∂Ω) and q(x) < p∗(x) for any x ∈ ∂Ω, then the trace imbedding from
W1, p(x)(Ω) into Lq(x)(∂Ω) is compact and continuous, where

p∗(x) =

⎧
⎪⎨

⎪⎩

(n − 1)p(x)
n − p(x)

, if p(x) < n,

∞, if p(x) ≥ n.
(2.11)

(4) (Poincaré inequality) There is a constant C > 0, such that

|u|p(x) ≤ C|∇u|p(x) ∀u ∈ W
1, p(x)
0 (Ω). (2.12)

Proposition 2.3 (see [21, 28, 29]). If f : Ω × R → R is a Carathéodory function and satisfies

∣∣f(x, s)
∣∣ ≤ a(x) + b|s|p1(x)/p2(x), for anyx ∈ Ω, s ∈ R, (2.13)

where p1(x), p2(x) ∈ C+(Ω), a(x) ∈ Lp2(x)(Ω), a(x) ≥ 0, and b ≥ 0 is a constant, then the
Nemytsky operator from Lp1(x)(Ω) to Lp2(x)(Ω) defined by (Nf(u))(x) = f(x, u(x)) is a continuous
and bounded operator.

Proposition 2.4 (see [21, 28, 30]). Denote

ρ(u) =
∫

Ω
|u|p(x) dx, ∀u ∈ Lp(x)(Ω). (2.14)

Then,
(1) |u|p(x) < 1(= 1;> 1) if and only if ρ(u) < 1(= 1;> 1),

(2) |u|p(x) > 1 implies |u|p−
p(x) ≤ ρ(u) ≤ |u|p+

p(x) and |u|p(x) < 1 implies |u|p−
p(x) ≥ ρ(u) ≥ |u|p+

p(x),
(3) |u|p(x) → 0 if and only if ρ(u) → 0 and |u(x)|p(x) → ∞ if and only if ρ(u) → ∞.

Proposition 2.5 (see [19]). Denote

ρ(u) =
∫

∂Ω
|u|p(x) dσ, ∀u ∈ Lp(x)(∂Ω). (2.15)

Then,

(1) |u|Lp(x)(∂Ω) > 1 implies |u|p−
Lp(x)(∂Ω)

≤ ρ(u) ≤ |u|p+
Lp(x)(∂Ω)

,

(2) |u|Lp(x)(∂Ω) < 1 implies |u|p−
Lp(x)(∂Ω)

≥ ρ(u) ≥ |u|p+
Lp(x)(∂Ω)

.
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3. Assumptions and Statement of Main Results

In the following, let X denote the generalized Sobolev space W1,p(x)(Ω), X∗ denote the dual
space of W1,p(x)(Ω), 〈·〉 denote the dual pair, and let → represent strong convergence, ⇀
represent weak convergence, C, Ci represent the generic positive constants.

Now we state the assumptions on perturbation terms f(x, u) and g(x, u) for problem
(1.1) as follows:

(f0) f : Ω × R → R satisfies Carathéodory condition and there exist two constants
c1 ≥ 0, c2 > 0 such that

∣
∣f(x, u)

∣
∣ ≤ c1 + c2|u|α(x)−1, ∀(x, u) ∈ Ω × R, (3.1)

where α(x) ∈ C+(Ω) and α(x) < p∗(x) for any x ∈ Ω.

(f1) There exist M1 > 0, θ1 > p+ such that

0 < θ1F(x, u) ≤ f(x, u)u, |u| ≥ M1, ∀x ∈ Ω. (3.2)

(f2) f(x,−u) = −f(x, u), for all x ∈ Ω, u ∈ R.

(g0) g : ∂Ω × R → R satisfies Carathéodory condition and there exist two constants
c′1 ≥ 0, c′2 > 0 such that

∣∣g(x, u)
∣∣ ≤ c′1 + c′2|u|β(x)−1, ∀(x, u) ∈ ∂Ω × R, (3.3)

where β(x) ∈ C+(∂Ω) and β(x) < p∗(x) for any x ∈ ∂Ω.

(g1) There exist M2 > 0, θ2 > p+ such that

0 < θ2G(x, u) ≤ g(x, u)u, |u| ≥ M2, ∀x ∈ ∂Ω. (3.4)

(g2) g(x,−u) = −g(x, u), for all x ∈ ∂Ω, u ∈ R.

The functional associated with problem (1.1) is

ϕ(u) =
∫

Ω

a(x)|∇u|p(x) + b(x)|u|p(x)
p(x)

dx − λ

∫

Ω
F(x, u) dx

−
∫

∂Ω

c(x)
q(x)

|u|q(x) dσ − μ

∫

∂Ω
G(x, u) dσ,

(3.5)

where F(x, u) and G(x, u) are denoted by

F(x, u) =
∫u

0
f(x, s) ds, G(x, u) =

∫u

0
g(x, s) ds. (3.6)
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By Propositions 3.1 and 3.2, and assumptions (f0), (g0), it is easy to see that the functional
ϕ ∈ C1(X,R); moreover, ϕ is even if (f2) and (g3) hold. Then,

〈
ϕ′(u), v

〉
=
∫

Ω

(
a(x)|∇u|p(x)−2∇u∇v + b(x)|u|p(x)−2uv

)
dx − λ

∫

Ω
f(x, u)v dx

−
∫

∂Ω
c(x)|u|q(x)−2uv dσ − μ

∫

∂Ω
g(x, u)v dσ,

(3.7)

so the weak solution of (1.1) corresponds to the critical point of the functional ϕ.
Before giving our main results, we first give several propositions that will be used

later.

Proposition 3.1 (see [31]). If one denotes

I(u) =
∫

Ω

a(x)|∇u|p(x) + b(x)|u|p(x)
p(x)

dx, ∀u ∈ X, (3.8)

then I ∈ C1(X,R) and the derivative operator of I, denoted by I ′, is

〈
I ′(u), v

〉
=
∫

Ω

(
a(x)|∇u|p(x)−2∇u∇v + b(x)|u|p(x)−2uv

)
dx, ∀u, v ∈ X, (3.9)

and one has:

(i) I ′ : X → X∗ is a continuous, bounded, and strictly monotone operator,

(ii) I ′ is a mapping of (S+) type, that is, if un ⇀ u in X and lim sup n→∞〈I ′(un) − I ′(u), un −
u〉 ≤ 0, then un → u in X,

(iii) I ′ : X → X∗ is a homeomorphism.

Proposition 3.2 (see [19]). If one denotes

J(u) =
∫

∂Ω

c(x)
q(x)

|u|q(x) dσ, ∀u ∈ X, (3.10)

where q(x) ∈ C+(∂Ω) and q(x) < p∗(x) for any x ∈ ∂Ω, then J ∈ C1(X,R) and the derivative
operator J ′ of J is

〈
J ′(u), v

〉
=
∫

∂Ω
c(x)|u|q(x)−2uv dσ, ∀u, v ∈ X, (3.11)

and one has that J : X → R and J ′ : X → X∗ are sequentially weakly-strongly continuous, namely,
un ⇀ u in X implies J ′(un) → J ′(u).
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Let X be a reflexive and separable Banach space. There exist ei ∈ X and e∗j ∈ X∗ such
that

X = span{ei : i = 1, 2, . . .}, X∗ = span
{
e∗j : j = 1, 2, . . .

}
,

〈
ei, e

∗
j

〉
=

{
1, i = j,

0, i /= j.

(3.12)

k = 1, 2, . . .

Xk = span {ek}, Yk =
k⊕

i=1

Xi, Zk =
⊕

i≥k
Xi. (3.13)

One important aspect of applying the standard methods of variational theory is to
show that the functional ϕ satisfies the Palais-Smale condition, which is introduced by the
following definition.

Definition 3.3. Let ϕ ∈ C1(X,R) and c ∈ R. Then, functional ϕ satisfies the (PS)c condition if
any sequence {un} ⊂ X such that

ϕ(un) −→ c, ϕ′(un) −→ 0 inX∗, asn −→ ∞ (3.14)

contains a subsequence converging to a critical point of ϕ.
In what follows we write the (PS)c condition simply as the (PS) condition if it holds

for every level c ∈ R for the Palais-Smale condition at level c.

Proposition 3.4 (Fountain theorem, see [23, 32]). Assume that

(A1) X is a Banach space, ϕ ∈ C1(X,R) is an even functional, the subspaces Xk, Yk and Zk are
defined by (3.13).Suppose that, for every k ∈ N, there exist ρk > γk > 0 such that

(A2) infu∈Zk,‖u‖=γkϕ(u) → ∞ as k → ∞,

(A3) maxu∈Yk,‖u‖=ρkϕ(u) ≤ 0,

(A4) ϕ satisfies (PS)c condition for every c > 0.

Then, ϕ has a sequence of critical values tending to +∞.

Proposition 3.5 (see [21]). Suppose that hypotheses α(x) ∈ C+(Ω), α(x) < p∗(x), for all x ∈ Ω,
and if q(x) ∈ C+(∂Ω), q(x) < p∗(x), for all x ∈ ∂Ω, denote

αk = sup
{
|u|Lα(x)(Ω) : ‖u‖ = 1, u ∈ Zk

}
;

qk = sup
{
|u|Lq(x)(∂Ω) : ‖u‖ = 1, u ∈ Zk

}
,

(3.15)

then limk→∞αk = 0, limk→∞qk = 0.
Let us introduce the following lemma that will be useful in the proof of our main result.
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Lemma 3.6. Let λ, μ ≥ 0, q− > θ1, θ2, and assume that (f0), (f1), (g0), and (g1) are satisfied, then
ϕ satisfies (PS) condition.

Proof. By Propositions 2.2 and 2.3, we know that if we denote

Φ(u) = λ

∫

Ω
F(x, u) dx + μ

∫

∂Ω
G(x, u) dσ, (3.16)

then Φ is weakly continuous and its derivative operator, denoted by Φ′, is compact. By
Propositions 3.1 and 3.2, we deduce that ϕ′ = I ′ − J ′ − Φ′ is also of (S+) type. To verify that
ϕ satisfies (PS) condition on X, it is enough to verify that any (PS) sequence is bounded.
Suppose that {un} ⊂ X such that

ϕ(un) −→ c, ϕ′(un) −→ 0, in X∗, asn −→ ∞. (3.17)

Then, for n large enough, we can find M3 > 0 such that

∣∣ϕ(un)
∣∣ ≤ M3. (3.18)

Since ϕ′(un) → 0, we have 〈ϕ′(un), un〉 → 0. In particular, {〈ϕ′(un), un〉} is bounded. Thus,
there exists M4 > 0 such that

∣∣〈ϕ′(un), un

〉∣∣ ≤ M4. (3.19)

We claim that the sequence {un} is bounded. If it is not true, by passing a subsequence if
necessary, we may assume that ‖un‖ → +∞. Without loss of generality, we assume that
‖un‖ ≥ 1 appropriately large such that ξ1‖u‖p− < ζ1‖u‖p+ for any x ∈ Ω. From (3.18) and (3.19)
and letting θ = min{θ1, θ2}, then θ < q−, we have

M3 ≥ ϕ(un) = I(un) − J(un) −Φ(un)

≥ 1
p+

Γ(un) − 1
q−

∫

∂Ω
c(x)|un|q(x) dσ −Φ(un),

≥ 1
p+

Γ(un) − 1
θ

∫

∂Ω
c(x)|un|q(x) dσ −Φ(un),

(3.20)

M4 ≥ −〈ϕ′(un), un

〉
= −Γ(un) +

∫

∂Ω
c(x)|un|q(x) dσ +

〈
Φ′(un), un

〉
. (3.21)
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By virtue of assumptions (f1) and (g1) and combining (3.20) and (3.21), we have

θM3 +M4 ≥
(

θ

p+
− 1
)
Γ(un) − θΦ(un) +

〈
Φ′(un), un

〉

≥
(

θ

p+
− 1
)
ξ1‖un‖p

−
+ λ

∫

Ω

(
f(x, un)un − θF(x, un)

)
dx

+ μ

∫

∂Ω

(
g(x, un)un − θG(x, un)

)
dσ

≥
(

θ

p+
− 1
)
ξ1‖un‖p

− − C.

(3.22)

Note that θ = min{θ1, θ2} > p+, let n → ∞ we obtian a contradiction. It follows that the
sequence {un} is bounded in X. Therefore, ϕ satisfies (PS) condition.

Under appropriate assumptions on the perturbation terms f(x, u), g(x, u), a sequence
of weak solutions with energy values tending to +∞ was obtained. The main result of the
paper reads as follows.

Theorem 3.7. Let α−, β− > p+, q− > θ1, θ2, and λ, μ ≥ 0, and assumed that (f0) − −(f2), (g0) −
−(g2) are satisfied; then ϕ has a sequence of critical points {±un} such that ϕ(±un) → ∞ as n → ∞.

Proof. We will prove that ϕ satisfies the conditions of Proposition 3.4. Obviously, because of
the assumptions of (f2) and (g2), ϕ is an even functional and satisfies (PS) condition (see
Lemma 3.6). We will prove that if k is large enough, then there exist ρk > γk > 0 such that
(A2) and (A3) hold. By virtue of (f0), (g0), there exist two positive constants C1, C2 such that

|F(x, u)| ≤ C1

(
1 + |u|α(x)

)
, (x, u) ∈ Ω × R; |G(x, u)| ≤ C2

(
1 + |u|β(x)

)
, (x, u) ∈ ∂Ω×R.

(3.23)

Letting u ∈ Zk with ‖u‖ > 1 appropriately large such that ξ1‖u‖p− < ζ1‖u‖p+ , we have

ϕ(u) = I(u) − J(u) −Φ(u)

≥ 1
p+

Γ(u) − c2
q−

∫

∂Ω
|u|q(x) dσ − λ

∫

Ω
C1

(
1 + |u|α(x)

)
dx − μ

∫

∂Ω
C2

(
1 + |u|β(x)

)
dσ

≥ 1
p+

min
{
ξ1‖u‖p

−
, ζ1‖u‖p

+
}
− c2
q−

max
{
|u|q+

Lq(x)(∂Ω)
, |u|q−

Lq(x)(∂Ω)

}

− λC1 max
{
|u|α+

Lα(x)(Ω), |u|α
−

Lα(x)(Ω)

}
− μC2 max

{
|u|β+

Lβ(x)(∂Ω)
, |u|β−

Lβ(x)(∂Ω)

}
− C3

≥ ξ1
p+

‖u‖p− − C
(
q−, λ, μ

)
max

{
|u|q+

Lq(x)(∂Ω)
, |u|q−

Lq(x)(∂Ω)
, |u|α+

Lα(x)(Ω),

|u|α−

Lα(x)(Ω), |u|
β+

Lβ(x)(∂Ω)
, |u|β−

Lβ(x)(∂Ω)

}
− C3.

(3.24)
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If max{|u|q+
Lq(x)(∂Ω)

, |u|q−
Lq(x)(∂Ω)

, |u|α+

Lα(x)(Ω), |u|α
−

Lα(x)(Ω), |u|
β+

Lβ(x)(∂Ω)
, |u|β−

Lβ(x)(∂Ω)
} = |u|q+

Lq(x)(∂Ω)
, then by

Proposition 3.5 , we have

ϕ(un) ≥ ξ1
p+

‖u‖p− − C
(
q−, λ, μ

)|u|q+
Lq(x)(∂Ω)

− C3 ≥ ξ1
p+

‖u‖p− − C
(
q−, λ, μ

)
q
q+

k ‖u‖q+ − C3. (3.25)

Choose γk = (q+C(q−, λ, μ)(q k(q+ ))/ξ 1 )1/(p
−−q+). For u ∈ Zk with ‖u‖ = γk, we have

ϕ(u) ≥ ξ1

(
1
p+

− 1
q+

)
γ
p−

k
− C3. (3.26)

Since qk → 0 as k → ∞ and 1 < p− ≤ p+ < θ1, θ2 < q− ≤ q+, we have 1/p+ − 1/q+ > 0 and
γk → ∞. Thus, for sufficiently large k, we have ϕ(u) → ∞ with u ∈ Zk and ‖u‖ = γk as
k → ∞. In other cases, similarly, we can deduce

ϕ(u) −→ ∞, sinceαk −→ 0, qk = 0, k −→ ∞. (3.27)

So (A2) holds.
By virtue of (f1) and (g1), there exist two positive constants C4, C5 such that

F(x, u) ≥ C4

(
|u|θ1 − 1

)
, ∀(x, u) ∈ Ω × R; G(x, u) ≥ C5

(
|u|θ2 − 1

)
, ∀(x, u) ∈ ∂Ω × R.

(3.28)

Letting u ∈ Yk, we have

ϕ(u) ≤ 1
p−

Γ(u) − c1
q+

∫

∂Ω
|u|q(x) dσ − λ

∫

Ω
F(x, u) dx − μ

∫

∂Ω
G(x, u) dσ

≤ 1
p−

max
{
ξ2‖u‖p

+
, ζ2‖u‖p

−} − c1
q+

min
{
|u|q+

Lq(x)(∂Ω)
, |u|q−

Lq(x)(∂Ω)

}
− C4λ

∫

Ω
|u|θ1 dx

− C5μ

∫

∂Ω
|u|θ2 dσ + C6.

(3.29)

If max{ξ2‖u‖p+ , ζ2‖u‖p−} = ξ2‖u‖p+ , min{|u|q+
Lq(x)(∂Ω)

, |u|q−
Lq(x)(∂Ω)

} = |u|q−
Lq(x)(∂Ω)

, then we have

ϕ(u) ≤ ξ2
p−

‖u‖p+ − c1
q+

|u|q−
Lq(x)(∂Ω)

− C4λ

∫

Ω
|u|θ1 dx − C5μ

∫

∂Ω
|u|θ2 dσ + C6. (3.30)

Since dimYk < ∞, all norms are equivalent in Yk. So we get

ϕ(u) ≤ ξ2
p−

‖u‖p+ − c1
q+

C7‖u‖q
− − C8λ‖u‖θ1 − C9μ‖u‖θ2 + C6. (3.31)
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Also, note that q− > θ1, θ2 > p+, Then, we get ϕ(u) → −∞ as ‖u‖ → ∞. For other cases, the
proofs are similar and we omit them here. So (A3) holds. From the proof of (A2) and (A3),
we can choose ρk > γk > 0. Thus, we complete the proof.

This time our idea is to show that ϕ possesses a nontrivial global minimum point inX.

Theorem 3.8. Let α+, β+, q+ < p−, and assume (f0), (g0) are satisfied; then (1.1) has a weak solution.

Proof. Firstly, we show that ϕ is coercive. For sufficiently large norm of u (‖u‖ ≥ 1), and by
virtue of (3.23),

ϕ(u) =
∫

Ω

a(x)|∇u|p(x) + b(x)|u|p(x)
p(x)

dx − λ

∫

Ω
F(x, u) dx −

∫

∂Ω

c(x)
q(x)

|u|q(x) dσ

− μ

∫

∂Ω
G(x, u) dσ

≥ ξ1
p+

‖u‖p− − |λ|
∫

Ω
C1

(
1 + |u|α(x)

)
dx − c2

q−

∫

∂Ω
|u|q(x) dσ − ∣∣μ∣∣

∫

∂Ω
C2

(
1 + |u|β(x)

)
dσ

≥ ξ1
p+

‖u‖p− − |λ|C1 max
{
|u|α+

Lα(x)(Ω), |u|α
−

Lα(x)(Ω)

}
− c2
q−

max
{
|u|q+

Lq(x)(∂Ω)
, |u|q−

Lq(x)(∂Ω)

}

− ∣∣μ∣∣C2 max
{
|u|β+

Lβ(x)(∂Ω)
, |u|β−

Lβ(x)(∂Ω)

}
− C10.

(3.32)

If

max
{
|u|α+

Lα(x)(Ω), |u|α
−

Lα(x)(Ω)

}
= |u|α+

Lα(x)(Ω),

max
{
|u|q+

Lq(x)(∂Ω)
, |u|q−

Lq(x)(∂Ω)

}
= |u|q+

Lq(x)(∂Ω)
,

max
{
|u|β+

Lβ(x)(∂Ω)
, |u|β−

Lβ(x)(∂Ω)

}
= |u|β+

Lβ(x)(∂Ω)
,

(3.33)

then

ϕ(u) ≥ ξ1
p+

‖u‖p− − C11|λ|‖u‖α
+ − C12‖u‖q

+ − C13
∣∣μ
∣∣‖u‖β+

− C10 −→ ∞ as ‖u‖ −→ ∞.

(3.34)

So ϕ is coercive since α+, β+, q+ < p−. Secondly, by Proposition 2.2, it is easy to verify that ϕ
is weakly lower semicontinuous. Thus, ϕ is bounded below and ϕ attains its infimum in X,
that is, ϕ(u0) = infu∈Xϕ(u) and u0 is a critical point of ϕ, which is a weak solution of (1.1).

In the Theorem 3.8, we cannot guarantee that u0 is nontrivial. In fact, under the
assumptions on the above theorem, we can also get a nontrivial weak solution of ϕ.
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Corollary 3.9. Under the assumptions in Theorem 3.8, if one of the following conditions holds, (1.1)
has a nontrivial weak solution.

(1) If λ, μ /= 0, there exist two positive constants d1, d2 < p− such that

lim inf
u→ 0

sgn(λ)F(x, u)

|u|d1
> 0, forx ∈ Ω uniformly,

lim inf
u→ 0

sgn
(
μ
)
G(x, u)

|u|d2
> 0, forx ∈ ∂Ω uniformly.

(3.35)

(2) If λ = 0, μ /= 0, there exist two positive constants d2 < p− such that

lim inf
u→ 0

sgn
(
μ
)
G(x, u)

|u|d2
> 0, forx ∈ ∂Ω uniformly. (3.36)

(3) If λ/= 0, μ = 0, there exist two positive constants d1 < p− such that

lim
u→ 0

inf
sgn(λ)F(x, u)

|u|d1
> 0, forx ∈ Ω uniformly. (3.37)

Proof. From Theorem 3.8, we know that ϕ has a global minimum point u0. We just need to
show that u0 is nontrivial. We only consider the case λ, μ /= 0 here. From (1), we know that for
0 < u < 1 small enough, there exists two positive constants C14, C15 > 0 such that

sgn(λ)F(x, u) ≥ C14|u|d1 , sgn
(
μ
)
G(x, u) ≥ C15|u|d2 . (3.38)

Choose u ≡ M > 0; then u ∈ X. For 0 < t < 1 small enough, we have

ϕ(tu) ≤ b2t
p−

p−

∫

Ω
|u|p(x) dx − |λ|

∫

Ω
sgn(λ)F(x, tu) dx − c1

q+

∫

∂Ω
|tu|q(x) dσ

− ∣∣μ∣∣
∫

∂Ω
sgn
(
μ
)
G(x, tu) dσ

≤ b2t
p−

p−

∫

Ω
|M|p(x) dx − C14|λ|td1

∫

Ω
|M|d1 dx − c1

q+
tq

−
∫

∂Ω
|M|q(x) dσ

− C15
∣∣μ
∣∣td2

∫

∂Ω
|M|d2 dσ

≤ C16t
p− − C17|λ|td1 − C18c1t

q− − C19
∣∣μ
∣∣td2 .

(3.39)

Since d1, d2, < p− and q− ≤ q+ < p−, there exists 0 < t0 < 1 small enough such that ϕ(t0u) < 0.
So the global minimum point u0 of ϕ is nontrivial.
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Remark 3.10. Suppose that f(x, u) = sgn(λ)|u|α(x)−2u, g(x, u) = sgn(μ)|u|β(x)−2u and p− >
α+, β+, q+; then the conditions in Corollary 3.9 can be fulfilled.
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[4] W. Orlicz, “Über konjugierte exponentenfolgen,” Studia Mathematica, vol. 3, pp. 200–211, 1931.
[5] H. Nakano,Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, Japan, 1950.
[6] J. Musielak,Orlicz Spaces andModular Spaces, vol. 1034 of Lecture Notes inMathematics, Springer, Berlin,

Germany, 1983.
[7] J. Musielak and W. Orlicz, “On modular spaces,” Studia Mathematica, vol. 18, pp. 49–65, 1959.
[8] I. Tsenov, “Generalization of the problem of best approximation of a function in the space Ls,”Uchenye

Zapiski Kazanskogo Gosudarstvennogo Universiteta, vol. 7, pp. 25–37, 1961.
[9] I. I. Sharapudinov, “Topology of the space Lp(t)([0; 1]),”Mathematical Notes, vol. 26, no. 4, pp. 796–806,

1979.
[10] V. Zhikov, “Averaging of functionals in the calculus of variations and elasticity,” Mathematics of the

USSR-Izvestiya, vol. 29, pp. 33–66, 1987.
[11] V. V. Zhikov, “Passage to the limit in nonlinear variational problems,” Matematicheskiı̆ Sbornik, vol.

183, no. 8, pp. 47–84, 1992.
[12] E. Acerbi and N. Fusco, “Partial regularity under anisotropic (p, q) growth conditions,” Journal of

Differential Equations, vol. 107, no. 1, pp. 46–67, 1994.
[13] M. Struwe, “Three nontrivial solutions of anticoercive boundary value problems for the pseudo-

Laplace operator,” Journal für die Reine und Angewandte Mathematik, vol. 325, pp. 68–74, 1981.
[14] J. F. Bonder and J. D. Rossi, “Existence results for the p-Laplacian with nonlinear boundary

conditions,” Journal of Mathematical Analysis and Applications, vol. 263, no. 1, pp. 195–223, 2001.
[15] S. Martı́nez and J. D. Rossi, “Weak solutions for the p-Laplacian with a nonlinear boundary condition

at resonance,” Electronic Journal of Differential Equations, no. 27, pp. 1–14, 2003.
[16] J.-H. Zhao and P.-H. Zhao, “Infinitely many weak solutions for a p-Laplacian equation with nonlinear

boundary conditions,” Electronic Journal of Differential Equations, vol. 2007, pp. 1–14, 2007.
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