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This paper surveys the current state of research related to the modeling and prediction of failures
of engineering systems. It is argued that while greater understanding of the physics of failure has
led to significant progress at the component level, there are significant challenges remaining at the
system level. System reliability, a field of applied mathematics that addresses the latter challenges,
is at a juncture where fundamental changes are likely. On the one hand, the traditional part of the
field entered a phase of diminishing returns, largely having followed the trajectory of the Cold-
War era technology development: golden years of rapid growth in the 1950s and 1960s, followed
by maturation and slowing down in the ensuing decades. On the other hand, the convergence of
several technologies related to data collection and processing, combined with important changes in
engineering business and government priorities, has created the potential for a perfect storm that
can revive and fundamentally transform the field; however, for this transformation to occur, some
serious obstacles need to be overcome. The paper examines these obstacles along with several key
areas of research that can provide enabling tools for this transformation.

1. Background
1.1. Introduction: Avoiding Failures as an Inherent Part of Engineering

It can be argued that studying the failures of engineering systems is as old as engineering
systems themselves. By its very definition, successful design implies that failures are avoided:
the airplane designed by S. P. Langley failed, while that made by the Wright brothers did
not. As a result, any engineering discipline relies on practices that avert failures. Aging and
associated degradation of the system’s properties might introduce additional challenges, as
it might take years before a technological flaw manifests itself. For example, the design of the
I-35W bridge over the Mississippi river in Minneapolis would have ensured that the bridge
would not collapse under normal operating conditions, if it were not for the design flaw
related to the sizing of Gusset plates. The bridge, which was opened for traffic in 1967 and
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collapsed forty years later, was built using design principles specified in the construction
codes of the time that should have been sufficient to prevent failures. In the case of I-35W
bridge, the influence of corrosion on integrity of bridges is well known, so appropriate safety
factors are used in construction, combined with the periodic inspections for estimation of the
corrosion impact. Steel bridges have been constructed for more than a century (the first steel
bridge was built in 1870 in Kymijoki, Finland, and the Brooklyn bridge was built in 1883); the
structural risks (including those due to aging) are now well understood, most of the failures
having occurred before the corresponding technologies become established.

More generally, the process of the maturation of certain technologies or design implies
a transition from “radical” design (with relatively low expectations about its success)
to “normal” design, when enough knowledge has been accumulated to develop specific
procedures and requirements that effectively split the potential risks of failure into three
categories: the risks that are sufficiently improbable that they may be ignored, those that
are implicitly dealt with by the system design, and finally those that are are explicitly dealt
with by the design (the latter usually involves quantitative analysis) [1, 2]. While distinction
between the radical and normal designs is usually well understood by the engineers involved
in the system design, quite often this distinction is lost in translation by the time the
message is conveyed to the decision makers. As a result, existing technologies too often are
pushed beyond the limits established by historical practice, without the full realization of the
consequences. (The history of the Swedish battleship Vasa can serve as Exhibit A of such a
risky project. The ship that was supposed to symbolize the military might of the Swedish
kingdom sunk within minutes of starting its maiden voyage [3]. The Swedish king Gustavus
Adolphus provided enough pressure from the top to override the concerns of the ship
builders over the Vasa’s stability (the ship failed a stability test that included a squad of sailors
running from side to side of the deck). Such pressure is painfully familiar to the investigators
of modern disasters, including the explosion of the Challenger and the Deepwater Horizon
disaster [4, 5]. One can recall that the very name “Shuttle” was supposed to convey a sense of
routine operations for a system that is arguably the most complex nondistributed engineering
system ever designed (in other words, it is the engineering equivalent of a blue whale, rather
than clonal colonies of Aspens connected to a single root). This forced “normalization” of the
design was important in order to justify the Shuttle raison d’étre as a cheap and reliable means
for launching satellites [6, 7].) Nevertheless, as the collapse of the I-35 bridge demonstrates,
design flaws are still possible, and indeed they can became apparent more than forty years
after the bridge became operative.

In the case of new technologies, the time scale of degradation might exceed the age
of the technology itself, making sound design decisions more challenging. For example,
polyimide coating for electric wires (introduced by DuPont under the trade name Kapton
in the 1960s) was widely adopted in the aerospace industry due to its light weight and
good insulation properties. However, by early eighties, an increasing number of wire shorts
(some with significant consequences) forced the U.S. Navy to ban this material. It turned out
that as polyimide ages, cracks develop, and if a small short occurs due to those cracks, the
resulting spark triggers a chemical reaction that converts the insulator into conductor, leading
to what is called arc-tracking (when an increasingly powerful spark propagates along the
wires). The aging of the insulation material is accelerated by humidity, which explains why
the U.S. Navy faced this problem first. Civil aircraft continued to use polyimide wiring for
two more decades, until several high-profile accidents (including TWA Flight 800 in 1996,
where the probable cause of the explosion of the fuel tank was attributed to a wire short
[8]) led to phasing out the use of this material in wiring for aerospace applications. It must
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be noted that each Space Shuttle has still contained about 150 miles of Kapton wiring until
its retirement, leading to NASA’s concern about the risks of wire shorts. In particular, one
considered consequence of such a wire short could be an uncommanded firing of one of
the Shuttle Reaction Jet Drivers (RJDs) while the Shuttle is docked at the International Space
Station (ISS). It was calculated that, as the ISS was expanded and its weight increased, such an
uncommanded firing of an RJD would lead to catastrophic consequences for both the shuttle
and the ISS before the diagnostic software would be able to shut down the uncommanded
RJD [9].

Trial and error is a vital part of technical innovation [10], but its efficiency is greatly
weakened by delayed feedback, when decades might pass between the beginning of the
“trial” and manifestation of the “error,” thus greatly obscuring any causal relationship
between the two. The broader implication of this connection between the success of any
complex system (not only a technological, but a biological or a sociological system as well)
and the strength of the feedback is a fascinating topic that has recently attracted attention in
popular economic literature [5], as well as from complexity scientists [11].

The normal wear and tear of engineering systems during their life cycle can be
contrasted with external shocks on the engineering structures that go beyond the standard
design practices of the time. For example, the fact that the Lighthouse of Alexandria collapsed
during the earthquakes of 303 and 323 A.D. does not render the design a failure and does not
negate its status as one of the seven wonders of the ancient world. The difference between
normal operating conditions and external shocks is not clear-cut and can be considered as
evolving, so that the design of modern engineering systems increasingly includes protection
against any credible risks to the system during its life time. For example, modern construction
codes in earthquake-prone areas include safety requirements that are based on earthquakes
of magnitudes that are deemed to be sufficiently likely for the area. Similarly, the skyscrapers
should withstand winds that are representative of winds likely to occur every 50 years
[12]. The distinction can be still made with respect to safety versus normal functionality, as
the buildings are not required to continue their functionality after the earthquake; instead,
they are designed to protect (and not harm) the occupants during the earthquake. Since
external shocks (such as hurricanes and earthquakes) occur infrequently, their influence on
the successful design and operation of engineering systems is also delayed and weakened as
a result.

1.2. Reliability as a Distinct Engineering Field

Several recent good surveys of the history of reliability as a distinct engineering field are
available, including [13] that covers the early years, and [14] that provides an overview on
the recent developments. There are several journals exclusively devoted to this field, and a
number of more general-purpose journals regularly publish papers on this topic. Similarly
there are several major conferences, including the Reliability and Maintenance Symposium
(RAMS) in the United States, and the European Safety and Reliability Conference (ESREL).
Due to the sheer size of the research in the field, it is inevitable that the selection of this survey
is far from exhaustive and to a certain degree reflects the viewpoint of the author.

Conceptually, reliability engineering includes consideration of the following aspects
of system behavior.

(i) Explicit recognition that not all entities that comprise an engineering system will
be functioning as intended. This is a critical distinction of reliability engineering,
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as opposed to “classical” engineering where specific entities (e.g., components)
are introduced into the system in order to deliver certain functionality with an
implicit expectation that the functionality will indeed be delivered. More generally,
this can be viewed as the recognition of variability of the properties and therefore
the performance of individual constituents of an engineering system and/or the
environment in which the system in question operates. Indeed, in the absence of
this variability, all parameters of those constituents assume their nominal values,
and proper functionality of the system falls under the realm of expertise of
classical engineering. When deviations from those nominal behaviors reach certain
thresholds, errors or component failures might occur. Finding those thresholds is far
from trivial, as they depend on many factors, including (potentially very complex)
dynamics of the system.

(ii) Quantification of the likelihood of individual errors/component failures (and
potentially their correlations).

(iii) Determination of the impact of individual errors/component failures on system-
level objectives (e.g., delivering the functionality of the system, ensuring that no
external harm is done).

(iv) Developing strategies for handling those errors/component failures and finding
design alternatives aimed at reducing the chances of system failures or their effects.

(v) Conducting trade-offs studies, which provide the guidelines for selecting among
the proposed design alternatives.

The roots of reliability concepts can be traced to the early twentieth century when mass-
manufactured engineering products, such as cars, came onto the scene. However, the
foundations of reliability were established after the Second World War with the advent
of computer technologies that were originally vacuum-tube-based. As a result of the high
frequency of failure of vacuum tubes and other components, a fundamental understanding of
the design and operation of reliable systems with large numbers of less reliable components
was reached [15, 16]. Due to the fact that these systems were often electronic, the distinct
dichotomy of approaches to system reliability still evident today can be traced to those
developments.

On the one hand, hardware reliability issues are inevitably related to the reliability of
components and their relationship with the reliability of the system. At the component level,
this led to the statistical characterization of components” time to failure; at the system level,
it led to the application of Boolean algebra methods, such as Fault Tree Analysis (FTA) and
Reliability Block Diagrams (RBDs) [17, 18], as well as theory related to stochastic processes
of repairable systems [19] that incorporate the statistical characterization of components’
failures and evaluate the resulting impact on the system.

On the other hand, software failures are not necessarily related to components per se;
instead, the fundamental building blocks that can potentially cause system failures are errors
[20], which are generally characterized as the wrong states for some parts of the system which
have a potential to cause system failure. In this setting, faults are characterized as adjudged
or hypothesized causes of the errors. Importantly, errors cause system failures only if they are
not “caught” prior to reaching the system interface, where those errors can lead to altering
system functionality.

This distinction related to the importance of component decomposition in system
modeling between hardware- and software-induced failures is not as critical as might seem at
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Figure 1: Abstract failure progression for failures due to internal faults. Dashed lines indicate time delay
(as opposed to solid lines that indicate the absence of such delay).

first glance, due to the modular structure of modern software, as espoused by the principles of
object-oriented programming [21]. As a result, individual software modules can be construed
as the software equivalent of components, and so both hardware and software are potentially
suited for system reliability methods that rely on inferring the system’s properties from its
components. Here “component” (even for hardware) is understood in the functional rather
than physical sense. Indeed, even for hardware, a functional approach to failure investigation
is beneficial for large complex systems, by separating the functionality of an entity from its
physical implementation (e.g., functional view of Failure Mode and Effect Analysis (FMEA);
see, e.g., [22]).

A general diagram (see Figure1l) can be drawn to represent an internal fault
progression in a system. The fault can always be interpreted as being dormant in the
beginning (t = 0). This point of reference does not need to coincide with the beginning of the
system operation t;: the former, generally speaking, precedes the latter t;, > 0. If the fault stays
dormant during the duration of the operation of the system s, the system is obviously not
affected by this fault. On the other hand, if the fault becomes active at some point (t; < t, +5),
it causes an error (or component failure in the case of hardware). This error or component
failure can be considered as latent until it is detected and possibly handled by the system
control logic (e.g., by means of redundancy); otherwise, the error propagates to the interface
of the system and becomes a system failure. The timing is extremely important in this context
(e.g., a backup component may provide the functionality of the failed component for only a
limited amount of time, as the back-up power generator). As discussed below, the modeling
of this timing requires dynamic system reliability tools.

Fundamental differences among the software, hardware, and “human-ware” portions
of complex systems do exist, however. To discuss these differences, it is useful to adopt
terminology that is domain-neutral. To have a common language for failure description is
critical, as modern complex systems consist of a combination of hardware and software, with
human operators playing an important role as well, and with the boundaries among those
three domains constantly shifting. The terminology provided below is perhaps the closest
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to the one used in the context of failure modeling that involves human and organizational
factors [23]. This is not entirely surprising, given the fact that consideration of the human
factors in the failure of engineering systems lagged behind developments in software
and hardware, so the insights from the other two domains could be utilized. In order to
understand the behavior of an entity that is a part of the system (i.e.,, a component or a
module), one needs to characterize the sources of the variability of its performance and their
implications for the system performance. Those sources can be grouped into three categories.

(i) Internal sources of variation (due to the variability of internal properties of the
component in isolation). The interpretation is most familiar for hardware entities,
in terms of both entity-to-entity variability (e.g., due to manufacturing tolerances),
or variability in time for the same entity (e.g., stochastic behavior due to aging)
(see the discussion below on component reliability). Similarly, human operators
and organizations certainly exhibit large entity-to-entity variability, while the time
variability for a given entity is somewhat more obscured given the fact that a
human (or a group of humans) represents an open system that constantly adapts
to the environment. As a result, it is difficult to separate the internal variability
from that which was externally induced. In contrast, software does not exhibit any
internal variability: the same version of the software is identical in all systems,
and it does not change with time (software updates can be considered as a
result of external actions). While it is feasible to consider software that internally
relies on pseudorandom number generation, certification of such nondeterministic
algorithms for any safety-critical systems presents an interesting challenge for the
future, and in any case the requirements for stringent predictability of the outputs
can be expected even for those algorithms (e.g., finding an optimum value using
stochastic search methods would rely on certain convergence criteria).

(ii) Environmental, exogenous, or external sources of variation (the source is outside
of the system). While the shocks described earlier fall under this category, and
so this variability is relevant for the hardware component, the functionality of a
hardware component usually has a fairly simple relationship with respect to this
variability. In fact, most of the time the desired output is constant for a given
range of environmental conditions (e.g., structural components that are supposed
to maintain their integrity under a range of loads, temperatures, etc.). Even in
the case of mechanisms, the mapping between expected inputs and outputs is
low-dimensional in terms of the “signal” processed (e.g., valve), while the rest
of the environmental parameters are effectively considered as “noise” and should
be filtered out. One of the challenges for the hardware component is that those
“noise” parameters are not always well understood, as the hardware represents an
open system (so, e.g., an unexpected degradation mechanism can interfere with
the performance of the component). Human operators also represent open systems
and therefore are susceptible to external influences in terms of filtering out the
noise, but the dimensionality of the signal is significantly larger than that of the
hardware. Finally, the software has a very well-defined interface, so the “noise” is
zero. The challenge of predicting software performance stems from the complexity
and high dimensionality of the signal. (It is important to distinguish the noise
at the interface from the internally processed noise: for example, an input to the
software can be a periodically sampled value of some sensor, and the output might
be a filtered or denoised value. In this setting the noise in the received input is
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still a signal (as the whole purpose of the software is explicitly designed to handle
this noise), so the interface noise is still zero.) The dimensionality of signal inputs
for human operators is an interesting question, as it requires a distinction between
the “sharp end” operators that make tactical decisions on a short-time scale, and
strategic decision makers (effectively the “designers” of the system in the broad
sense, e.g., the developers of safety procedures, etc.). The actions of the former are
based on the skills developed during training. The associated dimensionality of
inputs is certainly less than that of software, something that has some interesting
implications for the role of the human operators at the “sharp end” (see discussion
later in the paper). In contrast, the dimensionality of the inputs for the latter type
of operators is large, which makes it very difficult to characterize, unless it falls
under the category of some external set of rules (e.g., regulations that are imposed
to ensure safety).

(iii) Intercomponent coupling (in [23] this is referred to as upstream-downstream
coupling to emphasize the potential for the presence of loops). While the
characterization of these sources across the hardware, software, and “human-ware”
domains is similar to the external sources, the important difference is potential for
feedback and feedforward loops. This distinction is mostly a matter of convenience:
as the boundary between the system under consideration and its environment is not
well defined in the first place, it certainly makes sense to use the presence of loops
as a criterion for including those entities into the system.

The rest of the paper is organized as follows: first, the challenges associated with
modeling system reliability are discussed and illustrated with a simple example. Next, the
current approaches for ensuring system reliability are reviewed. This is followed by a section
describing the current convergence of several trends and identifying several promising
directions of research that hold the potential to improve the safety and reliability of complex
systems. Finally, conclusions are offered in the last section.

2. System Reliability Challenges

There are several fundamental challenges that system reliability faces, and they will be briefly
reviewed next.

2.1. Errors of Commission

Individual components can contribute to system failure not only by failing to perform their
intended functions (errors of omission) but also by performing unanticipated actions (errors
of commission). This significantly increases the effective state space describing the system:
instead of a binary choice for a component (it either functions or it does not), one needs
to consider other dimensions of the component’s state. More importantly, foreseeing those
dimensions of the component’s state which are potentially detrimental or hazardous to
the system is far from trivial. As the design progresses, those other dimensions should be
incorporated into the functional requirements for the component. For example, the primary
functionality of the foam on the fuel tank of the Shuttle is to insulate the fuel and keep it at
a sufficiently low temperature. When foam pieces break off the fuel tank during the shuttle
launch, that functionality is not compromised; however (as we now know [24]), those pieces
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can cause damage to other parts of the shuttle. So, a more complete set of requirements for
the insulating foam would include the maximum permitted size of the foam pieces that break
off during the launch.

2.2, Prioritization of Failure Modes Based on Their Likelihood

System failures do not have to be caused by a single component failure, but instead could be
the result of an interaction of several deviations by components from their nominal states
(while each deviation in isolation can be benign). In this context, a partial degradation
of the component’s performance becomes important, further increasing the underlying
dimensionality of the state space (as those degradation levels must be distinguished). The
resulting number of possible failure modes in a modern complex system is so large that it is
imperative to develop an efficient means of prioritization of those modes. Risk matrices that
used to prioritize failure modes usually have two dimensions: the risk and consequences
of a given scenario [25] (in practice, there is a third dimension that is distinct from the
first two and is related to the effectiveness of potential mitigation actions). Probabilistic risk
quantification is most commonly used, but recently there has been a significant pushback
by the software community that argues that probabilistic methods are not applicable to the
software domain and advocate the use of formal verification techniques instead [2]. This
creates conceptual difficulty at the system level when the combined effects of software and
hardware need to be assessed. Incorporating software failures into the assessment of system
failures is increasingly important as systems become “smarter” and more reliant on software.

2.3. Wide Array of Domain-Specific Intricate Failure Mechanisms

As discussed in the introduction, understanding failures is impossible without a thorough
understanding of the specific domains involved (e.g., structures, controls, the human-
machine interface). As a result, there is a Byzantine patchwork of reliability tools that are
used by the experts to evaluate the reliability of components and systems.

In very general terms, two opposite approaches to reliability prediction can be
identified: on the one hand, there is a domain-specific physics-based analysis that relies on
extensive understanding of specific failure mechanisms for the components used as well
as environment characterization (e.g., fatigue crack propagation in metals). On the other
hand, there is a purely data-driven approach where field or test data is statistically analyzed,
and predictions about reliability are made based on obtained distributions of the time to
failure. In all practical cases, the data-driven approach actually includes some physics-based
considerations, but they are rarely stated explicitly. For example, the selected parametric
distributions (e.g., Weibull or Lognormal) at some point were motivated by the physics of
failure, or historically performed well, which implies that the new designed system is deemed
sufficiently similar from the physics of failure perspective to merit the use of the same type
of distribution. As discussed below, the type of distribution can dramatically influence the
quality of predictions.

Accelerated testing and system-level analysis both combine physics-based and data-
driven approaches. The former relies on statistical representation of time to failure under a
controlled environment and then utilizes physics-based considerations to predict the timing
of failures in the field [26-28]. The latter aims at evaluating the reliability parameters of the
system based on statistical information about component failures (obtained either from past
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Figure 2: Black-box versus white-box models (reproduced with permission from [33]).

experience or based on physics-of-failure models) combined with the information about the
interrelationships among the components. In the case of repairable systems, those system
reliability parameters are not limited to time to failure, but might also include availability, the
expected number of failures, and so forth. One can identify three levels of fidelity of modeling
interrelationships among components in order of complexity:

(i) simple logical “and/or” (e.g., fault trees),

(ii) discrete event representation where the timing and order of events are taken into
account, but the state space is discrete (e.g., Markov chains [29] and stochastic Petri
nets (SPN) [30]),

(iii) models where both time and spatial description are continuous (e.g., multiphysics
or agent-based simulation [31]).

The timing (and order) of events can have a fundamental impact on the likelihood of failure.
For example, if a piece of foam had separated from a tank a fraction of a second later than
it actually did, it might have been harmless. Accounting for the timing of events precludes
the use of static tools (e.g., fault trees) and requires dynamic analysis (e.g., Markov chains,
SPNs, agent-based simulation). In addition to the contrast between physics-based versus
data-driven modeling, one can also note that the reliability and safety of engineering systems
have been approached from the opposite direction in at least two distinct dimensions.
On the one hand, there is white-box versus black-box dichotomy [32], which is based on
whether the failure process of an entity is modeled with or without the explicit recognition
of individual constituents (components) that comprise the entity. Here “component” refers
to an elementary building block of a white-box (system) model, which can correspond to
a lower-level entity if models are constructed hierarchically, or to the lowest level of the
hierarchy, as determined by practical considerations (e.g., individual modules, such as line-
replaceable units or LRU). White-box models explicitly model those effects by describing
interrelationships among the entities that comprise the system (see Figure 2).

In contrast, black-box models do not require explicit modeling of the described effects,
and they can be useful in analyzing the behavior of existing systems; however, they are of
limited use in predicting the behavior of new systems or the impact of new features (e.g.,
condition-based maintenance) that are introduced in existing systems.

On the other hand, there is a nonrepairable versus repairable dichotomy [34], with
the former approach dealing with a single failure event of an entity, and the latter addressing
repeated failure events, which assumes the possibility of partial or full recovery from failures.
While a nonrepairable entity is characterized by its lifetime distribution (e.g., its cumulative
distribution function of time to failure), repairable entity behavior is described by a point
process, and so must be characterized differently, for example, using the rate of occurrence
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of failures (ROCOF), or the expected number of failures for a given time period. Any
permutation of those choices translates into an appropriate set of tools: for example, selecting
the black-box direction can lead to accelerated testing techniques for nonrepairable entities
[26, 28] and to modeling repairable entities by means of stochastic processes.

To make things more exciting, the white-box approach entails selecting either the
repairable or nonrepairable option both at the system (output) and component (input)
levels. Boolean algebra methods (e.g., fault trees and reliability block diagrams) assume
that both systems and the components comprising those systems are nonrepairable. This
symmetry between the inputs and outputs characterization (and associated simplicity and
clarity) is perhaps one of the reasons for the popularity of those tools. In contrast, the use of
superimposed processes [34, 35] implies that both inputs and outputs are repairable entities.
In this context, the state-space models (e.g., Markov chains and SPNs) can be classified
as selecting repairable outputs and nonrepairable inputs within the white-box (system)
approach.

2.4. A Simple Example

To illustrate the differences in terms of various modeling options in system reliability, let us
consider a triple-redundant system, S;, consisting of three identical components that each
follow exponential distribution with the failure rate A, = 10 1/hour. The convenience of
the use of exponential distribution that is fully defined by a single parameter is difficult
to overestimate in the context of reliability analysis. Effectively, the use of exponential
distribution implies that the system neither improves nor deteriorates with time. Let us
further assume that our time horizon (life of the system) is T = 10* hours. If this system
is nonrepairable, one can immediately observe that the probability of failure for each
component is

Py =1-Exp[-A.T] = 1 - Exp[-1] = 0.6321. (2.1)

Failure of the system requires that all three components fail simultaneously, so

Pss = P; = 0.256. (2.2)

One can also find an equivalent constant failure rate for system S, that consists of a single
component and would produce the same probability of failure

1
Psy = Ps1 = 1 - Exp[-AeqT] = Aeq = -7 log[1 - Ps;] =291 x 107, (2.3)

However, the properties of systems S; and S; are fundamentally different, since S; exhibits an
increasing failure rate as opposed to a constant failure (hazard) rate for S, (see Figure 3). Here
hazard (failure) rate at time ¢, unlike the Ps(t) time-dependent probability density function,
takes into account only the entities that are still operational at that time ¢ [19]:

1 dPg(t)

h(t)=1—1>f(t) at

(2.4)
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Figure 4: Relative likelihoods of different states (right) for a triple-redundant nonrepairable system.

In the considered example, the hazard rate can be easily calculated in closed form:

3lexp[-At] (1 - exp[-At])?
1-(1-exp[-A])°

h(t) = (2.5)

Since we assume that there are no repairs, as time progresses, the hazard (failure) rate will
increase, indicating progressively better odds that redundancy is degraded. In fact, at some
point the redundancy will be fully degraded (see Figure 4), and as a result the failure of the
system will be converging to that of a single component (see Figure 3). Let us recall that
the constant failure rate implies that there is no benefit in repairing or inspecting the system
S;. On the other hand, one can observe that the situation with the triple-redundant system
is fundamentally different since the benefits of repairs are substantial. Let us assume that
the system undergoes periodic inspections during which failed components are immediately
repaired as new, or replaced (i.e., the system is restored to its initial state). The resulting
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process is usually referred to as a renewal process [19]. (A comprehensive treatment of the
renewal processes in the context of maintenance policies is given in [36].) The effect on the
resulting hazard rate is obvious: the shorter the inspection interval, the more reliable the
resulting system. The calculation is fairly straightforward since we can divide the life of a
system into a number of identical segments (see Figure 5, for the case when inspections occur
every T = 10 hours):

. g ~ 1000. (2.6)

The total probability of the system failure during its lifetime can be readily evaluated:
Py=1-(1-(1- EXp[—)LCT]3>>n ~9.985 x 107, 2.7)

In fact, in the limit, if we make more and more frequent inspections, the probability of failure
will tend to zero (assuming that the failures are independent). It is easier to understand
this conceptually if a system is considered where a failed component is instantaneously
replaced upon failure. Of course, in practice repairs are not instantaneous, and there is also
the possibility of common-cause simultaneous failures that violate the assumption of failure
independence. So far the calculations have not required any dynamic capabilities, but they
do demonstrate the importance of repairs and inspection in redundancies, as well as the
significance of variable hazard rate.

Let us now consider a (practical) situation where repairs are conducted upon failure
(with a delay) rather than at fixed predetermined time intervals. In addition, there are usually
distinct costs associated with inspection and replacement/repair, so the expected number of
the latter needs to be estimated. Those are essentially dynamic effects. Dealing with repairs is
one of the most important situations (but not the only situation) where the system changes its
configuration at points in time that are not known a priori, and the result depends on when
those changes have occurred, necessitating dynamic modeling. Thus, dynamic modeling in
system reliability is briefly discussed next.
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Figure 6: Markov model of a triple-redundant system.

Markov chains (usually referred to a discrete time domain) or processes (where time
is continuous) are characterized by a “memory-less” property: the probability of a transition
from one system state to another does not depend on the past states of the system [29]. It can
be conveniently represented by a state-space graph (referred to as machines or automata in
computer science) such as the one depicted in Figure 6, where a simple model for a repairable
triple-redundant system is shown. At any given point in time a system is in one of its possible
states with a certain probability that can be interpreted as a physical quantity “flowing” from
one state to another in accordance with the specified transition rates. The governing system
of ordinary differential equations for those probabilities is called Chapman-Kolmogorov
equations and can be written in the following matrix form:

Pa(t) 3L pu 0 0

dpr(t) | Pt 3 20— 2 0

i QPO PO=| Py =y 5 T 0] @8
Pp(t) 0 0 L0

In the context of system reliability, Markov models are typically homogeneous with
respect to time, implying that transition rates between system states are constant. This time
independence for transition rates drastically simplifies the analysis of Markov models, as it
renders constant the coefficients of the governing system of equations. Two types of analysis
can be conducted using the Markov framework: transient and steady-state. The latter is
appropriate only for processes that achieve a steady state, such as a renewal processes. The
solution to the steady-state problem is obtained by setting the derivative term in (2.8) to zero,
and solving the resulting system of algebraic equations (complemented by the condition that
the sum of the probabilities of being in each state add up to one). Not only is the steady-
state solution easier to find, but also it might provide a more compact description of the
underlying process. Indeed, let us note that the system depicted in Figure 6 does not achieve
a steady state, since there are no outbound transitions from the failed state E. Such a state
is called “absorbing,” and the corresponding column in matrix Q consists of zeros (see the
right-most column in (2.8)). As a result, the probability of failure constantly increases. From
the pragmatic perspective of designing reliable and safe systems, one needs to distinguish
between two fundamentally different scenarios.

(1) The failure is latent (not detectable at the moment). The main quantity of interest is
the probability of failure that will increase with time. This quantity is important for
safety-critical components that are not engaged during normal use (which in this
context is referred to as the probability of failure on demand).

(2) The failure is immediately detected. In this situation, the main quantity of interest
might be the hazard rate (2.5), where the designer would like to assess the chances
that the system will fail knowing that failure has not yet occurred. For a car driver
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Figure 7: Probability of failure for triple-redundant repairable system (results of transient Markov
analysis).

moving at the speed of 80 miles per hour in the left lane of a highway, who
might worry about the reliability of the car’s engine, that would be a relevant
metric. Figure 7 shows this quantity as a function of time for the considered triple-
redundant system.

The advantages of failure detection are obvious as failure accumulation is avoided. Modern
engineering systems are increasingly equipped with sensors and sensor data processing
capabilities, and the trend toward a more detectable nature of failures in the future is clear.
This explains the check of air-bag functionality every time a modern car starts. It must be
noted that such a check assures only that no air-bag failures occurred prior to the driver
starting the car—the failure will not be detected if it takes place en route. Furthermore, the
driver might not notice (or might ignore) the warning light, or the warning light itself can
fail. One can see that even this simple scenario requires some educated design decisions: is
it worthwhile to have a continuous check of the air bag? Should the warning light be bigger
or the information be transmitted to the appropriate automechanic directly? How reliable
should the warning system be?

Returning to the considered example of a triple-redundant system with immediate
detection, one can observe in Figure 7 that the hazard rate is constant after a very short initial
transitional period. This constant hazard rate can be calculated by introducing a fictitious
transition from the failed state to the original (undegraded) state. It can be shown that the
resulting Markov chain model reaches a steady state, while the detailed balance for the failed
state allows the calculation of the equivalent hazard rate:

(2.9)

It can be further shown that the result does not depend on the rate v. In fact, by considering
limit v — oo we can conclude that state F is vanishing and consider instead the model
Figure 8(c), so that leq = APc (this can be observed by a simple algebraic manipulation
of matrix Q). Another method for calculating the equivalent hazard rate is based on
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Figure 8: Equivalent steady-state Markov model of a triple-redundant system.

the fundamental Perron-Frobenius theorem of linear algebra [37], which states that, for a
matrix with positive entries, there is a unique largest real eigenvalue with strictly positive
components of the eigenvector. While matrix Q is not positive, we can add appropriate
diagonal terms (that will not obscure the calculation of the eigenproblem) and then apply the
Perron-Frobenius theorem (or, more precisely, its extension to the so-called primitive matrices
[38]). The result is that, for matrix Q, we know the two largest eigenvalues: the first one is
zero, and the second one is a —k (negative and real). Therefore, as time goes to infinity, those
two dominate the solution of the Kolmogorov-Chapman equation for the failed state. As a
result, the hazard rate is simply k (the absolute value of the smallest negative eigenvalue of
Q). The discrete-time analog of this result was obtained in [39]. While the considered example
is very simple, it can be readily generalized.

Importantly, from the design perspective we can conclude that the triple-redundant
system will behave like a single component, but the equivalent failure rate depends on
the specified repair policy. Steady-state solutions for Markov state-space models possess an
important property that greatly facilitates hierarchical model construction, thus providing a
means of dealing with system complexity: an equivalent transition rate is fully sufficient for
representing a group of components: for example, once the equivalent failure rate is found
for the triple-redundant system, it can be used in a higher-level model as if it were a single
component.

This simple example demonstrates both challenges and several important strategies
that can help avoiding complex system failures that are described next in more general terms.

3. Existing Approaches for Making Systems Reliable
3.1. Simple Is Beautiful

The complexity of a system is related to the amount of information needed to describe the
system (following the general definition of Kolmogorov complexity expressed as entropy
[40]), and, specifically, to the size of the state space representing distinct states of the system.
The simplest proxy for this parameter is the number of components that comprise the
system. Effectively, the use of “part count” as a measure of system reliability implies that
the system is designed so that the failure of any of its components results in the failure
of the whole system. Under these assumptions, the reliability of the system is simply the
product of the reliability of the individual components [17]. As discussed below, redundancy
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alters this relationship. More sophisticated measures of complexity take into account not
only the number of entities and the size of the state space describing those entities, but
also some measures of the amount of interrelationships among those entities (couplings).
Specifically, graph-theoretical considerations can be useful by representing the system entities
as nodes and connecting some pairs of nodes with either unidirectional or bidirectional links
to represent the couplings. In this setting, several measures of complexity related to couplings
can be introduced, including a measure based on branching diversity for graphs that can
be represented as trees (no cycles) or a collection of trees (forests) [41]. Perhaps the most
commonly used among these measures is cyclomatic complexity (related to the number of
linearly independent loops) [42].

We can note the axiomatic design description that explicitly accounts for complexity
[43]; therein, complexity is related to information defined specifically as the probability of
success in achieving a set of specific functions or functional requirements. Extending this
concept to explicit inclusion of functional requirements related to system safety and reliability
effectively leads to risk-based design. Risk-based design has been extensively studied in the
context of various complex engineering systems, including ship design [44], water supply
systems [45], packaging for hazardous chemicals [46], and earthquake-resistant design of
nuclear plants [47]. The popularity of applications of risk-based design clearly indicates the
practical need for an explicit inclusion of risk-related goals into design set requirements.
However, this takes place at a fairly detailed level of design, where either the design
architecture is fixed, or several alternatives are evaluated within well-defined risk models.
Similarly, reliability-based optimization implies the existence of risk-related objectives that
are a known function of design parameters and usually obtained based on physics-based
structural reliability models [48].

3.2. Modularity: A Measure of Coupling

From the safety perspective, as discussed in the seminal (and controversial) work by Perrow
[49], a high degree of complexity and level of coupling inevitably lead to accidents in complex
systems by inducing a conflict between centralized and decentralized modes of control.
Coupling is often described as the number of links characterizing the dependence of an entity
upon other units within a system. From the safety perspective, coupling can also be measured
in terms of the time required for the disturbances to propagate along those links, since the
propagation time is related to the time available for mitigation purposes. In some (but not
all) circumstances it can be assumed that those two definitions are related, as a large number
of links are expected to speed up the disturbance propagation.

Modularity and the related principles of encapsulation and information hiding
in object-oriented programming provide an effective means of reducing complexity by
deliberately designing the system’s architecture in a hierarchical fashion and minimizing
coupling. However, efficiency and other practical considerations often lead to a situation
where a single functionality is supported by a very large number of components, and this
common purpose, as well as reliance on common resources, provides inevitable coupling
mechanisms. As a result, for such “open” systems it is impossible to group the components
into modules that can be independently analyzed.

At the same time, there is compelling evidence that in both natural and engineering
domains complex systems are unlikely to be fully coupled, as modular architecture provides
clear advantages in developing desirable systems properties. The evolutionary advantage of



ISRN Applied Mathematics 17

the so-called nearly decomposable systems has been demonstrated for biological systems
[50], while similar processes were identified in the history of steam engine development
[51]. These concepts are also explicitly employed in the design principles of computer
systems [52] (including structured design [53]). In this context the importance of the so-
called “weak links” (Another recent example of the utility of weak links is related to the
resistance to disturbances of financial networks [54]: while a fully connected network is the
most resistant to small disturbances, as a certain threshold of disturbances is crossed, the
dynamics of the system undergoes a “phase transition,” and the fully connected network
loses its resistance to disturbances due to the fact that complete interconnectivity provides
an effective mechanism for propagation of shocks throughout the system. An intriguing
question arises as to which network configuration provides the best resistance of those larger
disturbances. For a single shock, such a configuration consists of weakly connected modules,
each consisting of two connected nodes. Extending this result to multiple shocks remains
an open research question, but it is reasonable to expect that the effectiveness of modular
(near decomposable) structures in shock resistance will persist.) has been explored in various
domains, including biological systems [55]. The implications of the modular structure are
twofold: on the one hand, it is wise to avoid tightly coupled systems at the design phase,
and it is also quite logical to take full advantage of the modular structure of the systems in
modeling system failures.

While in some situations a fully decoupled modeling of each unit is possible, coupling
mechanisms can significantly impact the results. In order to address this issue, mean-field
modeling of coupling provides a feasible direction [56]: instead of modeling pair-wise
coupling, an aggregate representation of the effect of multiple couplings is used. For this
strategy to succeed, the time distribution associated with the combined coupling must be
represented accurately, which implies a smart selection of the type of parametric distribution
and its parameters if parametric distributions are used. Couplings that involve competing
risks (or more precisely, a race of several competing events, as those events do not need to
be negative: e.g., when the first available repair crew is utilized) are the most challenging
in terms of compact representation, because the mean (expected) rate is not sufficient to
characterize the distribution. Usually, such additional characterization is provided by a
measure of variability (e.g., variance, or standard deviation). However, in the context of
competing risks, the so-called winning ratio (the fraction of races where the event of interest
occurs first, given that both events occur within the interval of interest) is shown to be a
more important parameter for determining the accuracy of the distribution representation.
For a given interval, this winning ratio increases if events are relatively more likely to occur
in the beginning of the interval. The Weibull distribution provides the needed flexibility for
matching any desired winning ratio by adjusting the shape parameter (the smaller the shape
parameter, the larger the winning ratio).

The resulting strategy involves the evaluation of individual ratios that correspond
to the pair-wise couplings, and assembling them into an equivalent combined ratio using
an analytical formula. The final step consists of finding parameters of Weibull distributions
that match the equivalent combined winning ratio along with the mean rate. An order-of-
magnitude improvement in accuracy is observed when using this procedure as compared
to matching the mean rate alone [56]. However, those are only first steps on the road of
accounting for system-level effects in a compact fashion by building accurate component
models.
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3.3. Defense in Depth

Redundancy is a fundamental principle of design for reliability [57], recognized since the
time of Von Braun and implemented under various names: “no single-point failure” (in
aerospace), “damage tolerance” (in structures), and “defense-in-depth” (nuclear plants) [4].
First, we note that redundancy increases system complexity and has the potential to introduce
new failure modes (Galileo’s Dialogue Concerning Two New Sciences [58], published in 1638,
provides a classical example of this pitfall in context: a large marble column was laid out and
supported by two pieces of wooden beam at each end; fearing that the column might break
under its own weight in the middle, a mechanic decided to add an additional support in
the middle of the column, only to find out that one of the end beam supports decayed and
sunk, so that the column was effectively supported only by the other two supports, and the
column broke. In fact, instead of reducing the maximum bending moment, and therefore
maximum normal stress in the column by 86%, as one would expect from solving the “ideal
problem,” the stress actually remains unchanged. This misalignment problem would not
appear if only two supports were used (redundancy is avoided), and given the fact that
the deformation of the marble column is minimal, misalignment is practically inevitable,
so in the other scenario the middle support would be simply useless (and the maximum
stress unchanged again). It is interesting to note that Gere and Timoshenkos classical text
book on Mechanics of Materials [59] contains a problem that asks for finding the optimal
location of two supporting columns, the solution to which probably constitutes an alternative
solution to Galileo’s mechanic by shifting two columns symmetrically toward the middle by
L(v/2-1)/2 = 0.207L, thus reducing the stress by 83%, which is pretty close to the unattainable
“ideal” solution with three supports, using only two supports, and is quite practical!) and also
alters the relationship between reliability and operational costs. If the reliability of the system
is driven by component reliability, then lower reliability implies more frequent maintenance
(and increased demand for spare parts), leading to increased operational cost. However,
this relationship between reliability and maintenance costs can be reversed if redundancy
is used to improve system reliability, as component failures do not result in system failures,
yet require maintenance actions. Redundancy provides the most common means of ensuring
high degree of reliability in safety-critical systems. Effective estimation of the reliability of
redundant repairable systems requires an understanding of maintenance policies as well as
of common cause failures (when the failures of redundant components are not independent).

If a system requires continuous operation, the so-called “hot” or “warm” spare
configurations are usually used, where the spare components are in operation all the time
(not only when they are needed) and are therefore subject to failure as well. As a result, for
such configurations the demand for maintenance actions increases, which leads to pragmatic
maintenance policies that allow for temporary operation of the system with degraded
redundancy as long as the overall system reliability meets the requirements. In aeronautical
applications this is referred to as limited-time dispatch, while in electronics “deferred
maintenance” name is used [39, 60-62]. This implies that not only is the functionality of
complex systems viewed as service in the external relationship to the customer, but also
the reliability of the system as a whole, as well as of its individual components, should be
viewed as a package that includes the intrinsic properties of an entity, and also a service
(maintenance) policy that is assigned to this entity.

The drawbacks of redundancy are reduced in the case of network systems, where link
redundancy and the so-called mirrored redundancy provide clearer benefits. The latter type
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Figure 9: Load (demand)-strength (supply) relationship.

of redundancy corresponds to situations where the content (e.g., packets of information that
need to be delivered) is actually duplicated [63].

3.4. Component Reliability

Revisiting the issue of variability is appropriate here. Plotting the probability distribution of
both the load, I(x), and the strength, s(x) (also known in other applications as demand and
available resources or supply, resp.) provides visual representation of the chances of failure
(see Figure 9). The intersection of the two probability density functions is indicative of the
possibility of failure, although, contrary to common belief, this area does not numerically
represent the probability of failure. (More, precisely, if the strength and the loads are random
variables S and .Z, respectively, then using cumulative distribution for the strength S(x) =
fg s(y)dy we can express the chances of failure as Py = P(S < £) = _f(;m S(y)l(y)dy. In
contrast, the intersection area is given by [;° min[s(y), I(y)]dy and does not have any physical
meaning, except that if one quantity is zero, the other must be zero as well.)

One of the simplest methods of increasing component reliability is derating [57],
where the components are rated for a higher stress environment than that they experience
in operation. Effectively, derating implies increased safety margins when the mean
corresponding strength (capacity) is further separated from the load (demand). One can
also interpret derating as internal redundancy (as the component has a spare capacity
that provides protection against variability). Another means of reducing the probability
of failure is by decreasing the variance of each of the distributions, in particular that of
the strength, which provides one of the motivations for statistical quality control [64] and
similar concepts. Indeed, improving manufacturing tolerances and reducing other variability
during the manufacturing process leads directly to the reduction of the variability of the
strength distribution, and indirectly (e.g., via the influence on the surrounding components)
on the load variability. In structural applications, the distance between the nominal values of
strength and load can be associated with safety factors [65]. Qualitatively, it is clear that for
a structural component that is subject to degradation, both distributions will move toward
each other as time progresses, leading to increased probability of failure. While the leftward
movement of the strength curve is attributed to the degradation of the component itself (at
the local level, some portion of the component), the rightward movement of the load curve
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is caused by the load redistribution due to the degradation of the component environment
(or at the local level, the degradation of the adjacent portions of the same component).
Quantification of the dynamic relationship between the load and the strength is significantly
more challenging and generally not well understood.

3.5. Use of Parametric Distribution as Information Compression

As an example, let us consider stress-rupture failure of composite overwrapped pressure
vessels (COPVs) that are used to store fuel in space vehicles and gas in other applications.
COPVs are designed to contain gas under the pressure, pp, which is a fraction of the ultimate
pressure that would destroy COPVs. Manufacturing processes for COPVs have significant
variability (with one of the main sources being the strength variability of the carbon or
graphite fibers used in the composite). In order to screen the vessels for the weak ones, a
proof test is used: for a short period of time (minutes), COPVs are tested under pressure
that is significantly higher than py. This leads to the question “to proof or not to proof”:
on the one hand, the damaged vessels are eliminated; on the other hand, those that survive
might have been weakened by the proof test (cf. Heisenberg uncertainty principle). Is the
resulting population actually better (i.e., has greater reliability) than the original population?
The question can be related to the shape of the time-to-failure distribution: if the population
failure rate decreases with time, then proofing makes sense (as the effective age of the system
is increased by proofing). It can be observed that the heterogeneity of the population leads to a
decrease in failure rate with time (as only the stronger members of the population survive). At
the same time, effective redundancy acts in the opposite direction (as redundancy degrades
due to random failures at the component level which do not cause system failure). Similarly,
degradation mechanisms at the component level also lead to the failure rate increasing with
time. Therefore one needs to understand which of the opposing trends dominates.

State-space based models for evaluating system safety and reliability rely on compact
representation of state transitions (e.g., failures and repairs, or recoveries from intermittent
faults). Parametric distributions are preferred from the compactness perspective, assuming
that their accuracy is assured. The question of selecting appropriate distribution might seem
obsolete in the modern world where nonparametric representation can be easily stored on
a computer; however, selection of the distribution effectively implies infusing the statistical
process with physics-based knowledge and significantly reduces the need for experimental
data about the system. Successful application of parametric distributions is closely related
to taking advantage of the underlying general physical processes, just as the blind use
of parametric distributions can lead to serious modeling flaws. The central limit theorem
assertion, that the sum of large numbers of independent random variables follows normal
distribution, is the best-known case, but in the context of reliability the importance of several
types of distributions is similarly clear, as briefly discussed next.

3.5.1. Exponential Distribution

A failure transition with the constant rate A follows an exponential distribution, whose
cumulative form is given by F.(t) = 1 —e . 1 is the inverse of the mean time to failure. State-
space models with constant transition rates are particularly convenient: first, each transition
is fully characterized by a single parameter, A, and second, the resulting process is Markov
(i.e., the chances of transitioning to a new state are fully determined by the current state),
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which significantly simplifies the calculations. In the context of repairable systems, steady-
state results often depend only on the mean parameters of the distribution, justifying the
use of exponential distribution even if the underlying distributions are different (see, e.g.,
the extensions of the Palm-Khinchin theorem, especially in logistics [66]). An additional
argument for using exponential distribution is based on what can be characterized as the
central limit theorem for repairable systems: in a complex repairable system with multiple
components, failures form a homogeneous Poisson process [19]. This is true, however, if there
is no coordination among component failures. In practice, for many systems with clear aging
or degradation patterns (e.g., gas turbine engines), major inspections and overhauls impose
an overall structure, and within each maintenance cycle the failure rate can vary.

3.5.2. Weibull Distribution

Fy(t) = 1-e~#/9” are often used due to their flexibility of representing rates that can be either
increasing or decreasing with time. The former correspond to the shape parameter § > 1 (e.g.,
failures in deteriorating systems), while the latter correspond to the shape parameter < 1.
Conveniently, for p = 1, an Weibull distribution becomes an exponential distribution with
the scale parameter 6 representing the inverse of the transition rate. An additional reason
for using Weibull distribution in system reliability is its relationship to the “weakest link”
mode of failure. The Fisher-Tippett-Gnedenko theorem [67, 68] states that for a large number
of identically distributed functions, the competing risk (i.e., the minimum of failure times)
will converge to one of the three families of extreme value distributions (Weibull, Gumbel, or
Fréchet).

3.5.3. Lognormal Distribution

The lognormal model of time to failure is justified when a process moves towards failure
based on the cumulative effect of many small “multiplicative” shocks. Specifically, if at any
instant in time a degradation process undergoes a small increase in the total amount of
degradation that is proportional to the current total amount of degradation, then the time
to failure (i.e., reaching a critical amount of degradation) is expected to follow a lognormal
distribution [69].

Other distributions can also be applicable, including Gamma distribution [70] and
Birnbaum-Saunders distribution, which is often used to model fatigue life [71]. In addition,
time shifts can be introduced to a distribution.

4. Promising Directions
4.1. Convergence of Several Trends

Despite a certain maturity of the reliability field with its associated signs of stagnation
(including the top-heavy age distribution of both practitioners and academicians), there are
several recent developments that hold a promise of fundamentally transforming the field in
the near future, possibly creating a perfect scenario for an upcoming renaissance in reliability.

(i) Analytics. At the time of writing this paper, data mining is out and analytics is
in, as a quick look at a Google trend search demonstrates. However, regardless of
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the most fashionable term de jour, the associated capabilities of collecting, storing,
and analyzing large amounts of data to improve business decisions are clearly
here to stay. Reliability as a field is yet to fully benefit from this development,
but it will. These benefits include obvious improvements to and automation
of failure data collection, which provide better input for reliability models and
allow verification of the quality of reliability predictions. In addition, one of the
promising directions lies at the intersection of analytics and failure modeling and
anomaly detection, where large-scale experiments demonstrated the feasibility and
usefulness of automatic processing of operational data [72, 73].

(ii) Better and cheaper sensor technologies provide a wealth of new information that

can be used to identify the failure precursors in structures [74] and other critical
components [75].

(iii) Servitization. The emergence of servitization as a global trend in manufacturing

has been advocated since the late 1980s, when manufacturers either added services
or integrated services to their core products [76]. From that perspective, operation
and maintenance support is an important service to the consumer that provides a
natural step up the value chain. Recent empirical studies of servitization indicate
that, for large manufacturing companies, engaging in service negatively correlates
with higher profits [77]. The correlation should not be confused with causation, as
it is quite likely that a willingness to engage in services is indicative of the relative
maturation of the particular field, and of saturation of traditional sources of growth.
More generally, servitization can be considered a part of a general new (service)
dominant logic of marketing that deemphasizes the importance of material things
(operand resources, which are subject to external acts and operations and are
transformed as a result to create desired effects) and emphasizes the growing
importance of operant resources, which perform operations on operands and on
each other [78]. There are several distinguishing aspects of the logic and two of
them are of particular relevance in the context of increased importance of support
for complex systems:

(a) the key role of knowledge in value creation (cf. the emergence of the
knowledge era [79]), which in the context of operation and support pertains
to the know-how about inner workings of the systems (e.g., the technical data
package, historical failure data, etc.). This often favors original equipment
manufacturers (OEMs), and, in the modern environment, system integrators
as well, as they are the ones who have the “big picture” of the maintenance
processes;

(b) the prevalence of long-lasting relationships instead of single transactions. The
important thing in this context is the cost of switching to a competitor: as
long as the benefits of switching do not outweigh those costs, the customer
has incentives to stay with the current service provider, thus ensuring a long-
term stream of revenues. From this perspective, Performance Based Contracts
(PBCs) provide a mechanism to assess those costs and benefits and facilitate
the transfer to the service provider of the financial risk associated with the
operation and support of the system.

This shift toward providing services rather than products can have a large impact on
the field of reliability. Traditionally, the financial burden of operating a system falls onto
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the buyer, creating a moral hazard problem for the OEMs: spares and associated services
often provide a high-margin source of revenue. The cost of consumables used in system
operation is relatively well known at the point of sale and therefore can contribute to the
competitiveness of the product (e.g., fuel-efficient cars that become more popular as the price
of petroleum goes up). In contrast, predicting maintenance costs, especially those related to
corrective maintenance (i.e., correcting system failure), requires substantial historical data
on the reliability of the system. For mass-produced consumer products, such historical data
accumulates sufficiently quickly for reliability to often have a significant impact on the
buyer’s choice (e.g., the American preference for Japanese cars over domestically produced
ones during the 1980s). As a result, the market provides the necessary incentives for
improving reliability and lowering the maintenance costs (as exhibited by the ability of
American car manufacturers to close the reliability gap with their Japanese competitors
in recent years). However, more complex engineering systems are either tailor-made or
developed in relatively small quantities, often precluding the accumulation of sufficient
historical evidence to impact buyer choices. Proliferation of PBCs fundamentally changes this
balance and strongly encourages the OEMs to improve reliability of the supported systems.
While there is empirical evidence [80] that even for existing systems PBCs lead to reliability
improvements, even bigger increases in reliability can be realized when the direct incentives
brought by PBCs impact the design phase.

The availability of enabling technologies combined with the emergence of powerful
incentives provides fertile ground for improvements to the reliability of complex systems in
the near future. Next, promising research directions that can capitalize on these new trends
are discussed.

4.2. Software Reliability

Since, strictly speaking, software is not a subject to any variability for a fixed set of inputs,
the “only” problem is to ensure proper behavior for any credible set of inputs. However,
the effective dimensionality of inputs is so large that even for relatively simple cases the
exhaustive test of all possible combinations of inputs is not practical. Traditionally, reliability
at the system level is assessed by probabilistic tools (such as FTA or RBD) that require
probabilistic estimates of component failure. While a probabilistic framework provides a
natural means for quantification of hardware failures, its applicability to software failures is
far from straightforward. Software response is fundamentally deterministic, so in a certain
sense it either works or it does not. Theoretically, there are two ways that can provide a
probabilistic estimate of software errors.

(i) Uncertainty propagation method: analogous to uncertainty propagation used in
structural reliability [81] and other physics-based methods (such as computational
fluid dynamics). Therein, probabilistic representation of the uncertainty about the
inputs to the model is mapped into the probabilistic representation about the
outputs, and the corresponding mapping is deterministic. The method would
consist of the following steps: conduct a (random) relatively diverse subset of
tests on a software module; estimate the relative exposure to the diversity of
inputs during the testing phase in comparison to the operation phase; and finally
infer the possible number of errors during operation based on the number of
errors uncovered during the test phase. Unfortunately, an objective comparison
of the profiles of inputs for the test and operation is challenging at best. In fact,
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the more errors are uncovered by testing for the “known unknowns” (e.g., using
fault insertion techniques), the more biased the test sample becomes; the errors in
the test sample become less and less likely, as the known unknowns are resolved
and the corresponding errors are eliminated; at the same time the “unknown
unknowns” (i.e., the failure modes due to the unforeseen combination of inputs)
are likely to remain uncovered. In a certain way, the problem is analogous to an
overfitting problem [82] when an overly flexible approximation model can fit the
training data very well, while the errors for the real data (that was not used in the
model construction) can be quite poor indeed.

(ii) Software classification based on historical data: for safety-critical software there
are detailed process-based specifications [83] describing the requirements that
commensurate with the consequences of the software failures, and assigning appro-
priate “design assurance levels” (DAL) from A for catastrophic consequences, to E
for no consequences. The mapping between DAL and error rates can be estimated
based on historical data (possibly taking into account some other parameters,
such as software complexity, measured either in the lines of code, or some other
metrics). However, such classification is unlikely to provide enough resolution to
be practically useful, as there are so many parameters that need to be taken into
consideration, and there is very little empirical data that would support such error
rate estimates.

As a result, neither of the two approaches appears to be satisfactory at the moment, and
an alternative paradigm of using formal methods to make safety claims about safety-critical
software is advocated by many experts in the field [2, 84]. The field of formal verification
techniques is slowly but surely transitioning from an obscure obsession of few computer
scientists into a mainstream practical area of research and development [85]. Two important
stepping stones for this transition can be identified [2].

(i) A transition from the so-called “weak” (or descriptive) formal methods that focus
only on specifications, to strong (operational) formal methods that rely on tool-
based semantics analysis.

(ii) A shift from “heavyweight” formal methods that require special tools and highly
complex skills to “lightweight,” fully automated analysis embedded in the standard
development environment for software engineers.

4.3. Modeling an Automation-Human Interface

Initially, the impact of interaction on reliability between humans and machines was viewed
from the point of view of human errors. Effectively, those errors were classified into
categories, including errors of omission (the human operator fails to perform an action
when needed) and errors of commission (the operator performs an action when it was
not needed/expected). The likelihood of each type of error can be estimated based on the
complexity of the task at hand as well as on the environmental conditions (the so-called
performance-shaping factors, or PSFs) [86]. From this perspective, the presence of errors is
fundamental and the influence of the environment is secondary [23].

As the field evolved, more emphasis on the importance of the environment led to
a fuller appreciation of organizational issues [4], as well as to the realization that focusing
on human errors does not provide a complete picture of the role humans play in operating
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complex engineering systems. In particular, the positive contribution of humans to safety
has been recognized as well [87]. More generally, the variability of human behavior came to
the attention of experts in human factors. Instead of perceiving humans as entities making
perfectly rational decisions that are occasionally interspersed with errors, an alternative
interpretation of human behavior has been developed. It recognizes that human behavior
relies on approximations in making decisions [88] and that often the quality of these
approximations are related to the time available to make the decisions. This process is referred
to as the Efficiency Thoroughness Trade-Off (ETTO) [89] by Hollnagel. Importantly, these
approximations are not random, but are systematic, as are the systematic biases studied
by Kahneman and his colleagues [90]. From this perspective engineering systems exhibit
complex dynamic behavior where small variability in human response can result either
in normal operation, or in failures by means of positive feedback (cf. second cybernetics
[91]). This sensitivity to the initial conditions of complex dynamic systems is well known
[11] and will be discussed next. Importantly, finite state machines (FSM) [92, 93] can be
used to represent the most common operation modes of the system, providing a state-space
framework that can be related to system reliability models, thus leveraging the insights
obtained in studying complex systems in general.

4.4. Networks and Complexity Science

A significant body of work has accumulated in recent years in the area of large-scale
networks, and specifically, their robustness to failure. The key aspect of this work is its
reliance on understanding coarse-grained (macro)models that focus on aggregate metrics
characterizing the system without the need for precise description of each individual entity
that comprises the system. Effectively, the quest is for finding the network equivalent of
thermodynamics laws that would help to predict network behavior, so perhaps it is not sur-
prising that the researchers involved in this quest are mainly physicists [94]. Unfortunately,
most of this work has been mainly ignored by mainstream reliability researchers (with some
notable exceptions [95]). In stark contrast to classical thermodynamics, where averaging
provides the mechanism for establishing macroproperties (e.g., the averaging of the kinetic
energy of individual molecules leads to temperature), the coarse-grained characterization of
systems failure dynamics relies on finding extreme values among the collection of individual
entities that comprise the system, leading to so-called self-organized criticality [96, 97] (cf.
the weakest link principle; see the discussion of Weibull distributions above).

The prevalence of certain network topologies in nature, including those that follow a
power law distribution of links (so-called scale-free networks), is one of the most exciting
discoveries made in the late last century [94]. The long list of networks that fall under
this category includes Internet, neural networks, power grids, and various transportation
networks (although the worldwide air transportation network possesses some peculiarities
[98]). The relative susceptibility of scale-free networks with respect to various failures
in comparison to deliberately designed topologies such as “highly optimized topologies”
(HOTs) [99] provides important insights into the nature of failures for networked systems.
In particular, it is important to note the lack of robustness of HOT with respect to conditions
that are significantly different from the ones that the networks were originally designed for.

The initial focus of studies dealing with network failures was on static random
failures (e.g., nodal removal). Gradually, dynamic failure scenarios attracted more attention,
including studies of capacity constraints and propagating failures as a result of the shared
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load [100], applications to power grids [101], similar phenomena in aviation [102], and
congestion in networks [103]. Recently, the characterization of networks explicitly based on
their dynamic properties has been introduced as well [104, 105]. Specifically, a consistent
ordering of states related to their efficiency in serving as sinks or sources of disturbances in
the networks has been developed. This ordering relies on tail distribution of the hitting times
associated with each state.

While it is clear that network models (where nodes and links are distinguished) are
relevant to the understanding of failures in complex systems, even simpler architecture
that effectively consists of nodes only (with links implied by geometric proximity) can
also provide sufficient flexibility while being simple enough to establish relevant statistical
properties of failure patterns. Cellular Automata (CA) [106, 107] and especially sandpile
models [108] and associated concepts of self-criticality can prove to be quite useful in this
regard. One of the promising directions of the research in this field is to facilitate classification
of failure dynamics, and in particular identify distinct patterns of failure propagation as
functions of the input parameters and “tipping points,” as well as the most efficient ways of
delaying the occurrences of those tipping points, or preventing them altogether. However,
traditional CA models assume that the behavior of individual cells is purely local, while
in real failure modes, global variations of the load (shock models [109]) are of significant
importance. In addition, memory of past states (accumulated damage in a given cell) might
be critical for understanding failure progression (cf. recent research on the use of cell memory
[110]).

In recent years there have been multiple applications of CA to provide detailed
domain-specific models, including the durability of concrete in aggressive environments
[111], multipit corrosion [112], wind damage in forest planning [113], rock failures [114],
and creep rupture [115]. Among the relevant general research in CA, connections to self-
organized critical behavior models used to model landslides, forest fires, and earthquakes
[116] must be noted, as well as models that extend the notions of damage in CA, such as the
introduction of damaging agents [117]. Those and similar resources can be used to map the
properties of the CA to specific domains. To this end, relevant detailed damage propagation
models (not CA-based) can be utilized as well, including the work on semicrystalline
polymer fiber [118] and models of composite damage propagation [119]. In general, CA is
mostly concerned with steady-state patterns (e.g., in terms of the failure propagation, only
the averaged property, for example, expected transient time, is usually assessed). In contrast,
specific shapes of distributions of time to failure need to be studied more, thus relating the
study to existing statistical reliability models [120, 121].

4.5. Dynamic Reliability Modeling

4.5.1. Why Static System Reliability Modeling Is Not Enough

Modern complex systems are capable of reacting to the changes to both external envi-
ronments and the internal states of systems. The system’s reaction to those changes may be
autonomous or it may rely on external supervision. The associated control logic may consist
of a simple policy of replacement of the system or its component at specified time, but it
might also include reconfiguring the system (switching to the backup component, changing
the regime of operation, and trying again if the previous attempt to deliver the functionality
has not succeed). If those changes have impact on the reliability of the system, they need
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to be captured in the reliability analysis. The more complex the control logic is, the more
challenging the corresponding reliability modeling is.

For example, in order to evaluate the impact of condition-based maintenance policy,
all possible outcomes and their likelihoods need to be accounted for. Even for a single entity
(component) considered in isolation, this implies simultaneous assessment of the influence
of several important factors, including the rates of missed defects and false alarms, as well
as the delay time between the detection of the condition that requires a maintenance action,
and the action itself. As the timing of changes to the system is not known a priori, static
system reliability tools that rely on Boolean logic (such as fault trees, or reliability block
diagrams [17]) are not directly applicable. This has been recognized as a drawback of existing
methods of probabilistic risk assessment [122]. Indeed, fault trees rely on Boolean (static)
logic and evaluate the probability of the occurrence of relevant events regardless of their
relative timing. As a result, when the timing of events and other couplings are important, the
likelihood of the resulting events for populating fault trees must be obtained from external
sources, usually by means of physics-based simulations.

Physics-based simulations (including agent-based simulations) are increasingly
realistic in capturing particular physical phenomena, but the depth of the analysis comes
at the expense of its breadth, and so they are limited to only a few relevant interactions.
For example, in evaluating the efficiency of sense-and-avoid systems [123], a so-called inner
loop includes a dynamic simulation based on Monte Carlo, while the outer loop relies on
fault trees. This two-tier approach to system safety modeling relies on the fact that events
that impact the behavior of an inner loop are independent from the events that comprise
other branches of the system fault tree. Quite often this is not the case, and so the inner loop
has to be expanded across several layers of protection from accident. This can lead to very
large Monte Carlo simulations [124] that not only involve a large number of entities, but also
require large numbers of samples to capture rare events.

4.5.2. Discrete Space Continuous Time Models

Models with finite state space and continuous time avoid some of the drawbacks of static
reliability tools (as they can take into account the timing of individual events), and these
models often provide an efficient level of resolution. Importantly, analytical results can
be obtained for a sufficient subclass of the models (including Markov processes). Broadly
speaking, these models can be broken into two types as follows.

Global Models

Each state represents the whole system, explicitly accounting for the possible permutations
of the individual states of the system constituents (components). These models scale poorly
with the number of components that constitute the system. For example, if a system consists
of n distinct components, and each component can be in two states (say, fully operational or
with detectable damage), system representation requires 2" states. Markov chains fall under
this category (when state transition rate is fully determined by the current state and therefore
is independent of the past), but useful extensions include semi-Markov models, where the
time spent in the current state (the so-called holding time) can impact the transition rate.
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Local Models

Components’ states are explicitly modeled, as well as the intercomponent dependencies,
while the system state is inferred from the component states. Continuing with the same
example of a system with n components, one can observe that only 2n states are required.
Stochastic Petri nets (SPNs) [30] provide a graphical formalism for describing such local
models. Therein, the so-called tokens (depicted as small circles) are introduced to denote
individual components of the system; they can move between the “places” (depicted as
large hollow circles) representing possible states of those components. SPNs are a subset
of the so-called nonautonomous Petri Nets [125-128] and are of particular relevance to the
modeling of system reliability. SPNs introduce delays between the enabling and firing of a
transition; those delays are transitions attributes that can be deterministic or can be sampled
from a given distribution (stochastic). SPNs are often used as a modeling preprocessor, so
the model is internally converted to Markov state space and solved using standard Markov
methods [129]. However, a discrete event (e.g., Monte Carlo) simulation can be used to solve
SPNs directly [130]. Although the resulting solution is not as fast or precise, with modern
computers the importance of this disadvantage is constantly decreasing. On the other hand,
the flexibility gained allows arbitrary distributions to be considered.

If, as in the so-called colored Petri nets [131], tokens can have unique identities
(labels), an alternative interpretation of firing facilitates the preservation of the information
about the system’s past states: rather than considering removing a token from the transition’s
input place and depositing a (different) token to the output place as two disjoint actions,
these two actions may be united into a single action of moving the same token from an
input place to the output place. Memory (continuously changing labels) can be assigned
to tokens (the result is “aging tokens” [132]). Such tokens can move freely throughout the
Petri net without losing their memory. Firing delays for timed transitions can be interpreted
by associating backward clocks: the clock starts when the transition is enabled, and once the
clock reaches zero, the firing takes place. In standard SPNs, this clock is associated solely
with the transition, and if more than one token is present in the input place, the token to
be fired is selected at random. With aging tokens, a clock can be associated with a token-
transition pair, which allows several clocks to run simultaneously for a single transition, and
often results in a more compact model. Effective system modeling using SPN involves its
decomposition into a set of relevant entities, where each entity does not necessarily represent
a physical component of the system, as it might, for example, describe a phase of operation, or
environmental condition. Due to their flexibility in terms of modeling both discrete logic and
continuous states, SPNs have been considered particularly useful in the context of modeling
air transportation systems [133]. An enhanced modeling of continuous parameters using
aging tokens provides a unique opportunity for modeling various scenarios.

If the behavior of each component is independent of the states of other components,
the dynamic system model is superfluous, as the relevant system properties can be obtained
by means of static Boolean operations. The global models do not require any special means
to model component interdependencies, since the components are not explicitly represented.
As a result of dependency, some of the global states can be absent, reducing the state-space
size. Symmetry considerations can also greatly facilitate the state space compression. In
contrast, the local models do require special means for modeling interdependence among
the components. For example, inhibitors in SPN (arcs originating at a place and terminated
at a transition with a hollow circle) are a means to disable the transition if there are sufficient
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tokens in the originating place, that is, if disabling the transition of the component due to a
certain state of another component or several of them).

4.5.3. Continuous State and Time Models

Quite often the coupling among various entities of the system cannot be reduced to
boolean operations and timing of individual events, and several continuous parameters
fundamentally impact systems behavior. It can be argued that such systems exhibit a high
level of coupling and are therefore inherently prone to failures [49]; however, the existence of
such systems necessitates their failure modeling, while the need for control loops might (or
might not) justify the systems existence. While some analytical frameworks exist to model
such systems, most notably piecewise-deterministic Markov processes [134], most of the time
the complexity of the modeling requires resorting to simulations [135].

To this end, the agent-based models provide a means to shift attention from individual
systems and entities to their inherent interactions and the environment in which they operate.
Many systems are intrinsically, or have further evolved into, large and complex architectures
of interoperable parts and players—examples of which can be found in many domains, from
complex ecosystems [136] or virtual societies [137, 138] to the global economy [139, 140],
or airlines’ economic strategies [141] to the system-of-systems concept [142, 143]. Some
characteristics of these types of networks are the presence of open boundaries evolving in
time, internal heterogeneity, and high quantitative dimensionality. As a consequence, unified
or centralized approaches may not be appropriate, as they are better suited to describe closed
and well-structured systems. As an alternative, agent-based techniques exploit the idea of
distribution by focusing on system constituents and their behavioral rules at the microscopic
level, thus allowing the network’s dynamics and the components’” integration to emerge at
the macroscopic level. Improved system-level robustness, adaptability, and self-organization
are some of the resulting features that make agents appealing to engineering integration
and management of complex infrastructures. In order to accomplish its objective, an agent
interacts with other agents and the environment by exhibiting a host of qualities such as
reactiveness, proactiveness, sociability, learning, in-time evolution, and others. Interactions
and heterogeneity within a system generate the need for communication protocols and
schemes to optimally resolve conflicts and/or enhance interagent coordination, for which
various solutions have been proposed in the literature.

The National Airspace System (NAS) is characterized by the interaction of various
heterogeneous entities, such as aircraft, control towers, or various personnel, all of those
entities being spatially distributed. As a result, this domain provides a fertile ground for
complex system modeling. The use of agent-based simulations to assess systemic risks was
advocated by Blom and his co-workers [144] where a particular runway incursion scenario
was investigated, in which an aircraft taxis toward the crossing of an active runway while its
crew has inappropriate situation awareness. Besides the intrinsic complexity of such a system,
an interesting point raised at the simulation phase is the difference in time scale among the
various entities: a physics-based model may require a fine time step to guarantee adequate
accuracy as it is continuous in time, while a discrete-event model will need to be updated
less frequently. As observed by Lee et al. [145], this issue of different time granularity works
against the possibility of asynchronous simulation and forces synchronization, especially
in the presence of stochastic events for which events times are not known a priori. As an
alternative, in order to guarantee consistency of results, asynchronous simulation with partial
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resynchronization is suggested, where information and data updates are predicted and occur
when necessary.

Disruptions or unforeseen events can cause a series of cascading effects which call for
time-critical decisions. Decisions may, however, be hard to agree upon when many competing
players are involved. An attempt at modeling such circumstances is offered by Campbell et
al. [146] who employed the agent-based model IMPACT (intelligent agent-based model for
policy analysis of collaborative traffic flow management) to simulate the decision-making
process involving airlines and traffic control authorities in response to weather-due schedule
changes. Harper et al. [147] have also conducted similar studies with a focus on the human
element in the context of decision making. Pilots, airline dispatchers, and traffic controllers
are all modeled using the same agent structure, made up of three units: air-traffic situation
assessor, collaborative decision-making element, and plan executor, respectively, in charge of
collecting and processing current data, resolving traffic issues, and performing plan changes.
The SAMPLE (Situation Assessment Model of Pilot-in-the-Loop Evaluation) agent-based
architecture for modeling human behavior has been integrated in the FACET (Future Air
Traffic Management Concepts Evaluation Tool) environment, and principled negotiation has
been employed as a means to provide coordination and resolve conflicts between aircraft
[147], where a solution is sought by providing communal advantages for all the interested
parties.

In summary, the following nested hierarchy of models can facilitate the comprehensive
assessment of the reliability of complex systems by exploiting information compression and
keeping the overall modeling complexity manageable.

(i) Most detailed level: physics-based (including agent-based) simulations that rely
on continuous space- and time-state representation and might include human-,
software-, and hardware-in-the-loop simulations of specific scenarios.

(ii) Intermediate level: stochastic Petri nets or analogous discrete-event simulations
that capture the timing of events, but provide discrete state-space representation,

(iii) Static level: static evaluation of failure scenarios, relying on Boolean algebra (Fault
Trees, Reliability Block Diagrams), or providing qualitative description of the
failure state space (Failure Mode and Effect Analysis). At this level both spatial
and time states are explicitly enumerated and discrete,

(iv) Coarse-grained level: in the presence of large numbers of interacting entities,
aggregate properties of the system are assessed based on (usually asymptotic)
considerations related to self-organized criticality and similar concepts.

5. Conclusions

Modern engineering systems exhibit complex dynamic behavior, and their failures cannot
be adequately described by traditional reliability tools. Accounting for the interactions
among individual modules of a system requires understanding the specifics of hardware,
software, and “human-ware” domains, and the ability to use a common framework for all
these domains. Modern business trends emphasize selling the functionalities of engineering
systems as services rather than products and, as a result, provide new incentives for lowering
life-cycle costs and increasing system reliability. Sophisticated sensors combined with
analytics and associated capabilities for collecting, storing, and processing large amounts of
data provide practical mechanisms for the implementation of sound business strategies that
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respond to those incentives. As a result, increasingly sophisticated maintenance strategies for
the design and operation of complex engineering systems are being developed [148] which
rely on a better understanding of failure modes of the system. At the same time, the field
of reliability and the safety of complex systems have not reached the maturity of “normal”
design; as discussed in the context of software reliability, the successful transition from
radical to normal design requires a dedicated ecosystem or community of professionals (both
academicians and practitioners) [2]. At the moment such a united community does not exist,
although fragments of this ecosystem emerge in different domains (including complexity,
computer and material science, solid mechanics, controls, human factors, and econometrics).
In this paper an attempt has been made to outline the boundaries of this emerging ecosystem.
Importantly, the skills of this new community are likely to be distinct from the skills in the
reliability field of the twentieth century. In this information age, failures, large and small, will
be increasingly scrutinized; thus, the vital task of this emerging community to learn from past
failures and avoid future failures cannot be overestimated.
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