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A generalized Sawada-Kotera equation and its Lax pairs are proposed. With the help of the gauge transformation between
spectral problems, a Darboux transformation for the generalized SK equation is constructed. As an application of the Darboux
transformation, we give some explicit solutions of the generalized SK equation such as the rational solutions, soliton solutions, and

periodic solutions.

1. Introduction
The Sawada-Kotera (SK) equation
Up = —Uyprnn + 15(uuxx - u3)x (1)

was first proposed by Sawada and Kotera when they gave a
method for finding N-soliton solutions of the KdV equation
and the KdV-like equation [1]. In [2], Caudrey et al. showed
that (1) was a member of a new hierarchy of KdV equations.
The SK equation’s physical importance was illustrated by
Aiyer et al. in [3]. Then, the equation has been investigated
by many authors [4-8]. The aim of the present paper is using
the Darboux transformation [9-12] to study a generalized SK
equation:

U = ~Upyrry + 15(uuxx - u3)x - 15(vu,) - 10vv,,
2)
Ve =—v + IS(uvxx + Vv, — 3vu2)x +30(vuy)

AXXXX xx*

The present paper is organized as follows. In Section 2,
with the aid of the Lax pairs of the SK equation [13, 14]
and extending them by adding one potential function, we
propose a generalized SK equation and its Lax pairs. Based
on the gauge transformation between spectral problems,
we derive a Darboux transformation of the generalized
SK equation. In Section 3, the Darboux transformation is
applied to the generalized SK equation, by which explicit

solutions (we have verified the correctness of the solutions
by using the Mathematic 5.0.) of the generalized SK equation
are derived, including rational solutions, soliton solutions,
and periodic solutions.

2. Darboux Transformation of the
Generalized Sawada-Kotera Equation

In this section, we will derive a generalized SK equation and
its Darboux transformation. To this end, we first introduce
the Lax pairs:

Ly = Ay, v, = By, ©)
where operators < and 9 are defined as follows:
L =0 -3ud+v,
B =99 —45ud” + 15 (v - 3u,)d° (4)
+15 (3u2 —2u,, + vx) 0+ 10 (v, —3uv).
Then the compatibility condition between the two equations

of (3) yields the Lax equation, &, = [%,Z], which is
equivalent to the generalized SK equation:

Uy = ~Upyrrr + 15(uuxx - u3)x - 15(vu,) - 10vv,,

2
Vi = ~Viprnn + 15(uvxx +vv, —3u v)x +30(u,v), .

(5)



If we choose v = 0and v = —(3/2)u,, (5) can be, respectively,
reduced to the SK equation:

U, = 1, — 45070, + 15uu, . + 1501, (6)

and the Kaup-Kupershmidt equation:

Uy = —Uyy o, — 45070, + 15uu (D)

Theorem 1. Let f satisfy (3) with A = Ay and A = —(In f),..
Then the following Darboux transformation gives the relation
about the original solutions u, v of (5) and its new ones u, v:

75
xxx T 7”xu

u=u+A,,
_ (8)
v=v-3u,+3AA -3A_,.
Proof. Assume that y satisfies (3) and A = —(In f),. Let
Y=y, +Ay. )

Using the first expression of (3), a direct calculation gives the
following equations:

Ve =V + AV, + ALY,
Vo =AY + Bu+2A )y, + (A —v+ Ay,
wxxx =3 (u + Ax) Yix + (3ux - v+3A,, +3uA+ A) vy

+ (A — vy —VA+AA) Y.

(10)
Substituting (9) and (10) into the following equation:
Py =2y, (1)
where
Z=0"-3ud+v (12)
and comparing the coefficients of y, v, and y, .., we obtain
the following:
u-u-A,=0,
(13)
3uA-v-3u, +v-3A,, -3uA=0,
3uA, - vA-A,  +v,+VvA=0. (14)
Equation (13) implies the following:
u=u+A,,
(15)

v=v-3u,+3AA, -3A

xx*
Substituting (15) into (14) and integrating it once, we have the
following:

B3UA+3AA - AP - A +v=1,, (16)

where A, is a constant of integration. Through direct calcula-
tions, we arrive at the following:

_&zAx_AZ,
f

_ S
f

=A_ -3AA + A’
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/. 2 2 4
—% = A, —4AA, - 3A% +6AA, - A%,
fsx =A 5AA 10A A
- f — xxxx T xxx x4t xx

+154A% + 10A°A, - 104°A, + A°.
17)

Using (17) and A = —(In f),, a simple reduction shows that
(16) gives rise to the following:

Lf = Aof. (18)

Similarly, we consider the following equation:

v, - BV, (19)
where

B =90 - 45u0° + 15 (v - 31,) 0
(20)
+15 (30 = 21y, +7,) 0+ 10 (v, — 3U9).

Seeing (3), (8), and (9), a direct calculation shows that (19)
gives the following:

A, =9A = 10v,,, — 45uA . + 30uv,

XXXXX

+15vA ,, — 90A% +30u,v — 90u, A

x4t xx
2 2 3
+45u” A, +90uA’ +90A° - 75u, A,
—120A, A, +15v, A _+270AA A (21)
A

XXX

+30A%A__ - 30AA Ou

xxx xxxx 3 XXX

—90uA’A, +90uAA . + 90uu, A
~30vAA, — 90A° A% +90u, AA

which together with (17) implies the following:

fi=Bf. (22)

This means that both of the Lax pairs (3) and (11) and (19)
have the same form; that is, they lead to the same equation
(5). Therefore, original solutions u, v of the generalized SK
equation (5) are mapped into its new ones u, v by the Darboux
transformation (8). L]

3. Explicit Solutions of the Generalized
Sawada-Kotera Equation

In this section, we will construct explicit solutions of the gen-
eralized SK equation (5) by using the Darboux transforma-
tion (8).

(I) We choose a trivial solution u = 0, v = 0 of (5). Then
(3) with A = A is reduced to the following:

1//xxx = AOW’ l//t = 9V/xxxxx' (23)
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Let A, = —k® (k#0). We can see that (23) has a general solu-
tion:

1
f=cexp(A;)+cexp <—5A1>cos(A2)

1
+¢ exp <—§A1>sin(A2), o)

ﬁ:

3
where ¢;, (j = 1,2, 3) are constants and
3
A= —kx-9Kt, A,= g (kx-9k’t).  (25)

Using the Darboux transformation (8), we get an explicit
solution of (5)

3 (Qz + cf)k2 exp (=3A,) — 6,k exp (- (3/2) A ;) [(c2 + \/§%)cos (A,) - (\/gc2 - %) sin (Az)]

4[c; + ¢ exp (- (3/2) Ay) cos(A,) + g exp (= (3/2) A ) sin (Az)]2

>

V= (— {9 exp <—§A1) K (4c12 (@ - \/gcj)cos (Ay) + (\/gQ + %)Sin(AZ)]

+exp(-34,) ([(c2 - \/§c3) cos(A,) + (\/gcZ + c3) sin (Az)] (022 + c32))

+2exp (—%A1> a ((6 +cos (2A,) - V3sin (2A2))c‘22

(26)

+2 (sin (2A,) + V3 cos (2A2)) 66

+ (6 —cos (2A,) + V3 sin (2A2))C32)) })

X <8[c1 +¢, exp <—§A1> cos (A,) + ¢; exp <—§A1> sin (Az)r)l.

Particularly, when we choose ¢, = 0,¢, = ¢; = 1, we can get a
periodic solution of (5):

3k?
2[cos (A,) +sin (A,)]

+3k3<l+£cos(A2)—sin(A2))3 @)
2 2 cos(A,)+sin(A,)

ﬁ:

>

2sin(24,) -1
[cos (A,) +sin (A,)]*

Plots of the solutions are given in Figures 1 and 2.
(IT) We consider the trivial solution u = 0, v = 1 of (5).
Then (3) with A = A is reduced to the following:

Vixx = (AO - 1) v, Ve = Wi T 15V (28)

Case 1. When A, = 1, it is easy to see that (28) has a general
solution:

f=ax’ + Bx +y + 30at, (29)

where «, 3, and y are constants. Using the Darboux transfor-
mation (8), we get a rational solution of the generalized SK
equation (5):

2027 + 2afx + 7 - 2ay — 60a’t

e [ax? + Bx +y + 30at]’
(30)
3 (B - da(y +30at)) (B +2ax)

[ax? + Bx +y + 30at]’

v=1+

Case2. WhenA;=1- k® (k+0), (28) hasa general solution:

f=aep(d)+gep(-38,)cos(a,)
) 31
+¢exp <—5A1> sin(A,),

where ¢j> (j = 1,2, 3) are constants and
Ay = —kx - (9K - 15k*)t,

(32)
A, = ? (kx - 9K + 15K°t) .

Using the Darboux transformation (8), we get an explicit
solution of (5):
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3 (cf + c32) K*exp (-3A,) — 6, k> exp (- (3/2) A,) [(cz + \/§c3) cos (A,) - (\/302 - c3) sin (Az)]

N|
I

4[c; + g exp (- (3/2) Ay) cos(A,) + ¢ exp (- (3/2) A, ) sin (Az)]2

>

+exp(-3A,) ([(Q - \/gg)cos (A,) + (\/502 +%)sin (Az)] <622 +c32))

+2exp <—§A1)cl((6+cos(2A2)— \/gsin(ZAz))czz (33)

+2 (sin (24,) + V308 (24,)) ey

+(6—cos(24,) + V3sin (24,)) &) )D

x <8[c1 +¢, exp (—%A1> cos (A,) ¢; exp <—§A1> sin (Az)r)

(III) We choose another trivial solution u = 1, v = 0 of
(5). Then (3) with A = A, is reduced to the following:

Y = 91//xxxxx - 451//xxx + 4511(/.76'
(34)

1vl/xxx = 3V/x + /\01//’

Case 1. For A, = 0, a direct calculation gives a general solu-
tion of (34):

f=aexp(d)+gexp(-4), (35)

where ¢}, ¢, are constants and A = /3x — 9+/3t. Using the
Darboux transformation (8), we get a soliton solution of the
generalized SK equation (5) (¢, = ¢, = 1):

% = 3[tanh(A)])* - 2,

36
v = 9V3[tanh(A)]® - 9V3 tanh (A). (6

Plots of the solutions are given in Figures 3 and 4.

Case 2. For A = k* = 3k (k#0), (34) has a general solution:

f=aexp(A)+gexp(A,)+gexp(h,), (37)

u=1

-1

where ¢;, (j = 1,2, 3) are constants and

Ay = kx + (9K° - 45Kk° + 45Kk) t,
—k+ V12 - 3k?
A= ST T 2T
2
—%(5k—5k3+k5+\/12—3k2
—3k2\/12—3k2+k4\/12—3k2)t,
k- VI2-3k2
By= o x

+§(—5k+5k3—k5+ V12 = 3k2

3k2V12 - 3k2 + K12 - 3k2) t.

(38)

Using the Darboux transformation (8), we get an explicit
solution of (5):

3266 (kz - 4)exp A, +45) - 6 (2+k2—k\/12 - 3k2) exp (A +4A,)—ci¢ (2+k2+k\/12 - 3k2)exp (A +A5)
+ = >

2 (e exp (81)+e,exp (8,)+e; exp (A5)]

(39)
A

v=3k-9%+3

[qexp(A;) +exp(A,) +¢exp (A3)]3



ISRN Applied Mathematics

s
-
[
(=}

100
80
60

40

")

FIGURE I: u.

-10 -5

vt=0

200

10

-1o -5 \
~200

—400

FIGURE 2: v.

s
-
[
(=}

0.5

10

0.5

FIGURE 4: V.

0.5



where

A = k(3—k2) [613 exp (3A,)
+¢ exp(3A,) +¢ exp (3A5)
—12¢c 66 exp (A, + A, + A3)]

+ %(;2263 exp (2A, + A5)

x [2k—k3 — 412 - 3k2 +k2\/12—3k2]

+ %clc:f exp (A2 + 2A3)

x [2k = + 412 =312 - K12 - 32

- ;clzcz exp (24, +A2)(1 +k2) (k— \/12—7.%](2)
- gcf%exp(ZAl +A3)(1 +k2) <k+ \/m)
+ 2%2 exp (A, +28,) k(8- K +kV12-3K)

+ gclcj exp (B, +28,) k(8- K — k12 - 3k).

(40)
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