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An approximate scheme is defined for incompressible miscible displacement in porous media.This scheme is constructed by using
immersed interface finite element method for the pressure equation which is based on the broken 𝑃

1
-nonconforming piecewise

linear polynomials on interface triangular elements and utilizing finite element method for the concentration equation. Error
estimates for pressure in broken𝐻1 norm and for concentration in 𝐿2 norm are presented.

1. Introduction

Miscible displacement of one incompressible fluid in a porous
medium Ω over time interval 𝐽 = [0, 𝑇] is modeled by the
system

(a) − ∇ ⋅ (𝛼 (𝑐) ∇𝑝) = ∇ ⋅ 𝑢 = 𝑞, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,

(b) 𝜙
𝜕𝑐

𝜕𝑡
+ 𝑢 ⋅ ∇𝑐 − ∇ ⋅ (𝐷 (𝑢) ∇𝑐)

= (𝑐 − 𝑐) 𝑞 = 𝑔 (𝑥, 𝑡, 𝑐) , 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,

(c) 𝑢 ⋅ 𝑛 = 𝐷 (𝑢) ∇𝑐 ⋅ 𝑛 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ 𝐽,

(d) 𝑐 (𝑥, 0) = 𝑐
0
(𝑥) , 𝑥 ∈ Ω.

(1)

In the formulation, we have utilized the fact that in applica-
tions the vertical dimension of a subsurface geological for-
mation is often much smaller than the horizontal dimension.
We thus simplify the problem via a vertical average to rewrite
the problem as a two-dimensional problem in the horizontal
dimension, so the physical domain Ω ⊂ 𝑅

2. 𝛼(𝑐) = 𝛼(𝑥, 𝑐) =
𝑘(𝑥)/𝜇(𝑐), 𝑘(𝑥) is the permeability tensor of the medium
and 𝜇(𝑐) is the viscosity of the fluid mixture that may be
discontinuous across some interfaces; 𝜙(𝑥) is the porosity
of the medium; 𝑢(𝑥, 𝑡) is the Darcy velocity of the mixture;
𝑞(𝑥, 𝑡) represents flow rates at wells, commonly a linear

combination of Dirac measures; 𝐷(𝑢) = 𝐷(𝑥, 𝑐, ∇𝑝) =

𝜙(𝑥){𝑑
𝑚
𝐼 + |𝑢|(𝑑

𝑙
𝐸(𝑢) + 𝑑

𝑡
𝐸
𝑇
(𝑢))} is the diffusion-dispersion

tensor, with 𝑑
𝑚
, 𝑑

𝑙
, and 𝑑

𝑡
being the molecular diffusion,

the transverse, and longitudinal dispersivities, respectively,
𝐼 is the identity tensor; 𝑐(𝑥, 𝑡) is specified at sources and
𝑐(𝑥, 𝑡) = 𝑐(𝑥, 𝑡) at sinks. 𝑐

0
(𝑥, 𝑡) is the initial concentration.

The dependent variable is 𝑝(𝑥, 𝑡) is the pressure in the fluid
mixture, and 𝑐(𝑥, 𝑡) is the concentration of a solvent injected
into resident reservoir.

For (1) we assume that

(𝑞, 1) = ∫

Ω

𝑞 (𝑥, 𝑡) 𝑑𝑥 = 0, 𝑡 ∈ 𝐽. (2)

Let 𝑢 = 𝑢(𝑥, 𝑐, ∇𝑝) = (𝑢
1
(𝑥, 𝑐, 𝑝

𝑥
), 𝑢

2
(𝑥, 𝑐, 𝑝

𝑦
)); for some

𝜀 > 0 restrict the variable 𝑞
1
to lie between −𝜀 ⩽ 𝑞

1
⩽ 1 + 𝜀

and 𝑞
2
∈ 𝑅, so we can suppose that the following regularity

for 𝛼,𝐷, 𝜙, and 𝑢 holds:

0 < 𝛼
∗
⩽ 𝛼 (𝑥, 𝑞

1
) ⩽ 𝛼

∗
,

𝐷
∗
⩽ 𝐷 (𝑢) ⩽ 𝐷

∗
,

𝜙
∗
⩽ 𝜙 (𝑥) ⩽ 𝜙

∗
;

(3)

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑥, 𝑞1, 𝑞2)
󵄨󵄨󵄨󵄨 ⩽ 𝐾 (1 +

󵄨󵄨󵄨󵄨𝑞2
󵄨󵄨󵄨󵄨) , 𝑖 = 1, 2, 𝑞

2
∈ 𝑅. (4)

There exist much literature concerning numerical meth-
od and numerical analysis of miscible placement problem in
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porous media, for example, [1–4], and so on. As we know
the porous media equations used to model the interface
between oil and an injected fluid in simulations of secondary
recovery in oil reservoirs. For the pressure equation (1)(a), the
coefficient 𝛼(𝑐) often changes rapidly across fluid interfaces,
and this sharp change is accompanied by large changes in
the pressure gradient, as a compensatory, yielding a fairly
smoothDarcy velocity 𝑢, so we can trade (1)(a) as an interface
problem. When the interface is smooth enough, the solution
of the interface problem is also very smooth in individual
regions where the coefficient is smooth, but due to the jump
of the coefficient across the interface, the global regularity is
usually very low and has order of 𝐻1+𝛾, 0 < 𝛾 < 1. Due
to the low global regularity and the irregular geometry of
the interface, it seems to be difficult for the standard finite
element method to achieve high accuracy.

For better approximation, the fitted finite element meth-
ods whose mesh depends on the smooth interface are devel-
oped [5]. However, this method using fitted grids is costly
for more complicated time dependent problems in which the
interface moves with time and repeated grid generation is
called for. Compared with the fitted finite element methods,
the immersed interface method proposed by LeVeque and
Li [6] allows the mesh to be independent of the interface,
such as a Cartesian mesh. In recent years, Li et al. [7] studied
an immersed finite element method using uniform grid, and
they proved the approximation property of the finite element
space of this scheme. On the other hand, Kwak et al. [8]
introduced an immersed finite element method based on the
broken 𝑃

1
-nonconforming piecewise linear polynomials on

interface triangular elements; this method uses edge averages
as degrees of freedom, and the basis functions are C-R type
[9].Theory analysis and numerical experiments also show the
optimal-order convergence of the method.

In this paper, we apply 𝑃
1
-nonconforming finite element

method (𝑃
1
FEM) to pressure equation, while a FEMwas used

to approximate the concentration equation. Other methods
could also be employed for the discretization of the concen-
tration equation, for example, characteristicGalerkinmethod
and so on. However, since the main point of this paper is to
show the feasibility of the use of 𝑃

1
FEM for pressure, we will

discuss the concentration equation in the single case.
The rest of the paper is organized as follows: in Section 2,

we first introduce some preliminaries. In Section 3, we briefly
describe the 𝑃

1
FEM-FEM scheme. In Section 4, we present

some projections and lemmas used in the following error
analysis. In Section 5, we prove the main error estimate.

2. Preliminaries

In this paper, without loss of generality, we consider the case
inwhichΩ ⊂ 𝑅

2 is a rectangular domain and the interface Γ is
a smooth curve separatingΩ into two subdomainsΩ+ andΩ−

such thatΩ = Ω
+
⋃Ω

−
⋃Γ; see Figure 1 for an illustration.

The proper jump conditions for elliptic (1)(a) are given by

[𝑝] = 0, [𝛼 (𝑐) ∇𝑝 ⋅ 𝑛] = 0 across Γ, (5)

Ω
+

Ω
−

Γ

Ω

Figure 1

where 𝑝 ∈ 𝐻
1
(Ω). We assume 𝛼(𝑐) is a positive function

bounded below and above by two positive constants.
Let 𝑊𝑚

𝑞
(Ω), 1 ⩽ 𝑞 ⩽ +∞, be the Sobolev spaces con-

sisting of functions whose derivatives up to order-𝑚 are 𝑞th
integrable onΩ, and𝐻𝑚

(Ω) := 𝑊
𝑚

2
(Ω) and𝐻0

(Ω) = 𝐿
2
(Ω).

For the analysis, we introduce the space

𝐻̃
2
(Ω) = {𝑝 ∈ 𝐻

1
(Ω) ; 𝑝 ∈ 𝐻

2
(Ω

𝑠
) , 𝑠 = +, −} , (6)

equipped with the norm

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

𝐻̃
2
(Ω)

=
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

𝐻
2
(Ω
+
)
+
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

𝐻
2
(Ω
−
)
,

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

2

𝐻̃
2
(Ω)

=
󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

2

𝐻
2
(Ω
+
)
+
󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

2

𝐻
2
(Ω
−
)
,

∀𝑝 ∈ 𝐻̃
2
(Ω) .

(7)

We integrate (1)(a) multiplied by any test function V ∈

𝐻
1
(Ω) over the domainΩ and apply the divergence theorem;

then the variational formulation of the pressure equation is as
follows Find 𝑝 ∈ 𝐻1

(Ω) such that

𝑎 (𝑝, V) = (𝑞, V) , V ∈ 𝐻1
(Ω) , (8)

where the bilinear formation 𝑎(𝑝, V) = (𝛼(𝑐)∇𝑝, ∇V).
By the Sobolev embedding theorem, for any 𝑝 ∈ 𝐻̃

2
(Ω),

we can get 𝑝 ∈ 𝑊1

𝑠
(Ω) for any 𝑠 > 2.Then we have the follow-

ing regularity lemma for theweak solution𝑝of the variational
formulation (8).

Lemma 1 (see [10]). Assume that 𝑞 ∈ 𝐿2(Ω). Then there exists
a unique solution 𝑝 ∈ 𝐻̃

2
(Ω) to the variational formulation

(8) such that
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐻̃2(Ω)

⩽
󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩𝐿2(Ω)

. (9)

3. Formation of the Method

In this section, firstly, we define a broken 𝑃
1
-nonconforming

finite element method for pressure equation, and then, we
use a finite elementmethod to approximate the concentration
equation.

In order to construct a broken 𝑃
1
-nonconforming finite

element procedure for pressure equation (1)(a), we assume
the following situation.
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Let 𝑇
ℎ
be the usual regular triangulation of the domain

Ω such that the elements have diameters bounded by ℎ
𝑝
.

Without loss of generality, we assume that the triangles in the
partition used have the following features.
(𝐻

1
) If Γmeets one edge at more than two points, then this
edge is one part of Γ.

(𝐻
2
) If Γmeets a triangle at two points, then the two points
must be on the different edges of this triangle.

(𝐻
3
) The interface curve Γ is defined by a piecewise 𝐶2

function, and the mesh 𝑇
ℎ
is formed such that the

subset of Γ in any interface element is 𝐶2.
Then we can separate the triangles of partition 𝑇

ℎ
into

two classes. For an element 𝑇 ∈ 𝑇
ℎ
, if the interface Γ passes

through the interior of 𝑇, we call it an interface element and
denote it by 𝑇

𝑚
; otherwise, we call it a noninterface element

and denote it by 𝑇
𝑛
, respectively.

As usual, we will define linear finite element spaces on
each element of the partition 𝑇

ℎ
, so we have to construct the

local basis functions. For a noninterface element 𝑇
𝑛
, we can

simply use the standard linear shape functions on 𝑇
𝑛
with

degrees of freedom at average values along edges 𝑒
𝑗
of 𝑇

𝑛
and

construct the linear finite element space 𝑆
ℎ
(𝑇

𝑛
) as follows:

𝑆
ℎ
(𝑇

𝑛
) = span{𝜑

𝑖
: 𝜑

𝑖
∈ 𝑃

1
(𝑇

𝑛
) ,

1

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑗

󵄨󵄨󵄨󵄨󵄨

∫

𝑒
𝑗

𝜑
𝑖
𝑑𝑠 = 𝛿

𝑖𝑗
, 𝑖, 𝑗 = 1, 2, 3} .

(10)

For this space, we define the interpolation operator 𝐼
ℎ
:

𝐻
2
(𝑇

𝑛
) → 𝑆

ℎ
(𝑇

𝑛
), where the following well-known approx-

imation property is satisfied:
󵄩󵄩󵄩󵄩𝑝 − 𝐼ℎ𝑝

󵄩󵄩󵄩󵄩𝐿2(𝑇
𝑛
)
+ ℎ

𝑝

󵄩󵄩󵄩󵄩𝑝 − 𝐼ℎ𝑝
󵄩󵄩󵄩󵄩𝐻1(𝑇

𝑛
)
⩽ 𝐶ℎ

2

𝑝

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐻2(𝑇

𝑛
)
, (11)

and we use 𝑆
ℎ
(Ω

𝑛
) to denote the space of piecewise 𝑃

1
-non-

conforming finite element space on the domain Ω
𝑛
= ⋃𝑇

𝑛
.

For interface element 𝑇
𝑚
, since the finite element space

on a general element can be obtained from the counterpart of
a reference element through an affinemapping, we consider a
typical interface element 𝑇

𝑚
whose geometric configuration

is given in Figure 2 in which the three vertices are given by
𝐴

1
= (0, 0), 𝐴

2
= (1, 0), and 𝐴

3
= (0, 1), and the curve

between points𝐷 and𝐸 is part of the interfacewith𝐷 = (0, 𝑎)

for 0 < 𝑎 ⩽ 1 and 𝐸 = (𝑏, 0) for 0 < 𝑏 ⩽ 1. Let 𝐷𝐸 denote
the line segment connecting points 𝐷 and 𝐸, which divides
𝑇
𝑚
into two parts 𝑇+

𝑚
and 𝑇−

𝑚
with 𝑇

𝑚
= 𝑇

+

𝑚
⋃𝑇

−

𝑚
⋃𝐷𝐸.

Let 𝑒
𝑖
, 𝑖 = 1, 2, 3 be the edges of 𝑇

𝑚
, and let 𝜑

𝑒
𝑖

denote
the average of 𝜑 along 𝑒

𝑖
, that is, 𝜑

𝑒
𝑖

= (1/|𝑒
𝑖
|) ∫

𝑒
𝑖

𝜑𝑑𝑠, 𝜑 ∈

𝐻
1
(𝑇

𝑚
), and then we would like to construct a new function

which is linear on 𝑇+

𝑚
and 𝑇−

𝑚
, respectively, and satisfies the

jump condition (5) on 𝐷𝐸. For this purpose, we write the
modified basis function 𝜑 on an interface element 𝑇

𝑚
as

follows:

𝜑 =

{

{

{

𝜑
−
= 𝑎

0
+ 𝑏

0
𝑥 + 𝑐

0
𝑦, in 𝑇−

𝑚
,

𝜑
+
= 𝑎

1
+ 𝑏

1
𝑥 + 𝑐

1
𝑦, in 𝑇+

𝑚
,

(12)

A2
A1

A3

D e1

T
−

m

Γ

T
+

m

e3

e2

E

Figure 2

with the following constraints:

𝜑
𝑒
𝑖

= 𝑉
𝑖
, 𝑖 = 1, 2, 3,

𝜑
−
(𝐷) = 𝜑

+
(𝐷) ,

𝜑
−
(𝐸) = 𝜑

+
(𝐸) ,

𝛼
−
𝜕𝜑

−

𝜕𝑛
𝐷𝐸

= 𝛼
+
𝜕𝜑

+

𝜕𝑛
𝐷𝐸

,

(13)

where 𝛼−, 𝛼+ are averages along 𝐷𝐸 and 𝜌 = 𝛼
−
/𝛼

+, 𝑉
𝑖
, 𝑖 =

1, 2, 3, are given values, and 𝑛
𝐷𝐸

is the unit normal vector on
the line𝐷𝐸, that is, 𝑛

𝐷𝐸
= (𝑎, 𝑏)/√𝑎

2
+ 𝑏

2.
By similar calculation to that given inTheorem 2.2 of [8],

we can rewrite (12) and (13) in the matrix form:

𝐴

(
(
(
(
(

(

𝑎
0

𝑏
0

𝑐
0

𝑎
1

𝑏
1

𝑐
1

)
)
)
)
)

)

=

(
(
(
(
(

(

𝑉
1

𝑉
2

𝑉
3

0

0

0

)
)
)
)
)

)

, (14)

where the coefficient matrix is defined by

𝐴 =

(
(
(
(
(
(
(
(
(
(

(

0 0 0 1
1

2

1

2

𝑎 0
1

2
𝑎
2
1 − 𝑎 0

1

2
(1 − 𝑎

2
)

𝑏
1

2
𝑏
2

0 1 − 𝑏
1

2
(1 − 𝑏

2
) 0

1 0 𝑎 −1 0 −𝑎ℎ
2

1 𝑏 0 −1 −𝑏 0

0 𝜌𝑎 𝜌𝑏 0 −𝑎 −𝑏

)
)
)
)
)
)
)
)
)
)

)

,

(15)
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and the determinant of the matrix 𝐴 is

det (𝐴) = −1
4
𝑎
3
𝑏 +

1

4
𝑎
3
𝑏𝜌 −

1

4
𝑎
2
𝜌

−
1

4
𝑎𝑏

3
+
1

4
𝑎𝑏

3
𝜌 −

1

4
𝑏
2
𝜌

=
1

4
(𝑎

2
+ 𝑏

2
) {𝜌 (𝑎𝑏 − 1) − 𝑎𝑏} < 0.

(16)

Therefore, the coefficients of (12) are uniquely determined by
conditions 𝜑

𝑒
𝑖

= 𝑉
𝑖
, 𝑖 = 1, 2, 3, respectively, and when 𝑉

𝑖
,

𝑖 = 1, 2, 3, have the same value 𝑉, we can get the piecewise
linear function 𝜑 = 𝑉 by uniqueness.

Therefore we can define the following finite element space
on an interface element 𝑇

𝑚
:

𝑆
ℎ
(𝑇

𝑚
)

= span {𝜑 : 𝜑|
𝑇
𝑚

is well defined by the above construction}.
(17)

Also we use 𝑆
ℎ
(Ω

𝑚
) to denote the finite element space defined

on the domainΩ
𝑚
= ⋃𝑇

𝑚
.

Remark 2. Although for functions in 𝑆
ℎ
(𝑇

𝑚
), the flux jump

condition is enforced on line segments, they actually satisfy
a weak flux jump condition along the interface Γ when 𝛼 is a
piecewise constant such that

∫

Γ∩𝑇

(𝛼
−
∇𝜑

−
− 𝛼

+
∇𝜑

+
) ⋅ 𝑛

Γ
𝑑𝑠 = 0, ∀𝜑 ∈ 𝑆

ℎ
(𝑇

𝑚
) , (18)

which is proved by an application of divergence theorem as
in [11].

Combining the definitions of 𝑆
ℎ
(Ω

𝑛
) and 𝑆

ℎ
(Ω

𝑚
),we can

describe the immersed finite element space 𝑆
ℎ
(Ω) on the

whole domainΩ,

𝑆
ℎ
(Ω) = {𝜑 : 𝜑|

Ω
𝑛

∈ 𝑆
ℎ
(Ω

𝑛
) , 𝜑|

Ω
𝑚

∈ 𝑆
ℎ
(Ω

𝑚
)} , (19)

endowed with the broken norm,

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

1,ℎ
= ∑

𝑇

∫

𝑇

󵄨󵄨󵄨󵄨∇𝜑
󵄨󵄨󵄨󵄨

2

𝑑𝑥, 𝜑 ∈ 𝑆
ℎ
(Ω) . (20)

Now, assume that the approximation of concentration 𝐶
is known.Then, the pressure𝑃 ∈ 𝑆

ℎ
(Ω) can be determined by

the following system:

𝑎
ℎ
(𝑃, 𝜑) = (𝑞, 𝜑) , 𝜑 ∈ 𝑆

ℎ
(Ω) , (21)

where 𝑎
ℎ
(𝑃, 𝜑) = ∑

𝑇∈𝑇
ℎ

∫
𝑇
𝛼(𝐶)∇𝑃∇𝜑𝑑𝑥 is the bilinear for-

mulation defined on𝐻
ℎ
(Ω) ×𝐻

ℎ
(Ω) with𝐻

ℎ
(Ω) = 𝐻

1
(Ω) ⊕

𝑆
ℎ
(Ω).
The question at hand is to discretize the concentration

equation.

Multiplying the concentration equation (1)(b) by a test
function V ∈ 𝐻

1
(Ω) and integrating over Ω which leads to

the following weak formulation for concentration 𝑐:

(𝜙
𝜕𝑐

𝜕𝑡
, V) + (𝑢 (𝑐, ∇𝑝) ⋅ ∇𝑐, V) + (𝐷 (𝑐, ∇𝑝) ∇𝑐, ∇V)

= (𝑔 (𝑐) , V) , V ∈ 𝐻1
(Ω) .

(22)

Let 𝑀
ℎ
denote the standard piecewise linear finite ele-

ment space associated with 𝑇
ℎ
, and ℎ

𝑐
denote the bound of

elements diameters. Then the discrete procedure of (22) is to
find 𝐶 : 𝐽 → 𝑀

ℎ
such that

(𝜙
𝜕𝐶

𝜕𝑡
, V

ℎ
) + (𝑢 (𝐶, ∇𝑃) ⋅ ∇𝐶, V

ℎ
) + (𝐷 (𝐶, ∇𝑃) ∇𝐶, ∇V

ℎ
)

= (𝑔 (𝐶) , V
ℎ
) , V

ℎ
∈ 𝑀

ℎ
,

𝐶 (𝑥, 0) = 𝑐
0
(𝑥) , 𝑥 ∈ Ω,

(23)

where 𝑐
0
(𝑥) is the elliptic projection of 𝑐

0
(𝑥).

4. Projection and Some Lemmas

For convergence analysis conducted in the following section,
we need an interpolation operator 𝐼

ℎ
: 𝐻̃

2
(𝑇) → 𝑆

ℎ
(𝑇) using

the average of 𝑝 on each edge by

(𝐼
ℎ
𝑝)

𝑒
𝑖

= 𝑝
𝑒
𝑖

, 𝑖 = 1, 2, 3, (24)

and when 𝑝 ∈ 𝐻̃2
(Ω), we can define 𝐼

ℎ
𝑝 by (𝐼

ℎ
𝑝)|

𝑇
= 𝐼

ℎ
(𝑝|

𝑇
).

Then the following interpolation estimate hold for the𝑃
1
FEM

approximation [8]
󵄩󵄩󵄩󵄩𝑝 − 𝐼ℎ𝑝

󵄩󵄩󵄩󵄩𝐿2(Ω)
+ ℎ

𝑝

󵄩󵄩󵄩󵄩𝑝 − 𝐼ℎ𝑝
󵄩󵄩󵄩󵄩1,ℎ

⩽ 𝐶ℎ
2

𝑝

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐻̃2(Ω)

, ∀𝑝 ∈ 𝐻̃
2
(Ω) .

(25)

Next, let 𝐶 : 𝐽 → 𝑀
ℎ
be the elliptic projection of 𝑐

defined by

(𝑢 (𝑐, ∇𝑝) ⋅ ∇ (𝐶 − 𝑐) , V
ℎ
) + (𝐷 (𝑐, ∇𝑝) ∇ (𝐶 − 𝑐) , ∇V

ℎ
)

+ (𝜆 (𝐶 − 𝑐) , V
ℎ
) = 0, ∀V

ℎ
∈ 𝑀

ℎ
.

(26)

The function 𝜆will be chosen to assure coercivity of the form.
Then, the following estimates hold [12]:

󵄩󵄩󵄩󵄩󵄩
𝑐 − 𝐶

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
+ ℎ

𝑐

󵄩󵄩󵄩󵄩󵄩
𝑐 − 𝐶

󵄩󵄩󵄩󵄩󵄩𝐻1(Ω)
⩽ 𝐾ℎ

2

𝑐
‖𝑐‖𝐻2(Ω)

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕(𝑐 − 𝐶)

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

⩽ 𝐾ℎ
2

𝑐
{‖𝑐‖𝐻2(Ω)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑐

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻2(Ω)

} .

(27)

For convergence analysis conducted in Section 5, we need
to apply quote some lemmas from [9, 13] and references there-
in.
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Lemma3 (see [9] (the second Strang lemma)). Let𝑝 and𝑃 be
the solution of (8) and (21). Then there exists a constant 𝐶 > 0

such that

󵄩󵄩󵄩󵄩𝑝 − 𝑃
󵄩󵄩󵄩󵄩1,ℎ

⩽ 𝐶

{

{

{

inf
𝑤
ℎ
∈𝑆
ℎ
(Ω)

󵄩󵄩󵄩󵄩𝑝 − 𝑤ℎ

󵄩󵄩󵄩󵄩1,ℎ
+ sup

𝜑∈𝑆
ℎ
(Ω)

󵄨󵄨󵄨󵄨𝑎ℎ (𝑝, 𝜑) − (𝑞, 𝜑)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩1,ℎ

}

}

}

.

(28)

Lemma 4 (see [13]). Let 𝑒 be an edge of 𝑇. Then there exists a
constant 𝐶 > 0 such that for all 𝜑, V ∈ 𝐻1

(𝑇):

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑒

𝜑 (V − V
𝑒
) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶ℎ
𝑝

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨1,𝑇|

V|1,𝑇, (29)

where V
𝑒
:= (1/|𝑒|) ∫

𝑒
V 𝑑𝑠.

5. Convergence Analysis

In this section, we will present convergence analysis for the
pressure and concentration.

Theorem 5. Let 𝑝 ∈ 𝐻̃2
(Ω), 𝑃 ∈ 𝑆

ℎ
(Ω) be the solution of (8)

and (21); then there exists a constant 𝐾 > 0 independent of ℎ
𝑝

and the location of the interface, such that the following result
holds:

󵄩󵄩󵄩󵄩𝑝 − 𝑃
󵄩󵄩󵄩󵄩1,ℎ

⩽ 𝐾ℎ
𝑝

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐻̃2(Ω)

+ 𝐾‖𝑐 − 𝐶‖𝐿2(Ω)
. (30)

Proof. Since the immersed finite element formulation (21)
is nonconforming, we can use Lemma 3 to prove the error
bound.The first part in (28) is an approximation error, which
can be estimated simply:

inf
𝑤
ℎ
∈𝑆
ℎ
(Ω)

󵄩󵄩󵄩󵄩𝑝 − 𝑤ℎ

󵄩󵄩󵄩󵄩1,ℎ
⩽ 𝐾ℎ

𝑝

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐻̃2(Ω)

. (31)

For the second part, it is a consistency error estimate. By
the definition of 𝑎

ℎ
(⋅, ⋅) and Green’s formula, we can get

󵄨󵄨󵄨󵄨𝑎ℎ (𝑝, 𝜑) − (𝑞, 𝜑)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑇∈𝑇
ℎ

∫

𝑇

𝛼 (𝐶) ∇𝑝∇𝜑 𝑑𝑥 − ∫

Ω

𝑞𝜑 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑇∈𝑇
ℎ

∫

𝑇

𝛼 (𝐶) ∇𝑝∇𝜑 𝑑𝑥

− ∑

𝑇∈𝑇
ℎ

∫

𝑇

𝛼 (𝑐) ∇𝑝∇𝜑 𝑑𝑥

+ ∑

𝑇∈𝑇
ℎ

⟨𝛼 (𝑐)
𝜕𝑝

𝜕𝑛
, 𝜑⟩

𝜕𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑇∈𝑇
ℎ

∫

𝑇

(𝛼 (𝐶) − 𝛼 (𝑐)) ∇𝑝∇𝜑 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑇∈𝑇
ℎ

⟨𝛼 (𝑐)
𝜕𝑝

𝜕𝑛
, 𝜑⟩

𝜕𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
󵄩󵄩󵄩󵄩∇𝑝

󵄩󵄩󵄩󵄩𝐿∞(Ω)
‖𝑐 − 𝐶‖𝐿2(Ω)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩1,ℎ

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑇∈𝑇
ℎ

⟨𝛼 (𝑐)
𝜕𝑝

𝜕𝑛
, 𝜑⟩

𝜕𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐾‖𝑐 − 𝐶‖𝐿2(Ω)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩1,ℎ

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑇∈𝑇
ℎ

⟨𝛼 (𝑐)
𝜕𝑝

𝜕𝑛
, 𝜑⟩

𝜕𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(32)

where 𝑛 is the unit outward normal vector on each 𝜕𝑇,
𝜑 ∈ 𝑆

ℎ
(Ω), and by the construction of the space 𝑆

ℎ
(Ω) we

have a well-defined property on the interior edges, that is,
∫
𝑒
𝜑|

𝑇
1

= ∫
𝑒
𝜑|

𝑇
2

for 𝑒 is the common edge of adjacent element
𝑇
1
and 𝑇

2
. By boundary condition, we note that 𝛼(𝑐)(𝜕𝑝/𝜕𝑛)

vanishing average on the boundary. So we rewrite ∑
𝑇∈𝑇
ℎ

<

𝛼(𝑐)(𝜕𝑝/𝜕𝑛), 𝜑>
𝜕𝑇

and use Lemma 4 to derive that

∑

𝑇∈𝑇
ℎ

⟨𝛼 (𝑐)
𝜕𝑝

𝜕𝑛
, 𝜑⟩

𝜕𝑇

= ∑

𝑇∈𝑇
ℎ

∑

𝑒∈𝜕𝑇

⟨𝛼 (𝑐)
𝜕𝑝

𝜕𝑛
− 𝛼 (𝑐)

𝜕𝑝

𝜕𝑛
, 𝜑⟩

𝑒

⩽ ∑

𝑇∈𝑇
ℎ

𝐶ℎ
𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼 (𝑐)
𝜕𝑝

𝜕𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1,𝑇

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨1,𝑇

⩽ 𝐶ℎ
𝑝

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐻̃2(Ω)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩1,ℎ

.

(33)

Combining (28) with (31)–(33) yields the theorem result.

We now are in the position to prove the error estimate for
concentration.

Theorem6. Assume that the true solution (𝑐, 𝑝) of (1) satisfies
𝑐 ∈ 𝐿

∞
(𝐻

2
) ∩ 𝐿

2
(𝐻

2
), 𝑝 ∈ 𝐿2(𝐻̃2

). Let 𝐶 be the projection of
𝑐 satisfying (26) and let 𝐶 be the solution of (23). Suppose that
the mesh parameters satisfy ℎ2

𝑐
= 𝑂(ℎ

𝑝
). Then the following

result holds:
󵄩󵄩󵄩󵄩󵄩
𝐶 − 𝐶

󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐿2)
+
󵄩󵄩󵄩󵄩󵄩
∇ (𝐶 − 𝐶)

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐿2)
⩽ 𝐾 (ℎ

2

𝑐
+ ℎ

𝑝
) . (34)

Proof. We decompose the error 𝑐 − 𝐶 to 𝜉 = 𝐶 − 𝐶, and
𝜂 = 𝑐 − 𝐶. Then, combining (22), (23), and (26) results in the
following error equation for the concentration:

(𝜙
𝜕𝜉

𝜕𝑡
, V

ℎ
) + (𝐷 (𝐶, ∇𝑃) ∇𝜉, ∇V

ℎ
)

= (𝜙
𝜕𝜂

𝜕𝑡
, V

ℎ
) − (𝜆𝜂, V

ℎ
) + (𝑔 (𝐶) − 𝑔 (𝑐) , V

ℎ
)
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− (𝑢 (𝐶, ∇𝑃) ∇𝜉, V
ℎ
)

+ ((𝐷 (𝑐, ∇𝑝) − 𝐷 (𝐶, ∇𝑃)) ∇𝐶, ∇V
ℎ
)

+ ((𝑢 (𝑐, ∇𝑝) − 𝑢 (𝐶, ∇𝑃)) ∇𝐶, V
ℎ
) .

(35)

We choose the test function as V
ℎ
= 𝜉 in (35) and integrate

from 0 to 𝑡 on both sides to derive

∫

𝑡

0

(𝜙
𝜕𝜉

𝜕𝑡
, 𝜉) 𝑑𝜏 + ∫

𝑡

0

(𝐷 (𝐶, ∇𝑃) ∇𝜉, ∇𝜉) 𝑑𝜏

= ∫

𝑡

0

(𝜙
𝜕𝜂

𝜕𝑡
, 𝜉) 𝑑𝜏 − ∫

𝑡

0

(𝜆𝜂, 𝜉) 𝑑𝜏

+ ∫

𝑡

0

(𝑔 (𝐶) − 𝑔 (𝑐) , 𝜉) 𝑑𝜏

− ∫

𝑡

0

(𝑢 (𝐶, ∇𝑃) ∇𝜉, 𝜉) 𝑑𝜏

+ ∫

𝑡

0

((𝐷 (𝑐, ∇𝑝) − 𝐷 (𝐶, ∇𝑃)) ∇𝐶, ∇𝜉) 𝑑𝜏

+ ∫

𝑡

0

((𝑢 (𝑐, ∇𝑝) − 𝑢 (𝐶, ∇𝑃)) ∇𝐶, 𝜉) 𝑑𝜏.

(36)

The terms on the left side can be easily bounded by

∫

𝑡

0

(𝜙
𝜕𝜉

𝜕𝑡
, 𝜉) 𝑑𝜏 + ∫

𝑡

0

(𝐷 (𝐶, ∇𝑃) ∇𝜉, ∇𝜉) 𝑑𝜏

⩾
1

2
𝜙
∗󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩

2

+ 𝐷
∗
∫

𝑡

0

󵄩󵄩󵄩󵄩∇𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(37)

Next, we should estimate terms on the right side one by
one.

By (27), it is trivial that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

(𝜙
𝜕𝜂

𝜕𝑡
, 𝜉) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐾(ℎ
4

𝑐
+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏) . (38)

Similarly, we can bound the second and third terms as
follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

(𝜆𝜂, 𝜉) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐾(ℎ
4

𝑐
+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏) ,

∫

𝑡

0

(𝑔 (𝐶) − 𝑔 (𝑐) , 𝜉) 𝑑𝜏 ⩽ 𝐾(ℎ
4

𝑐
+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏) ,

(39)

provided that 𝑔 is Lipschitz continuous.

For the fifth term, we can derive the estimate by using the
boundness of 𝐶 and (27), as well as (30),

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

((𝐷 (𝑐, ∇𝑝) − 𝐷 (𝐶, ∇𝑃)) ∇𝐶, ∇𝜉) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐾
󵄩󵄩󵄩󵄩󵄩
∇𝐶

󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐿∞)
∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑝 − 𝑃
󵄩󵄩󵄩󵄩1,ℎ

)
󵄩󵄩󵄩󵄩∇𝜉

󵄩󵄩󵄩󵄩 𝑑𝜏

⩽ 𝐾∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩 + ℎ

2

𝑐
+ ℎ

𝑝
)
󵄩󵄩󵄩󵄩∇𝜉

󵄩󵄩󵄩󵄩 𝑑𝜏

⩽ 𝐾(∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏 + ℎ
4

𝑐
+ ℎ

2

𝑝
) +

𝐷
∗

4
∫

𝑡

0

󵄩󵄩󵄩󵄩∇𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(40)

Similarly, we can derive

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

((𝑢 (𝑐, ∇𝑝) − 𝑢 (𝐶, ∇𝑃)) ∇𝐶, 𝜉) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐾(ℎ
4

𝑐
+ ℎ

2

𝑝
+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏) .

(41)

In order to prove the forth term, we need the following
induction hypothesis:

‖∇𝑃‖𝐿∞(𝐿∞) ⩽ 𝐾
∗
. (42)

As the statement in [1], we assume that for some 𝜀 >

0, 𝜀 ⩽ 𝜀,

−𝜀 ≤ 𝐶 ⩽ 1 + 𝜀 (43)

and with this hypothesis and (4), we can get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

(𝑢 (𝐶, ∇𝑃) ∇𝜉, 𝜉) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐾(‖∇𝑃‖
𝐿
∞
(𝐿
∞
)
+ 1)

2

× ∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏 +
𝐷

∗

4
∫

𝑡

0

󵄩󵄩󵄩󵄩∇𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏

⩽ 𝐾∫

𝑡

0

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏 +
𝐷

∗

4
∫

𝑡

0

󵄩󵄩󵄩󵄩∇𝜉
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(44)

Therefore, collecting all the bounds derived above and
using Gronwall inequality leads to

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

𝐿
∞
(𝐿
2
)
+
󵄩󵄩󵄩󵄩∇𝜉

󵄩󵄩󵄩󵄩

2

𝐿
2
(𝐿
2
)
⩽ 𝐾(ℎ

4

𝑐
+ ℎ

2

𝑝
) . (45)

To complete the argument, we have to check hypothesis
(42). We use (25), (27), (30), (45), inverse inequality, and
boundness of 𝐼

ℎ
𝑝 to get that

‖∇𝑃‖𝐿∞(𝐿∞) ⩽
󵄩󵄩󵄩󵄩∇ (𝑃 − 𝐼ℎ𝑝)

󵄩󵄩󵄩󵄩𝐿∞(𝐿∞(𝑇))

󵄩󵄩󵄩󵄩∇𝐼ℎ𝑝
󵄩󵄩󵄩󵄩𝐿∞(𝐿∞(𝑇))

⩽ 𝐾 + 𝐾ℎ
−1

𝑝
∑

𝑇∈𝑇
ℎ

󵄩󵄩󵄩󵄩∇ (𝑃 − 𝐼ℎ𝑝)
󵄩󵄩󵄩󵄩𝐿∞(𝐿2(𝑇))
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⩽ 𝐾 + 𝐾ℎ
−1

𝑝
{
󵄩󵄩󵄩󵄩𝑃 − 𝑝

󵄩󵄩󵄩󵄩𝐿∞(1,ℎ)
+
󵄩󵄩󵄩󵄩𝑝 − 𝐼ℎ𝑝

󵄩󵄩󵄩󵄩𝐿∞(1,ℎ)
}

⩽ 𝐾 + 𝐾ℎ
−1

𝑝
{ℎ

𝑝
+ ℎ

2

𝑐
}

⩽ 𝐾
∗
.

(46)

Combining (27) with (30) and (45), we deduce the error
estimates for the pressure and the concentration.

Theorem 7. Assume that the true solution (𝑐, 𝑝) of (1) satisfies
𝑐 ∈ 𝐿

∞
(𝐻

2
) ∩ 𝐿

2
(𝐻

2
), 𝑝 ∈ 𝐿2(𝐻̃2

). Let 𝐶, 𝑃 be the solution of
(23) and (21). Suppose that the mesh parameters satisfy ℎ2

𝑐
=

𝑂(ℎ
𝑝
). Then the following result holds:

󵄩󵄩󵄩󵄩𝑝 − 𝑃
󵄩󵄩󵄩󵄩𝐿∞(1,ℎ)

+ ‖𝑐 − 𝐶‖𝐿∞(𝐿2) ⩽ 𝐾 (ℎ
2

𝑐
+ ℎ

𝑝
) ,

‖∇ (𝑐 − 𝐶)‖𝐿2(𝐿2) ⩽ 𝐾(ℎ𝑐 + ℎ𝑝) .

(47)

Remark 8. In this paper, we just get a priori error estimates for
the coefficient 𝐷 = 𝐷(𝑥, 𝑐, ∇𝑝). However, some mathemat-
ical models for miscible displacements, which are currently
being used by oil companies, make the assumption that the
coefficient 𝐷 = 𝐷(𝑥, 𝑐) and it does not depend on ∇𝑝; with
this assumption, we can prove the optimal order convergence
similarly.
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