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The aim of this paper is to design feed forward neural network for solving second-order singular boundary value problems in
ordinary differential equations.The neural networks use the principle of back propagationwith different training algorithms such as
quasi-Newton, Levenberg-Marquardt, andBayesianRegulation. Two examples are considered to show that effectiveness of using the
network techniques for solving this type of equations.The convergence properties of the technique and accuracy of the interpolation
technique are considered.

1. Introduction

The study of solving differential equations using artificial
neural network (Ann) was initiated by Agatonovic-Kustrin
and Beresford in [1]. Lagaris et al. in [2] employed two
networks, a multilayer perceptron and a radial basis function
network, to solve partial differential equations (PDE) with
boundary conditions defined on boundaries with the case of
complex boundary geometry. Tawfiq [3] proposed a radial
basis function neural network (RBFNN) and Hopfield neural
network (unsupervised training network). Neural networks
have been employed before to solve boundary and initial
value problems. Malek and Shekari Beidokhti [4] reported
a novel hybrid method based on optimization techniques
and neural networks methods for the solution of high order
ODE which used three-layered perceptron network. Akca et
al. [5] discussed different approaches of using wavelets in
the solution of boundary value problems (BVP) for ODE,
also introduced convenient wavelet representations for the
derivatives for certain functions, and discussed wavelet net-
work algorithm. Mc Fall [6] presented multilayer perceptron
networks to solve BVP of PDE for arbitrary irregular domain
where he used logsig. transfer function in hidden layer and
pure line in output layer and used gradient decent training

algorithm; also, he used RBFNN for solving this problem
and compared between them. Junaid et al. [7] used Ann
with genetic training algorithm and log sigmoid function for
solving first-orderODE.Abdul Samath et al. [8] suggested the
solution of the matrix Riccati differential equation (MRDE)
for nonlinear singular system using Ann. Ibraheem and
Khalaf [9] proposed shooting neural networks algorithm
for solving two-point second-order BVP in ODEs which
reduced the equation to the system of two equations of first
order. Hoda and Nagla [10] described a numerical solution
with neural networks for solving PDE, with mixed boundary
conditions. Majidzadeh [11] suggested a new approach for
reducing the inverse problem for a domain to an equivalent
problem in a variational setting using radial basis functions
neural network; also he used cascade feed forward to solve
two-dimensional Poisson equation with back propagation
and Levenberg-Marquardt train algorithm with the archi-
tecture three layers and 12 input nodes, 18 tansig. transfer
functions in hidden layer, and 3 linear nodes in output layer.
Oraibi [12] designed feed forward neural networks (FFNNs)
for solving IVP of ODE. Ali [13] designed fast FFNN to
solve two-point BVP.This paper proposed FFNN to solve two
point singular boundary value problem (TPSBVP) with back
propagation (BP) training algorithm.
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2. Singular Boundary Value Problem

The general form of the 2nd-order two-point boundary value
problem (TPBVP) is

𝑦
󸀠󸀠
+ 𝑃 (𝑥) 𝑦

󸀠
+ 𝑄 (𝑥) 𝑦 = 0, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑦 (𝑎) = 𝐴, 𝑦 (𝑏) = 𝐵, where 𝐴, 𝐵 ∈ 𝑅.
(1)

there are two types of a point 𝑥
0
∈ [0, 1]: ordinary point and

singular point.
A function 𝑦(𝑥) is analytic at 𝑥

0
if it has a power series

expansion at 𝑥
0
that converges to 𝑦(𝑥) on an open interval

containing 𝑥
0
. A point 𝑥

0
is an ordinary point of the ODE (1),

if the functions 𝑃(𝑥) and 𝑄(𝑥) are analytic at 𝑥
0
. Otherwise

𝑥
0
is a singular point of the ODE. On the other hand, if 𝑃(𝑥)

or 𝑄(𝑥) are not analytic at 𝑥
0
, then 𝑥

0
is said to be a singular

point [14, 15].
There is at present no theoretical work justifying numer-

ical methods for solving problems with irregular singular
points. The main practical occurrence of such problems
seems to be semianalytic technique [16].

3. Artificial Neural Network

Ann is a simplified mathematical model of the human
brain. It can be implemented by both electric elements and
computer software. It is a parallel distributed processor with
large numbers of connections; it is an information processing
system that has certain performance characters in common
with biological neural networks [17].

The arriving signals, called inputs, multiplied by the
connection weights (adjusted) are first summed (combined)
and then passed through a transfer function to produce the
output for that neuron.The activation (transfer) function acts
on the weighted sum of the neuron’s inputs and the most
commonly used transfer function is the sigmoid function
(tansig.) [13].

There are two main connection formulas (types): feed-
back (recurrent) and feed forward connections. Feedback is
one type of connection where the output of one layer routes
back to the input of a previous layer, or to the same layer. Feed
forward neural network (FFNN) does not have a connection
back from the output to the input neurons [18].

There are many different training algorithms, but the
most often used training algorithm is the Delta rule or back
propagation (BP) rule. A neural network is trained to map
a set of input data by iterative adjustment of the weights.
Information from inputs is fed forward through the network
to optimize the weights between neurons. Optimization of
the weights is made by backward propagation of the error
during training phase.

The Ann reads the input and output values in the training
data set and changes the value of the weighted links to reduce
the difference between the predicted and target (observed)
values. The error in prediction is minimized across many
training cycles (iteration or epoch) until network reaches
specified level of accuracy. A complete round of forward-
backward passes and weight adjustments using all input-
output pairs in the data set is called an epoch or iteration.

If a network is left to train for too long, however, it will be
overtrained and will lose the ability to generalize.

In this paper, we focused on the training situation known
as supervised training, in which a set of input/output data
patterns is available. Thus, the Ann has to be trained to
produce the desired output according to the examples.

In order to perform a supervised training we need a way
of evaluating the Ann output error between the actual and
the expected outputs. A popularmeasure is themean squared
error (MSE) or root mean squared error (RMSE) [19].

4. Description of the Method

In the proposed approach the model function is expressed as
the sum of two terms: the first term satisfies the boundary
conditions (BCs) and contains no adjustable parameters.The
second term can be found by using FFNN which is trained
so as to satisfy the differential equation and such technique
called collocation neural network.

In this section, we will illustrate how our approach can be
used to find the approximate solution of the general form, a
2nd-order TPSBVP:

𝑥
𝑚
𝑦
󸀠󸀠

(𝑥) = 𝐹 (𝑥, 𝑦 (𝑥) , 𝑦
󸀠

(𝑥)) , (2)

where a subject to certain BCs and 𝑚 ∈ 𝑍, 𝑥 ∈ 𝑅, 𝐷 ⊂ 𝑅

denotes the domain and 𝑦(𝑥) is the solution to be computed.
If 𝑦
𝑡
(𝑥, 𝑝) denotes a trial solution with adjustable param-

eters 𝑝, the problem is transformed to a discretize form:

Min
𝑝

∑

⃗𝑥𝑖∈𝐷̂

𝐹 (𝑥
𝑖
, 𝑦
𝑡
(𝑥
𝑖
, 𝑝) , 𝑦

󸀠

𝑡
(𝑥
𝑖
, 𝑝)) (3)

subject to the constraints imposed by the BCs.
In the our proposed approach, the trial solution 𝑦

𝑡

employs an FFNN and the parameters 𝑝 correspond to the
weights and biases of the neural architecture. We choose a
form for the trial function 𝑦

𝑡
(𝑥) such that it satisfies the BCs.

This is achieved by writing it as a sum of two terms:

𝑦
𝑡
(𝑥
𝑖
, 𝑝) = 𝐴 (𝑥) + 𝐺 (𝑥,𝑁 (𝑥, 𝑝)) , (4)

where 𝑁(𝑥, 𝑝) is a single-output FFNN with parameters 𝑝
and 𝑛 input units fed with the input vector 𝑥. The term 𝐴(𝑥)

contains no adjustable parameters and satisfies the BCs. The
second term 𝐺 is constructed so as not to contribute to the
BCs, since 𝑦

𝑡
(𝑥) satisfy them. This term can be formed by

using an FFNN whose weights and biases are to be adjusted
in order to deal with the minimization problem.

An efficient minimization of (3) can be considered as a
procedure of training the FFNN, where the error correspond-
ing to each input 𝑥

𝑖
is the value 𝐸(𝑥

𝑖
) which has to forced

near zero. Computation of this error value involves not only
the FFNN output but also the derivatives of the output with
respect to any of its inputs.

Therefore, in computing the gradient of the error with
respect to the network weights consider a multilayer FFNN
with 𝑛 input units (where 𝑛 is the dimensions of the domain),
one hidden layer with 𝐻 sigmoid nodes, and a linear output
unit.
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Table 1: Analytic and neural solutions of Example 1.

Input Analytic solution Out of suggested FFNN 𝑦
𝑡
(𝑥) for different training algorithms

𝑥 𝑦
𝑎
(𝑥) Trainlm Trainbfg Trainbr

0.0 1 1 1.00026931058869 1.00000028044679
0.1 0.995004165278026 0.994992000703617 0.995004165151447 0.995003016942414
0.2 0.980066577841242 0.980066577841242 0.980038331595444 0.980068202697384
0.3 0.955336489125606 0.955336489125606 0.955326539544390 0.955327719921018
0.4 0.921060994002885 0.921060994002885 0.921060993873107 0.921057767471849
0.5 0.877582561890373 0.877582561890373 0.877583333411869 0.877587507015204
0.6 0.825335614909678 0.825335614909678 0.825335614867241 0.825332390929038
0.7 0.764842187284489 0.764838404395133 0.764842187227892 0.764831348535762
0.8 0.696706709347165 0.696656420761032 0.696706709263878 0.696708274506624
0.9 0.621609968270664 0.621454965504409 0.621609968278774 0.621608898908218
1.0 0.540302305868140 0.540302305868140 0.540302305877365 0.540302558954826

Table 2: Accuracy of solution for Example 1.

The error 𝐸(𝑥) = |𝑦
𝑡
(𝑥) − 𝑦

𝑎
(𝑥)| where 𝑦

𝑡
(𝑥) computed by the following training algorithm

Trainlm Trainbfg Trainbr
0 0.000269310588686622 2.80446790679179𝑒 − 07

1.21645744084464𝑒 − 05 1.26578747483563𝑒 − 10 1.14833561148942𝑒 − 06

0 2.82462457977806𝑒 − 05 1.62485614274566𝑒 − 06

0 9.94958121636191𝑒 − 06 8.76920458825481𝑒 − 06

0 1.29778077173626𝑒 − 10 3.22653103579373𝑒 − 06

0 7.71521496467642𝑒 − 07 4.94512483140142𝑒 − 06

0 4.24377200047843𝑒 − 11 3.22398064012130𝑒 − 06

3.78288935598548𝑒 − 06 5.65963942378289𝑒 − 11 1.08387487263162𝑒 − 05

5.02885861338731𝑒 − 05 8.32875990397497𝑒 − 11 1.56515945903823𝑒 − 06

0.000155002766255130 8.10940203876953𝑒 − 12 1.06936244681499𝑒 − 06

0 9.22539822312274𝑒 − 12 2.53086685830795𝑒 − 07

For a given input 𝑥, the output of the FFNN is

𝑁 =

𝐻

∑

𝑖=1

]
𝑖
𝜎 (𝑧
𝑖
) , where 𝑧

𝑖
=

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝑥
𝑗
+ 𝑏
𝑖
. (5)

𝑤
𝑖𝑗
denotes the weight connecting the input unit 𝑗 to the

hidden unit 𝑖, ]
𝑖
denotes the weight connecting the hidden

unit 𝑖 to the output unit, 𝑏
𝑖
denotes the bias of hidden unit 𝑖,

and 𝜎(𝑧) is the sigmoid transfer function (tansig.).
The gradient of FFNN with respect to the parameters of

the FFNN can be easily obtained as

𝜕𝑁

𝜕]
𝑖

= 𝜎 (𝑧
𝑖
) ,

𝜕𝑁

𝜕𝑏
𝑖

= ]
𝑖
𝜎
󸀠
(𝑧
𝑖
) ,

𝜕𝑁

𝜕𝑤
𝑖𝑗

= ]
𝑖
𝜎
󸀠
(𝑧
𝑖
) 𝑥
𝑗
.

(6)

Once the derivative of the error with respect to the
network parameters has been defined, then it is a straight
forward to employ any minimization technique. It must also

be noted that the batch mode of weight updates may be
employed.

5. Illustration of the Method

In this section we describe solution of TPSBVP using FFNN.
To illustrate the method, we will consider the 2nd-order

TPSBVP:

𝑥
𝑚
𝑑
2
𝑦 (𝑥)

𝑑𝑥2
= 𝑓 (𝑥, 𝑦, 𝑦

󸀠
) , (7)

where 𝑥 ∈ [𝑎, 𝑏] and the BC: 𝑦(𝑎) = 𝐴, 𝑦(𝑏) = 𝐵; a trial
solution can be written as

𝑦
𝑡
(𝑥, 𝑝) =

(𝑏𝐴 − 𝑎𝐵)

(𝑏 − 𝑎)
+
(𝐵 − 𝐴) 𝑥

(𝑏 − 𝑎)

+ (𝑥 − 𝑎) (𝑥 − 𝑏)𝑁 (𝑥, 𝑝) ,

(8)

where𝑁(𝑥, 𝑝) is the output of an FFNN with one input unit
for 𝑥 and weights 𝑝.
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Table 3: The performance of the train with epoch and time for Example 1.

TrainFcn Performance of train Epoch Time MSE
Trainlm 0:00 75 0:00:01 2.1859𝑒 − 009

Trainbfg 6.42𝑒 − 21 6187 0:04:23 6.6751𝑒 − 009

Trainbr 5.88𝑒 − 12 1861 0:00:30 2.0236𝑒 − 011

Note that 𝑦
𝑡
(𝑥) satisfies the BCby construction.The error

quantity to be minimized is given by

𝐸 [𝑝] =

𝑛

∑

𝑖=1

{
𝑑
2
𝑦
𝑡
(𝑥
𝑖
, 𝑝)

𝑑𝑥2
− 𝑓(𝑥

𝑖
, 𝑦
𝑡
(𝑥
𝑖
, 𝑝) ,

𝑑𝑦
𝑡
(𝑥
𝑖
, 𝑝)

𝑑𝑥
)}

2

,

(9)

where the 𝑥
𝑖
∈ [𝑎, 𝑏]. Since

𝑑𝑦
𝑡
(𝑥, 𝑝)

𝑑𝑥
=
(𝐵 − 𝐴)

(𝑏 − 𝑎)
+ {(𝑥 − 𝑎) + (𝑥 − 𝑏)}𝑁 (𝑥, 𝑝)

+ (𝑥 − 𝑎) (𝑥 − 𝑏)
𝑑𝑁 (𝑥, 𝑝⃗)

𝑑𝑥
,

𝑑
2
𝑦
𝑡
(𝑥, 𝑝)

𝑑𝑥2
= 2𝑁 (𝑥, 𝑝) + 2 {(𝑥 − 𝑎) + (𝑥 − 𝑏)}

𝑑𝑁 (𝑥, 𝑝⃗)

𝑑𝑥

+ (𝑥 − 𝑎) (𝑥 − 𝑏)
𝑑
2
𝑁(𝑥, 𝑝)

𝑑𝑥2
,

(10)

it is straightforward to compute the gradient of the error with
respect to the parameters 𝑝 using (6). The same holds for all
subsequent model problems.

6. Example

In this section we report numerical result, using a multi-layer
FFNNhaving one hidden layer with 5 hidden units (neurons)
and one linear output unit. The sigmoid activation of each
hidden unit is tansig.; the analytic solution 𝑦

𝑎
(𝑥) was known

in advance. Therefore we test the accuracy of the obtained
solutions by computing the deviation:

Δ𝑦 (𝑥) =
󵄨󵄨󵄨󵄨𝑦𝑡 (𝑥) − 𝑦𝑎 (𝑥)

󵄨󵄨󵄨󵄨 . (11)

In order to illustrate the characteristics of the solutions
provided by the neural network method, we provide figures
displaying the corresponding deviationΔ𝑦(𝑥) both at the few
points (training points) that were used for training and at
many other points (test points) of the domain of equation.
The latter kind of figures are of major importance since they
show the interpolation capabilities of the neural solution
which to be superior compared to other solution obtained
by using other methods. Moreover, we can consider points
outside the training interval in order to obtain an estimate
of the extrapolation performance of the obtained numerical
solution.

Example 1. Consider the following 2nd-order TPSBVP:

𝑦
󸀠󸀠
+ (

1

𝑥
)𝑦
󸀠
+ cos (𝑥) + sin (𝑥)

𝑥
= 0, 𝑥 ∈ [0, 1] , (12)

Table 4: Weight and bias of the network for different training
algorithm Example 1.

(a)

Weights and bias for trainlm
Net.IW{1, 1} Net.LW{2, 1} Net.B{1}
0.2858 0.0759 0.1299
0.7572 0.0540 0.5688
0.7537 0.5308 0.4694
0.3804 0.7792 0.0119
0.5678 0.9340 0.3371

(b)

Weights and bias for trainbfg
Net.IW{1, 1} Net.LW{2, 1} Net.B{1}
0.4068 0.8334 0.2601
0.1126 0.4036 0.0868
0.4438 0.3902 0.4294
0.3002 0.3604 0.2573
0.4014 0.1403 0.2976

(c)

Weights and bias for trainbr
Net.IW{1, 1} Net.LW{2, 1} Net.B{1}
0.1696 0.8803 0.4075
0.2788 0.4711 0.8445
0.1982 0.4040 0.6153
0.1951 0.1792 0.3766
0.3268 0.9689 0.8772

with BC: 𝑦󸀠(0) = 0, 𝑦(1) = cos(1). The analytic solution is
𝑦
𝑎
(𝑥) = cos(𝑥); according to (8) the trial neural form of the

solution is taken to be

𝑦
𝑡
(𝑥) = cos (1) 𝑥 + 𝑥 (𝑥 − 1)𝑁 (𝑥, 𝑝) . (13)

TheFFNN trained using a grid of ten equidistant points in
[0, 1]. Figure 1 displays the analytic and neural solutions with
different training algorithm.The neural results with different
types of training algorithm such as Levenberg-Marquardt
(trainlm), quasi-Newton (trainbfg), and Bayesian Regulation
(trainbr) introduced in Table 1 and its errors given in Table 2,
Table 3 gives the performance of the train with epoch and
time, and Table 4 gives the weight and bias of the designer
network,

Ramos in [20] solved this example using𝐶1-linearization
method and gave the absolute error 4.079613𝑒 − 04; also,
Kumar in [21] solved this example by the three-point finite
difference technique and gave the absolute error 4.4𝑒 − 05.
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Table 5: Analytic and neural solutions of Example 2.

Input Analytic solution Out of suggested FFNN 𝑦
𝑡
(𝑥) for different training algorithms

𝑥 𝑦
𝑎
(𝑥) Trainlm Trainbfg Trainbr

0.0 1 1 0.999999999999781 0.999999991504880
0.1 1.10517091807565 1.10514495970783 1.10517935005948 1.10518327439088
0.2 1.22140275816017 1.22139291634314 1.22140560576571 1.22140301047712
0.3 1.34985880757600 1.34985880757600 1.34985880757533 1.34985789841558
0.4 1.49182469764127 1.49182469764127 1.49182469764283 1.49182590291778
0.5 1.64872127070013 1.64872127070013 1.64872127069896 1.64871934058054
0.6 1.82211880039051 1.82211880039051 1.82211880039100 1.82211668702999
0.7 2.01375270747048 2.01374698451417 2.01375253599035 2.01375577873317
0.8 2.22554092849247 2.22554092849247 2.22554092849241 2.22553872338720
0.9 2.45960311115695 2.45965304884168 2.45961509099396 2.45960396018800
1.0 2.71828182845905 2.71828182845905 2.71828182845889 2.71828168663973

Table 6: Accuracy of solutions for Example 2.

The error 𝐸(𝑥) = |𝑦
𝑡
(𝑥) − 𝑦

𝑎
(𝑥)| where 𝑦

𝑡
(𝑥) computed by the following training algorithm

Trainlm Trainbfg trainbr
0 2.19047002758543𝑒 − 13 8.49512027389920𝑒 − 09

2.59583678221542𝑒 − 05 8.43198383004840𝑒 − 06 1.23563152347739𝑒 − 05

9.84181703400644𝑒 − 06 2.84760554247754𝑒 − 06 2.52316951554477𝑒 − 07

0 6.74571509762245𝑒 − 13 9.09160424944489𝑒 − 07

0 1.55675472512939𝑒 − 12 1.20527650837587𝑒 − 06

0 1.16662235427611𝑒 − 12 1.93011959059852𝑒 − 06

2.22044604925031𝑒 − 16 4.86721773995669𝑒 − 13 2.11336051969546𝑒 − 06

5.72295631107167𝑒 − 06 1.71480126542889𝑒 − 07 3.07126269616376𝑒 − 06

0 5.72875080706581𝑒 − 14 2.20510526371953𝑒 − 06

4.99376847331590𝑒 − 05 1.19798370104007𝑒 − 05 8.49031051686211𝑒 − 07

0 1.51878509768721𝑒 − 13 1.41819320731429𝑒 − 07

Example 2. Consider the following 2nd-order TPSBVP:

𝑦
󸀠󸀠
= − [

(1 − 2𝑥)

𝑥
] 𝑦
󸀠
− [
(𝑥 − 1)

𝑥
] 𝑦, 𝑥 ∈ [0, 1] . (14)

with BC: 𝑦(0) = 1, 𝑦(1) = exp(1) and the analytic solution is
𝑦
𝑎
(𝑥) = exp(𝑥); according to (8) the trial neural form of the

solution is

𝑦
𝑡
(𝑥) = 1 + (exp (1) − 1) 𝑥 + 𝑥 (𝑥 − 1)𝑁 (𝑥, 𝑝) . (15)

The FFNN trained using a grid of ten equidistant points
in [0, 1]. Figure 2 displays the analytic and neural solutions
with different training algorithms.The neural network results
with different types of training algorithm such as trainlm,
trainbfg, and trainbr, introduced in Table 5 and its errors
given in Table 6, Table 7 gives the performance of the train

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

y
t

x

ya Trainbfg
TrainbrTrainlm

Figure 1: Analytic and neural solutions of Example 1, using trainbfg,
trainbr, and trainlm.

with epoch and time and Table 8 gives the weight and bias of
the designer network.
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Table 7: The performance of the train with epoch and time of
Example 2.

TrainFcn Performance of train Epoch Time MSE
Trainlm 7.04𝑒 − 33 1902 0:00:30 2.6977𝑒 − 010

Trainbfg 4.00𝑒 − 28 2093 0:01:04 1.8225𝑒 − 011

Trainbr 2.43𝑒 − 12 3481 0:00:56 1.458𝑒 − 011

Table 8: Weight and bias of the network for different training
algorithm Example 2.

(a)

Weights and bias for trainlm
Net.IW{1, 1} Net.LW{2, 1} Net.B{1}
0.7094 0.1626 0.5853
0.7547 0.1190 0.2238
0.2760 0.4984 0.7513
0.6797 0.9597 0.2551
0.6551 0.3404 0.5060

(b)

Weights and bias for trainbfg
Net.IW{1, 1} Net.LW{2, 1} Net.B{1}
0.7094 0.1626 0.5853
0.7547 0.1190 0.2238
0.2760 0.4984 0.7513
0.6797 0.9597 0.2551
0.6551 0.3404 0.5060

(c)

Weights and bias for trainbr
Net.IW{1, 1} Net.LW{2, 1} Net.B{1}
0.9357 0. 7406 0.2122
0.4579 0.7437 0.0985
0.2405 0.1059 0.8236
0.7639 0.6816 0.1750
0.7593 0.4633 0.1636

7. Conclusion

From the previous mentioned problems it is clear that the
proposed network can be handle effectively TPSBVP and
provide accurate approximate solution throughout the whole
domain and not only at the training points. As evident from
the tables, the results of proposed network are more precise
as compared to the method suggested in [20, 21].

In general, the practical results on FFNN show that
the Levenberg-Marquardt algorithm (trainlm) will have the
fastest convergence, then trainbfg and then Bayesian Regula-
tion (trainbr). However, “trainbr” does not perform well on
function approximation problems. The performance of the
various algorithms can be affected by the accuracy required
of the approximation.
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Figure 2: Analytic and neural solutions of Example 2 using different
training algorithms.
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