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We propose an SEIR epidemic model with latent period and a modified saturated incidence rate. This work investigates the
fundamental role of the vaccination strategies to reduce the number of susceptible, exposed, and infected individuals and increase
the number of recovered individuals. The existence of the optimal control of the nonlinear model is also proved. The optimality
system is derived and then solved numerically using a competitive Gauss-Seidel-like implicit difference method.

1. Introduction

Epidemiological models with latent or incubation period
have been studied by many authors because many dis-
eases have a latent or incubation period, during which the
individual is said to be infected but not infectious. This
period can be modeled by introducing an exposed class [1].
Therefore, it is an important subject to determine the optimal
vaccination strategies for the models which take into account
the incubation period.

In this paper, our aim is to set up an optimal control
problem related to the SEIR epidemic model. The dynamics
of this model are governed by the following equations [2, 3]:

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝜇𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼
1
𝑆 (𝑡) + 𝛼

2
𝐼 (𝑡)

,
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1 + 𝛼
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2
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𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

(1)

where 𝑆 is the number of the susceptible individuals, 𝐸 is the
number of exposed individuals, 𝐼 is the number of infected
individuals, 𝑅 is the number of the recovered individuals, 𝐴
is the recruitment rate of the population,𝜇 is the natural death
of the population, 𝛼 is the death rate due to disease, 𝛽 is the
transmission rate, 𝛼

1
and 𝛼

2
are the parameter that measure

the inhibitory effect, 𝛾 is the recovery rate of the infective
individuals, and 𝜎 is the rate at which exposed individuals
become infectious. Thus 1/𝜎 is the mean latent period.

Now we introduce one control 𝑢(𝑡) which represents the
percentage of susceptible individuals being vaccinated per
unit of time. Hence, (1) becomes
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(2)
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In addition, for biological reasons, we assume that the initial
data for system (2) satisfy

𝑆 (0) = 𝑆
0
≥ 0, 𝐸 (0) = 𝐸

0
≥ 0,

𝐼 (0) = 𝐼
0
≥ 0, 𝑅 (0) = 𝑅

0
≥ 0.

(3)

The rest of the paper is organized as follows. In Section 2, we
use Pontryagin’smaximumprinciple to investigate analysis of
control strategies and to determine the necessary conditions
for the optimal control of the disease. Mathematical results
are illustrated by numerical simulations in Section 3. Finally,
we summarize our work and propose the future focuses.

2. The Optimal Control Problem

The optimal control problem is to minimize the objective
(cost) functional given by

𝐽 (𝑢) = ∫

𝑡end

0

[𝐴
1
𝑆 (𝑡) + 𝐴

2
𝐸 (𝑡) + 𝐴

3
𝐼 (𝑡) +

1

2
𝜏𝑢
2
(𝑡)] 𝑑𝑡

(4)

subject to the differential equations (2), where the first tree
terms in the functional objective represent benefit of 𝑆(𝑡),
𝐸(𝑡), and 𝐼(𝑡) populations that we wish to reduce, and the
parameters 𝐴

1
, 𝐴
2
, and 𝐴

3
are positive constants to keep

a balance in the size of 𝑆(𝑡), 𝐸(𝑡), and 𝐼(𝑡), respectively. We
use in the second term in the functional objective (as it is
customary) the quadratic term (1/2)𝜏𝑢

2, where 𝜏 is a positive
weight parameter which is associated with the control 𝑢(𝑡),
and the square of the control variable reflects the severity of
the side effects of the vaccination.

Our target is tominimize the objective functional defined
in (4) by decreasing the number of infected, exposed, and sus-
ceptible individuals and increasing the number of recovered
individuals by using possible minimal control variables 𝑢(𝑡).
In other words, the control variable 𝑢(𝑡) ∈ 𝑈ad represents
the percentage of susceptible individuals being vaccinated per
unit of time and 𝑈ad is the control set defined by

𝑈ad = {𝑢 | 𝑢 (𝑡) is measurable, 0 ≤ 𝑢 (𝑡) ≤ 𝑢max < ∞, 𝑡 ∈ [0, 𝑡end]} .
(5)

2.1. Existence of an Optimal Control. For the existence of an
optimal control we use the result in Lukes [4], and we obtain
the following theorem.

Theorem 1. There exists a control function 𝑢∗(𝑡) so that

𝐽 (𝑢
∗
(𝑡)) = min

𝑢∈𝑈

𝐽 (𝑢 (𝑡)) . (6)

Proof. To prove the existence of an optimal control it is easy
to verify that

(1) the set of controls and corresponding state variables
is nonempty,

(2) the admissible set 𝑈ad is convex and closed,
(3) the right hand side of the state system (2) is bounded

by a linear function in the state and control variables,

(4) the integrand of the objective functional is convex on
𝑈ad,

(5) there exist constants 𝜔
1
> 0 and 𝜔

2
> 0, and 𝜌 >

1 such that the integrand 𝐿(𝑆, 𝐸, 𝐼, 𝑢) of the objective
functional satisfies𝜌 > 1 andpositive numbers𝜔

1
and

𝜔
2
such that 𝐿(𝑆, 𝐸, 𝐼, 𝑢) ≥ 𝜔

2
+ 𝜔
1
(|𝑢|
2
)
𝜌/2.

The result follows directly from [5].

2.2. Characterization of the Optimal Control. Before charac-
terizing the optimal control, we first define the Lagrangian for
the optimal control problem (2) and (4) by

𝐿 (𝑆, 𝐸, 𝐼, 𝑢) = 𝐴
1
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2
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2
(𝑡) (7)

and the Hamiltonian𝐻 for the control problem by
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1
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4
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(8)

where 𝜆
1
, 𝜆
2
, 𝜆
3
, and 𝜆

4
are the adjoint functions to be deter-

mined suitably. Next, by applying Pontryagin’s maximum
principle [6] to the Hamiltonian, we obtain the following
theorem.

Theorem 2. Given an optimal control 𝑢∗(𝑡) and solutions
𝑆
∗
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2
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4
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where Λ
1
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∗
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1
𝑆
∗
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2
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2
) with transversality

conditions

𝜆
𝑖
(𝑡end) = 0, 𝑖 = 1, 2, 3, 4. (10)

Furthermore, the optimal control 𝑢∗(𝑡) is given by

𝑢
∗
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4
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𝜏
, 𝑢max) , 0) .

(11)
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Proof. Using the Pontryagin’s maximum principle we obtain
the adjoint equations and transversality conditions such that
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and by using the optimality conditions we find
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1
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Using the property of the control space, we obtain
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4
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So the optimal control is characterized as

𝑢
∗
(𝑡) = max(min(

(𝜆
1
(𝑡) − 𝜆

4
(𝑡)) 𝑆
∗
(𝑡)

𝜏
, 𝑢max) , 0) .

(15)

Therefore, using the characterization of the optimal control,
we have the following optimality system:

̇𝑆
∗
= 𝐴 − (𝜇 + 𝑢

∗
) 𝑆
∗
−

𝛽𝑆
∗
𝐼
∗

1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗
,

𝐸̇
∗
=

𝛽𝑆
∗
𝐼
∗

1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗

+ (𝜎 + 𝜇) 𝐸
∗
,

Table 1: Values of the parameters.

Value Description
𝑆
0
= 80 Initial susceptible population

𝐸
0
= 20 Initial exposed population

𝐼
0
= 3 Initial infected population

𝑅
0
= 20 Initial recovered population

𝜇 = 0.4 Natural death of the population
𝛼 = 0.99 Death rate due to disease
𝛼
1
= 0.1 Parameter that measures the inhibitory effect

𝛼
2
= 0.5 Parameter that measures the inhibitory effect

𝛽 = 0.6 Transmission rate
𝛾 = 0.9 Recovery rate

𝜎 = 0.5
The rate at which exposed individuals become
infectious

𝐴 = 100 Recruitment rate
𝐴
1
= 100 Weight parameter

𝐴
2
= 100 Weight parameter

𝐴
3
= 100 Weight parameter

𝜏 = 10
7 Weight parameter

̇𝐼
∗
= 𝜎𝐸
∗
− (𝜇 + 𝛼 + 𝛾) 𝐼

∗
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∗
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1
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∗
+
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∗
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2
𝐼
∗
)

(1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼)
2
)

− 𝜆
2
(

𝛽𝐼
∗
(1 + 𝛼

2
𝐼
∗
)

(1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗)
2
) − 𝜆

3
𝑢
∗
,

𝜆̇
2
= −𝐴

2
+ 𝜆
2
(𝜎 + 𝜇) − 𝜆

3
(𝑡) 𝛾,

𝜆̇
3
= − 𝐴

3
+ 𝜆
1
(

𝛽𝑆
∗
(1 + 𝛼

1
𝑆
∗
)

(1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗)
2
)

− 𝜆
2
(

𝛽𝑆
∗
(1 + 𝛼

1
𝑆
∗
)

(1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗)
2
)

+ 𝜆
3
(𝑡) (𝜇 + 𝛼 + 𝛾) − 𝜆

4
𝛾,

𝜆̇
4
= 𝜆
4
𝜇

(16)

with 𝜆
1
(𝑡end) = 0, 𝜆

2
(𝑡end) = 0, 𝜆

3
(𝑡end) = 0, 𝜆

4
(𝑡end) = 0,

𝑆(0) = 𝑆
0
, 𝐸(0) = 𝐸

0
, 𝐼(0) = 𝐼

0
, and 𝑅(0) = 𝑅

0
.

3. Numerical Simulations

In this section, we solve numerically the optimality system
(16) using the Gauss-Seidel-like implicit finite-difference
method developed by Gumel et al. [7], and we use in this
simulation the parameter values given in Table 1.

Figure 1 shows that a significant difference in the number
of susceptible, exposed, infected, and recovered individuals
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Figure 1: Evolution of different classes of individuals with or without control.

with andwithout control from the twenty days of vaccination,
after that it begins to go to the stable state.

4. Conclusions and Future Research

We have presented in this paper the SEIR model with latent
period and a modified saturated incidence rate. Our aim is to
outline the steps in setting up an optimal control problem,
so we presented an efficient numerical method based on
optimal control to identify the best vaccination strategy of
SEIR model. Our numerical results show that the optimal
vaccination strategies for the diseases have a latent period
to reduce the number of susceptible, exposed, and infected
individuals and increase the number of recovered after twenty
days of vaccination.

In future research, we determine the optimal control
strategies for the delayed SIR model and compare it with that
presented in this work. It is an important subject to study
these two types of modeling the incubation period.
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