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The mechanism of endogenous circadian photosynthesis oscillations of plants performing crassulacean acid metabolism (CAM) is
investigated in terms of a nonlinear theoretical model. Blasius et al. used throughout continuous time differential equations which
adequately reflect the CAM dynamics. The model shows regular endogenous limit cycle oscillations that are stable for a wide range
of temperatures in a manner that complies well with experimental data. In this paper, we pay attention to the approximation of
the fast modes of the CAM dynamics. Using the zero-epsilon approximation of the slow manifold, we derive the critical manifold
that is defined by two algebraic nonlinear equations. The critical manifold allows us to give the algebraic estimate of the order
of the tonoplast membrane. The dynamic equation of the order of the tonoplast membrane includes the nonlinear function that
gives the equilibrium value of the lipid order of tonoplast functions as a hysteresis switch. We identify the nonlinear function with
the measurement signals. Using the basis function expansion of the nonlinear and the critical manifold, we propose an adaptive
observer to estimate the tonoplast order and the nonlinear function.

1. Introduction

Biological rhythm is characterized by free-running, endoge-
nous rhythms, ranging from periods of seconds (e.g., heart
beat) to years (e.g., population dynamics). Endogenous oscil-
lators of living cells and organisms are based on feedback
loops in complex biochemical-reaction networks. Crassu-
lacean acid metabolism (CAM) is a specific mechanism of
inorganic carbon acquisition for photosynthesis [1, 2]. CAM
plants take up external CO, during the night while the
stomata are open. The CO, is fixed in the plant in the form
of organic acids, normally malate, via the enzyme phospho-
nenolpyruvate carboxylase (PEPc) and stored overnight in
the vacuole [3]. The malic acid is accumulated to high con-
centrations of up to several hundred millimolars and stored
in the cell sap vacuole [1, 2]. During the daytime, malate is
remobilized from the vacuole and decarboxylated again [3].
The resulting CO, is refixed by RubisCO for photosynthetic
assimilation [3]. Blasius et al. investigated the mechanism of
endogenous circadian photosynthesis oscillations of plants

performing CAM in terms of a nonlinear theoretical model
[3-5]. They used throughout continuous time differential
equations which adequately reflect the CAM dynamics. The
model showed regular endogenous oscillations that were
stable limit cycles attracting all neighboring trajectories for
a wide range of temperatures.

The lack of reliable sensors and the high cost of advanced
instrumentation are significant problems in monitoring and
control of biological systems. We have recently discussed
the nonlinear dynamical model of CAM from the control
theoretical viewpoint. The state variables of the nonlinear
dynamic equations are an internal CO, concentration, w,
a malate concentration in the cytoplasm, x, a malate con-
centration in the vacuole, y, and an order of the tonoplast
membrane, z, which is called a tonoplast order. The input
variables are an external CO, concentration, a light intensity,
and a temperature. The output is assumed to be a part of the
state variables. The order of the tonoplast membrane, z, is
immeasurable because it is the mean orientational order of
lipid chains [6]. A software sensor for online estimation of



z is needed with available signals. We presented a dynamic
estimator of the tonoplast order and a fuzzy identifier of the
nonlinear function in the dynamics of the tonoplast order
[7] and designed an adaptive observer-based P-controller
for tonoplast order to synchronize a desired periodic signal
under the assumption that the available signals are w, x, and
y [8]. The assumption allows us to construct a 2nd-order
observer in order to estimate the tonoplast order, z, and the
nonlinear function in the dynamics of the tonoplast order,
g(z,T) [9]. From the viewpoint of real measurements, we
presented an adaptive observer to estimate the states and the
nonlinear function in the dynamics of the tonoplast order
assuming that the available signal is only the internal CO,
concentration [10]. However, the proposed observer with the
internal CO, concentration does not converge to real states
but has other large vibrations in the surrounding of the real
oscillation cycles.

In this paper, we design an algebraic estimate of the
tonoplast order with the approximation of the critical man-
ifold and a first-order adaptive observer to estimate the
tonoplast order and the nonlinear function in the dynamics
of the tonoplast order. To begin with, we pay attention to
the approximation of the fast modes of the CAM dynamics.
Using the zero-epsilon approximation of the slow manifold,
that is, the critical manifold, the malate concentration in the
cytoplasm, and x is approximated by the nonlinear function
of the internal CO, concentration, w. This means that we can
remove the sensor for measuring the malate concentration in
the cytoplasm, x. Then, we derive an algebraic relationship
among the internal CO, concentration, w, the malate con-
centration in the vacuole, y, and the order of the tonoplast
membrane, z. This equation is available as an estimate of
z, when w and y are measurable. We call it the algebraic
estimate of z. The algebraic estimate does not depend on
the temperature. Finally, we design a first-order adaptive
observer for online estimation of the nonlinear function
in the dynamics of the tonoplast order using the output
signal as the algebraic estimate of z. The use of the algebraic
estimate allows us to improve the convergence speed of the
estimator in the previous paper [9, 11, 12]. The observer can
attenuate the estimation error of the tonoplast order against
the measurement noises.

2. The Minimal CAM Model

The CAM model that we will use has been studied by Blasius
et al. [3, 13], and here we only outline the minimal CAM
model. The model can be characterized by the block diagram
shown in Figure 13, 13]. The figure shows the major reactant
pools of CAM that generate the carbon flow during the
circadian cycle. The pool concentrations are the following:

(i) internal CO, concentration, w;
(ii) malate concentration in the cytoplasm, x;
(iii) malate concentration in the vacuole, y;

(iv) z is a variable that describes the ordering of the lipid
molecules in the tonoplast membrane.
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FIGURE 1: Block diagram of the CAM model showing as dynamic
variables (encircled) the three reactant pools, w, x, y,and a variable
characterizing the order of the lipid molecules in the tonoplast, z
(circled), within a CAM cell. They are connected by flows u,, u,, and
us (solid arrows). Regulatory feedback loops are indicated as dashed
lines. The model depends on three external control parameters:
temperature, T, light intensity, L, and external CO, concentration,
C.y (dotted arrows) [3].

These are the dynamic variables of the cyclic process.
They are connected by the flows, u;, u,, and u; during the
gain and loss terms of the metabolites. The model depends
on three external control parameters: temperature, T, light
intensity, L, and external CO, concentration, C,,,. In this
model, regulation of the transport of malate between the
cytoplasm and vacuole is the key process for establishing
the observed endogenous rhythm in CAM, and it requires a
hysteric switching of the passive malate efflux. Blasius et al.
[3] introduced z as a new dynamic variable, leading to an
additional equation for its time change. The dynamics are
characterized by a set of four coupled, nonlinear differential
equations of first order in time:

ew = —u, + U, X = —U; + Uy,

)

Y =u, 12=9g(2T) -y,

where the function g(z, T') is the thermodynamic equilibrium
value of malate concentration in the vacuole, y, and is a third-
order nonlinear function depending on the temperature, T,
shown in Figure 2 [3]. The temperature-dependent z-null
cline, y = g(z,T), corresponds to the hysteretic behavior
of the phase diagram in the membrane model of Neft et al.
[6]. The constant, 7, is the time constant for relaxation into
thermal equilibrium. The smallest parameter € < 1 reflects
the volume ratio of cytoplasm to vacuole, which is typically
of the order of 1/100 in CAM plants [3].

The flows u;, i = 1, 2, 3 involve modeling of the metabolic
reactions and comprise the whole structure of the carbon



ISRN Applied Mathematics

0.1 0.15 0.2 0.25 0.3 0.35 0.4

z

— T=02238 - T =0.2250
— T =0.2242 == T =0.2254
--- T =0.2246

FIGURE 2: The nonlinear function y = g(z,T) when T = 0.2238,
0.2244, 0.2246, 0.2250, 0.2254.

circulation in CAM [13]. They are described by the following
equations:

y w
U, =cx— =, U, = — — X,
! z 2T x
Co(t)—w L
u3:cj—( e (D )—L(t)w+cR—K bt N
exp (aw) L)+ Lgw+uw,

2)
where u,, u,, and u; are defined as follows [13]:

(i) uy: the difference between malate influx and efflux
into and out of the vacuole, modeled with the
dynamic hysteresis,

(ii) u,: the difference between malate production from
CO, fixation by phosphoenolpyruvate carboxylase
(PEPc) and its depletion by decarboxylation,

(iil) u3: CO, uptake from outside, C,(t), minus CO,
consumption by photosynthesis, which is directly
proportional to the external control parameter light
intensity, L(t), plus CO, production by respiration.

Blasius et al. calculated the dynamic behavior using the
dimensionless variables with the parameters [3]: C., = 1,
L(t) = 1, T = 0.2238, 0.2242, 0.2246, 0.2250, 0.2254, ¢ = 5.5,
g =Leg =1¢=000,7=035a= 15w =01
Ly = 0.5,and R = 0.1. Using these parameters, we perform
the computer simulation by MATLAB/Simulink. The initial
conditions of the states are given as w(0) = 0.4, x(0) = 0.62,
y(0) = 0.56, and z(0) = 0.2. The nonlinear function g(z, T)
is approximated via the third-order spline interpolation from
the figure shown in [3]. Figure 3 shows the dynamic responses
of the state variables when T = 0.2242. Blasius et al. have
shown the influence of temperature as an external control
parameter [3]. With increasing temperature, the steady state

w, X, ¥, 2

Time
~~~~~~ w (state) —— y (state)
--- x (state) .—.— z (state)

FIGURE 3: Time responses of sustained endogenous rhythms in
continuous light when T' = 0.2242.

malate level decreases, until, at the critical temperature,
the system undergoes supercritical Hopf bifurcation, and the
stable fixed point changes into an unstable one surrounded
by a small-amplitude limit cycle [3].

3. Assumptions and Problem Formulation

Throughout this paper, we make the following assumptions.

(i) All states, w, x, ¥, and z, are bounded and positive.

(ii) The available signals are w, y, T, L, and C

ext-

(iii) All parameters are known and the same as in [3].

The order of the tonoplast membrane, z, is immeasurable
because it is the mean orientational order of lipid chains [6].
Moreover, the function form of g(z, T') has to be numerically
derived for each temperature, T, since the function g(z,T)
is the thermodynamic equilibrium value of malate concen-
tration in the vacuole [6]. However, the computational cost
is high [6]. Thus, a software sensor for online estimation of
z and g(z,T) is needed with available signals. The design
problem is to estimate the tonoplast order, z, using the
available signals in the case of unknown g(z, T).

For joint estimation of the states and the nonlinear
function, we employ the adaptive observer rather than the
Kalman filter. Compared to the Kalman filter, the advantages
of the adaptive observer are as follows.

(i) Since the Kalman filter is applied to the extended
system, the size of the matrix is larger than that of
the adaptive observer. The numerical advantage of the
adaptive observer is obvious.

(ii) The stability condition of the adaptive observer is
simpler than that of the Kalman filter.



4. Algebraic Estimate of Tonoplast Order

We can decompose the CAM dynamics with fast and slow
variables. The fast subsystem consists of the internal CO, con-
centration, w, and the malate concentration in the cytoplasm,
x. Assuming that [ = t/e, we have the boundary-layer model:

dw dx

— Tt ti = Wt 3)
The variables y and z in the slow subsystem is injected

to the x-dynamics as an additional input y/z. Moreover,

the states w, x, and y do not depend on the temperature T

explicitly. To assure the boundedness of the fast subsystem,

we assume that L(¢) = 1, C.(f) = 1, and y and z are constant.
The Jacobian matrix of the boundary-layer model is given

by

0(-uy +us) 0(-uy +us)

Jo= []11 ]12] _ Jw Ox
T T 0(—uy +uy) 0(—uy +uy) |’
ow ox @)
1 w
]11:_;_611(’1’)’ ]12:F+1>
1 w
]21:_, ]22:——2—(C+1),
x x
where
1+(1-wa Ly w,
@ W) =g exp (aw) R1+LK (w+w1)2‘ ®)

The trace and the determinant of the Jacobian matrix are
calculated as follows:

1 w
trace ]wx=—;—a1 (w)—;—(c+1),

det],,. =a (w)<1+ %>+c(a1 (w) + 9_1c>

Since g, (w) is positive for w > 0, the eigenvalues of the
Jacobian matrix are negative. Thus, the boundary layer system
has an exponentially stable equilibrium point aslong as y and
z are constant.

In the zero-epsilon approximation (e = 0), the zero-order
approximation of the slow manifold, that is, critical manifold
[14], is given by

0=—u, +u;, 0=—u; +u,. (7)

The critical manifold is equivalent to the zero-order
approximation of the slow manifold [15] and includes
the nullcline of w-dynamics in the form of the equation:
h(w,x) = 0, which is independent of the temperature T
since u, and u, does not depend on T. We assume that the
equation h(w,x) = 0 has the isolated solution x = ¢;(w).
The function ¢,(w), however, cannot be easily obtained
because the expression of u, is complex. Thus, we get the
numerical approximation by MATLAB/Simulink. Figure 4
shows the nullclines of w-dynamics and x-dynamics. Using
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the MATLAB plot editor, we get the following 2nd-order
polynomial form as an approximation of the isolated solution

X = ¢, (W):
% ~ —0.43146W° + 2.2032W - 0.17466 =: ¢, (W).  (8)

As x depends only on w, the value of the malate con-
centration in the cytoplasm, x, can be obtained by the value
of the value of the internal CO, concentration, w, for every
temperature. Thus, the function form of the w-nullcline is
invariant to temperature changes.

When y and z are not constant but oscillating, x and
w are oscillating on the equation x = ¢, (w) for large
time. In this case, the slow subsystem can be considered
as a signal generator for the fast subsystem. Figure 5 shows
the phase plots of (w,z) for each temperature, T =
0.2246,0.2254,0.2242,0.2238. These lines are on the w-
nullcline (8) except for the neighborhood in the initial value.

Moreover, the right equation of (7) is the nullcline of x-
dynamics and is given by
Lo+ox-2=¢,@%. ©)
z X

Thus, we get the zero-order approximation of the slow
manifold as follows:

§=¢l(w), Z

z

¢, (W, x). (10)

Since the fast subsystem has an exponentially stable
equilibrium point, from Tikhonov’s theorem [16], we have the
following slow manifold:

x=¢, (w)+0(e), §:¢2(w,x)+0(e), )

where if w is measurable, an algebraic estimate of x is
obtained by using the nonlinear function ¢, (w) as follows:

x = ¢ (w). (12)

This means that we need not measure x when w is
measurable.
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FIGURE 5: The phase plane (w, z) ((a) T = 0.2246, (b) T = 0.2254, (c) T = 0.2242, and (d) T = 0.2238).

Moreover, z is not measurable because it is the order
parameter of the membrane lipids. If y is measurable, z
can be estimated using algebraic equation (11). The algebraic
estimate of z is obtained by

__r
¢, (w, ¢, (w))

Defining the estimation error between z and z as ¢, it can
be approximated by

L
e:E—Zzl——y zsy =5

¢, ¢t Ly ¢,
where L, is the first-order coefficient of O(e) in the second
equation of (11).

z= (13)

(14)

Remark 1. If the light intensity, L, and the external CO,
concentration, C,,,, are time-varying, w-nullcline is given by

(15)
Lg w,

+ —_— =
CRL(t)+LKw+w1

Since L(t) and C,,,(t) are assumed to be measurable, we can
calculate X = ¢, (w) numerically.

5. Adaptive Observer to Estimate the
Nonlinear Function

The nonlinear function g(z, T') gives the equilibrium value of
the lipid order of tonoplast functions as a hysteresis switch
that is numerically calculated by the thermodynamics average
[6]. Since the function form of g(z, T') has to be numerically
derived for each T, the computational cost is high. Thus,
the soft sensor is needed to estimate the nonlinear function
g(z,T) with the measurement signals. In the limit cycle
case such as T = 0.2246, however, we cannot estimate the
value of g(z,T) by using the steady-state value of y and
z-nullcline because the slow subsystem is not stable and z
keeps oscillating. Thus, we need a dynamic estimator with the
measurements.
The slow subsystem of the CAM dynamics is given by

)’/:cx—%, 12=g(T)-y. (16)



Since the nonlinear function g(z, T) is numerically calcu-
lated by two integral equations including Boltzman distribu-
tion [6], we cannot get the function form of g(z, T') but obtain
a table lookup. We approximate g(z,T) by the interpolation
using the following basis function expansion:

g(zT) =04 () +6, a7)

where { is the preassigned vector of basis functions, 0 is
the vector of the unknown coeflicients for each temperature,
and ¢ is the approximation error. This basis function expan-
sion is a kind of the linear parametric form and is widely
used to identify nonlinear functions [17, 18]. In this paper,
we adopt the basis functions as the cubic spline interpolation
such as g(z,T) = Yo, Z;zo 0;;(z — ;) because the spline
interpolation is one of the easiest ways to approximate
the table lookup. The constants a;, i = 0,...,8 are the
interpolation nodes and are selected as

(0.028,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4) .  (18)

Using the algebraic estimate of z, z, we obtain the estimate
of the nonlinear function g(z, T') as follows:

GET)=0,(t) (@), (19)

where 0 is the estimate of 6, obtained by the adaptive
observer.

Note that z is not measurable because it is the order
parameter of the membrane lipids. Using the algebraic esti-
mate z, we design the following adaptive observer to estimate

gz, T):

,L_l . _ ~ =
z—T{GTC(z) yh+kE-2), (20)

where k is a positive constant. Its adaptive update law is given
by the following o-modification form:

0, =T (2) (Z-%) - 00, (21)
where T is a positive definite matrix and « is a positive

constant. Denoting the estimation error between Z and z as
e, = Z — z, we have

¢, = —ke, + ke + % 6'Tc @) +¢((z2T) - g, (22)
where 8, = 0, — 0, and 9(z,2) = (1/1)0,((Z) -

{(z)). Assuming that the function { satisfies the Lipschitz
condition

I (@) - ¢ (2 < Ky lel, (23)
we have the following inequality:
_ 1
0G| < K 0] el (24)

Defining the Lyapunov function candidate as

1 1~ 1 =
v (e o, 6,). (25)
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its derivative satisfies the following inequality:

V= ke - L 8,8, - %ez 0, (2) - (2))

26)
A A TR

3K [0 e
T

- le (kle

O |5 ~ 1 _
=216 (J8:) - = @ et).

Note that € does not depend on the adaptive observer but
depends on the algebraic estimate. If the following equations
are satisfied:

S+ K, |07 e ~
le| > % |6] > i K@llel, @7)
then V is negative. Thus, we conclude that e, and 0 are
bounded. The design parameters k and o in the adaptive
observer can be used to reduce the estimation errors e, and
0. The o-modification update law with the algebraic estimate
does not need the persistently exciting condition.

Remark 2. The proposed adaptive observer is useful in the
case where the light intensity, L, and the external CO, con-
centration, C,,, are time-varying because the slow subsystem
does not depend on L and C

ext*

6. Simulation Results

In this chapter, we compare the estimation performance of
the adaptive observer with the algebraic estimate z. Using
the parameters as mentioned in Chapter 2, we perform
the computer simulation by MATLAB/Simulink when the
temperature is T' = 0.2246. The initial conditions of the states
are given by w(0) = 0.4, x(0) = 0.62, and y(0) = 0.56,
z(0) = 0.2. The design parameters and the initial condition
of the adaptive observer are selected as k = 100, I' = 5015,
o = 0.5,and zZ(0) = 0.1. Figure 6 shows the algebraic estimate
z and the dynamic estimate by the adaptive observer, Z, of
the tonoplast order. The dynamic estimate achieves almost
the same performance. Next, Figure 7 shows the algebraic
estimate and the dynamics estimate when the Gaussian white
noise is added to the internal CO, concentration such as
w(t) + v(t), where v(t) € N(0,107%). The algebraic estimate,
z, is sensitive to the measurement noise. On the other hand,
the dynamic estimate, Z, attenuates the vibration as a kind
of low-pass filter. Moreover, the adaptive observer allows
us to estimate the nonlinear function g(z,T) as the basis
function expansion §(z,T) for each temperature. Figure 8
shows g(z,T) and g(z,T) when T' = 0.2246. The left figure
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FIGURE 7: The responses of z and its estimates z, Z when T' = 0.2246 ((a) z (solid line) and z (dotted line), (b) z (solid line) and z (dotted

line)).

shows the estimate g(z, T) in noise-free case, and the right
figure shows one in the case where the Gaussian white noise
is added to the internal COZ1 concentration such as w(t) +
v(t), where v(t) € N(0,107"). Thus, the adaptive observer
is efficient to estimate the value of g(z,T) with noisy case.
The same observer is used to estimate z and g(z,T) at the
other temperatures. The adaptive observer can estimate the
dynamics of z, and its estimation performance is robust
against the temperature changes.

7. Conclusion

We treated the estimation problem of the CAM plant as a
biological system with a limit cycle. The algebraic estimates of
the malate concentration in the cytoplasm, x, and the tono-
plast order z are presented using the critical manifold, which
can be used at all temperatures. Moreover, the first-order
adaptive observer to estimate the nonlinear function g(z, T)
is designed under the assumption that the signals of the



1.3

12 f

1.1k

9(z,T) and g(z, T)

0.6 |
0.5 .
0 1 2 3 4 5
Time
9z, T)
— g(z,T)

(a)

1.3

1.2

9(z,T) and §(z, T)

0.5

ISRN Applied Mathematics

Time
- 9@z T)
— 9g(z,T)
(b)

FIGURE 8: The estimated nonlinear function g(z, T) when T = 0.2246.

internal CO, concentration, w, and the malate concentration
in the vacuole, y, are measurable. The adaptive observer based
on the o-modification-type update law with the algebraic
estimate of z guarantees the boundedness of estimation errors
and allows us to reduce the order of the estimator and
improve the estimation performance. The adaptive observer
can be used as an online soft sensor for the equilibrium value
of the lipid order of tonoplast functions as a hysteresis switch.
Using computer simulations, we showed that the estimation
performance of the adaptive observer is robust against the
measurement noises in w.
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