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We prove the existence of a pullback @-attractor in D(A) x V for the nonautonomous suspension bridge equations.

1. Introduction

In this paper, we consider the following nonautonomous
suspension bridge equation:

Uy + Au+pu, +ku" +gw) = f(xt), in QxR
u(x,t)=Au(x,t)=0, on 0QxR_, 1)
ul,1)=u; (x), u(x,7)=u,(x), x€Q,

where Q is a bounded domain of R? with a smooth boundary
0Q), u(x,t) is an unknown function, which could represent
the deflection of the road bed in the vertical plane, ku"
represents the restoring force, k denotes the spring constant,
pu, represents the viscous damping, and y is a given positive
constant.

Suspension bridge equations have been posed as a new
problem in the field of nonlinear analysis [1] by Lazer and
Mckenna in 1990. There are many results for the problem (1)
(cf. [1-8]), for instance, the existence, multiplicity, and prop-
erties of the travelling wave solutions, and so forth. About
the long-time behavior of suspension bridge equations, for
the autonomous case, in [9, 10], the authors have discussed
long-time behavior of the solutions of the problem on R*
and obtained the existence of global attractors in the space
H}(Q) x L*(Q) and D(A) x Hg(Q).

Caraballo et al. advanced the concept of the pullback 9-
attractor in [11], and the existence of the pullback attractors

was proved under the assumptions of asymptotic compact-
ness and existence of a family of absorbing sets. Recently,
Park and Kang [12] studied the pullback @-attractor for sus-
pension bridge equations in the weak space Hg (Q) x L*(Q).
Motivated by the ideas of [11, 13], we study the existence
of a strong pullback P-attractor for the nonautonomous
suspension bridge equations in the strong topological space
D(A) x H}(Q).

The nonlinear functions g €
following assumptions:

C*(R,R) satisfy the

@0 cw-[g0d o

lim inf

|lu] - oo

lg@|<C+Isi?), Vp=1, (3)

ug (u) — CyG (u) 50

lim inf 5 , (4)

[u] > 00 u

where constant C, C, > 0.

With the usual notation, we introduce the spaces H =
L*(Q),V = Hy(Q), D(A) = u € {Hy(Q) | Au € L*(Q)},
where A = A%, We equip these spaces with inner product and
norm ), |- |, () I+l and )5, [ - |, respectively:

(u,v) = L u(x)v(x)dx,

[ul* = J lu(x)|*dx, Vu,ve H;
Q
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(u,v); = J Au (x) Av (x)dx,
Q
lull} = J |Au (x)*dx, Yu,veV;
Q
(u, vy, = j A%u (x) A%v (x) dx,
Q

Iy = [ |8l dx, v e D).
(5)
Obviously, we have
DA cVcH=H" cV", (6)

where H*, V™ is dual space of H,V, respectively; the injec-
tions are continuous and each space is dense in the following
one.

Choosing A = min{A,, >}, by the Poincaré inequality, we
have

1/2
Izlls, = N u)lls, = {Hells + e}
- 7)
lzls, = N u)le, = {lul + a3}
We introduce the Hilbert spaces
&, =V xH, & =DA)xV (8)
and endow this space with norm
1/2
I, = 1ot ), = {1l + o]} o
9

1/2
lzlls, = (et 1), = {Melly + a5}

This paper is organized as follows. At first, in Section 2, we
recall some preliminaries and results concerning the pullback
attractor. Then, in Section 3, we prove our main result about
the existence of pullback @-attractor for the nonautonomous
dynamical system generated by the solution of (1).

2. Notation and Preliminaries

Let (E,d) be a complete metric space, (Q, p) be a metric
space which will be called the parameter space. We define
a nonautonomous dynamical system by a cocycle mapping
¢ : R, x Q x E which is driven by an autonomous dynamical
system 0 acting on a parameter space Q. Specifically, 0 =
{0,},cr 1s a dynamical system on Q; that is, is a group
of homeomorphisms under composition on Q with the
properties that

(i) 0,(q) = qforallg € Q;
(ii) 0,,.(q) = 6,(0.(q)) forallg € Q,t,T € R;
(iii) the mapping (t,q) — 0,(q) is continuous.
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Definition 1. A mapping ¢ is said to be a cocycle on E with
respect to group 0, if

(i) ¢(0,9,x) = x for all (g, x) € Q x E;

(ii) ¢t + 5,9, x) = ¢(s,0,(q), d(t, g, x)) for all 5,t € R,
and all (¢, x) € Q x E.

Let (E) denote the family of all nonempty subsets of E,
let B(E) be the set of all bounded subsets of E, and let # be
the class of all families D = {Dq}qe o€ P(E). We consider a

nonempty subclass 2 € #.

Definition 2 (see [11]). Let (6,¢) be a nonautonomous
dynamical system on Q x E. (6,¢) is said to be pullback
P-asymptotically compact if, for any ¢ € Q, any D € 9,

and any sequences f, — +00, x, € Dy, the sequence
“tnlq

¢(t,,0_, (q), x,,) possesses a convergent subsequence.

Definition 3 (see [11]). A family B= {Bq}qu € K is said to

be pullback -absorbing if, for each g € Q and D € 9, there
exists t,(q, D) > 0 such that

¢ (t, e_t (q) 5 Deit(q)) C Bq Vt > t() (q, ﬁ) . (10)

Definition 4 (see [11]). A family C= {Cq}qu € K is said to
be pullback P-attracting if

Jim dist (¢(r.0., (Q)’De,t(q)) ’Cq) =0 a
11
Vq € Q) 5 € 93

where dist(X,Y) = sup,.y inf,cy d(x, y) is the Hausdorff
semidistance between X and Y.

Definition 5 (see [11]). A famﬂyg = {Aq}qu € K is called a
global pullback P-attractor if it satisfies:

(i) A, is compact forany g € Q;
(i) A is pullback P-attracting;

(iii) A isinvariant; thatis, o(t, q,Aq) =Ag forall(t,q) €
R, xQ.

Definition 6 (see [14]). Let (0,¢) be a nonautonomous
dynamical system on Q x E. (0,¢) is said to be satistying
pullback @-Condition (C) if, for any g € Q, D € @, and
any € > 0, there exist a t, = ty(g,D,€) > 0 and a finite
dimensional subspace E' of E such that

(i) P(Umo(/)(t, G_t(q),Dgit(q))) is bounded;

(i) |I(I = P)(UtZthS(t, G_t(q),Dgit(q)))IIE < €, where P :
E — E'isabounded projector.
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Lemma 7 (see [14]). Let (0, ¢) be a nonautonomous dynam-
ical system on Q x E. (0,¢) possesses a global pullback 9-

attractor A = {Aq}qEQ satisfying A, = A(D,q) ifit

(i) has a pullback D-absorbing set B= {Bq}qu € D;
(ii) satisfies pullback 2-Condition (C).

Theorem 8 (see [12]). Suppose that k > 0 and the assumption
(2)-(4) hold. f(x,t) € LIOC(IR,H) satisfies (17). Then there
exists a unique global pullback Dy -attractor in &, for the
nonautonomous dynamical system (0, ¢) defined by (15).

We need the following lemmas in order to prove the main
result.

Lemma 9 (see [14]). Let H be an infinite dimensional Hilbert
space and let the family {w;},. be an orthonormal of H.
Suppose f(x,t) € L} (R;H) and, for any t € R,

t as 2
Looe | f(x,s)|°ds < oo for some o = 0. Then

¢
lim J eC|(I-P,) f (x,5)[ds =0, VteR, (12)

n— 00

where P,
projector.

H — span{w,,w,,...,w,} is the orthogonal

Lemma 10 (see [10]). Suppose that g € C*(R,R) and
satisfying (3). Then g : D(A) — V are continuous compact.

Lemma 11 (see [10]). Let h(u,u,) = g'(u)ut, g € CH(R,R)
satisfying (3), and g(0) = 0. Then h : D(A) xV — H is
continuous compact.

3. Pullback &-Attractors for Nonautonomous
Suspension Bridge Equations

First, we give the following result.

Theorem 12. Suppose that k > 0, satisfying (2)-(4), if f €
10c(IRT,H) and (u;,u,) € &,. Then system (1) has a unique
solution:

(wu,) € C(R; &), (13)

where R, = [1,00). If, in addition, f' € L*(1,T; L*(Q)) and
(u;,u,) € &y, then

(wu) e C(R;E,). (14)

Moreover, the mapping (u,,u,) — (u(t),u,(t)) is continuous
in&,.

We can construct the nonautonomous dynamical system
generated by problem (1) in & = &, (or &,). We consider
Q =R, 0,(r) = 7+t and define

p(tTyy) =y (t+T1,y) = (Wt +7),u (t+7),

TeR, t20, y,€8.

3
The uniqueness of solution to problem (1) implies that
¢(t+57y) = (65 +7.¢ (57 2)), »
TR, 20, y,€8.
Also, for all T € R, t > 0 the mapping ¢(t,7,:) : & — &

defined by (15) is continuous. Consequently, the mapping ¢
defined by (15) is a continuous cocycle on &.
Now, we assume that f, f' € L}, (R; H)and foranyt € R,

jt | f ()] ds < oo, (17)

where 0 < § < o. Let R be the set of all functionsr : R —
(0, +00) such that

lim " (1) = 0, (18)

and D & denotes the class of all families D={D(@t);t e R} c
P(&,) such that D(t) = B(0, rp(t)) for some r5 € R, where
B(o, r5(t)) is the closed ball in &, centered at 0 with radius
rﬁ(t).

3.1. Pullback 9-Attractors in &,. In this subsection, we
assume that f, f' € L} (R;H) and forany t € R,

(s)|2) ds < oo. (19)

j_tm (I O +|f

Let #4 be the set of all functions 7 : R — (0, +00), which
satisfies (18) with 6 € (0, ¢), and Dse, denotes the class of

all families D = {D(t);t € R} c (&) such that D(t) c
B(0, r5(t)) for some r5 € Rs, where B(0, rp(t)) is the closed
ball in &, centered at 0 with rx(t).

Theorem 13. Suppose that f, f' € Li (R;H) satisfy (19).
Then, there exists a unique global pullback D & -attractor in
&, for the nonautonomous dynamical system (0, ¢) defined by
(15).

Proof. By Lemma 7, we need to prove the existence of a
pullback ;5 -absorbing set belonging to P4 and then
show that the cocycle ¢ defined by (15) satisfies pullback
D5z, -Condition (C).

Multiplying (1) by Av(t) = Au,(t)+0Au(t) and integrating
over (), we have

d
7 (VI + ) + el + (g = @) I

| =

—o(u—-0) (wv), +k{u", Av) + (g (u), Av) (20)
=(f(x,1),Av).



Using the Holder and Young inequalities, we obtain

ollully + (u—0) IV} = 0 (4 — o) (u, v},

o(u-o0)
i lleelly - NIVl

(=) IVI; -

2
2 ollull; +

2
>dm@+W—ewwﬁ—ﬁw@—%§wﬁ

3¢ e
>;wﬁ{ue—7)wﬁ

We can easily see that
(ku®, Av) = (ku", Au,) + (ku", 0Au)
_ %k (", Au + ko (u, Au) — k ((u"),0 Au)

> ik (", Au) + ko (u”, Au) - 1—96||u||§

- ?|“t|
(22)

According to (3), Theorem 8, and the Sobolev embedding
theorem, we know that g(u), g'(u) are uniformly bounded in
L*. That is, there exists a constant k, > 0, such that

lga)| <ky  |g" ()<Ko (23)
In view of the Holder inequality and (23), we can know

(g W), Av) = (g W), Au,) + (g (), 0Au)
_ % (g (), Au) — (g’ (), Aus)
+o{g W), Au)
> % (g W), Au) +0(g (), Au)

- J |g' (u)| . |ut| - |Au| dx
Q

d 4 2
> (g (W), Au) +0(g (), Au) - Tl

(f (x,t), Av) = (f (x,1), Au,) + (f (x, 1), 0Au)

_ % (f o), Au) = (f (6,1), Au)
+o(f(x1),Au)

(21)
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< ) Au) + o (), Aw)
21
+ §||u||§ + 5|f .
(24)

We choose p small enough, such that u—o—(ou’/A) = 0/2;
we get

d
o (VI + luall3 + 2k (u*, Au) + 2 (g (u) , Au)

=2(f (x,1), Au) ) + o (M7 + ul
+2k (u", Au)
r2(g.any

= 2(f (xt), Au))
k 8k /
< () o 2 .

On the other hand, by the Holder and Young inequalities,
(?2) and (23), it follows that

d 2
= ( ||u||2+2k<u Au) ‘\/_Au+ V2kut
_4k2J'|u+|¢(u+L|dx
Q
(26)
—‘\/_Au+ V2ku*

2k
- Sl = 2

% (%llu”i +2{gw),Au) -2 (f (x,t),Au))

1
—‘ \/fAqu \/_g(u)

~4 ] lg]-[g @) dx

V2f (x,

—4[0 F 0] |f (e 0] da
4[0 |g’ (u) ut| |f (e t)|dx

4 N lg w)] - |f’ (x, t)'dx

_d
dt\/_

—4|f e -4l 0

Au+ \/_g(u) \/_f(x,t)’ —4k2 4k2|ut|

(27)
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0 <%|Iu||§ + 2k (u", Au})

2 2
- 29k2|u+|

1
Bgﬁ

2
ZQ

%Au + V2kut

2
= =y Iy,

o510} + 249 (), Au) -2 (f (1), Aw)

1
Z0 \/E
~20|f o) + e |_lg @) |f G0l dx

29%Au+ \/ig(u)—\/ff(x,

— 40ky — 4| f (x|,
Therefore, combining (26)-(29), we get

d
- <||v||% +

2

%Au + V2kut

- V2f (x,

)

2

+0 (uvn% +

+ %Au+ \/Eg (u) -

1
—2Au + V2kut

)

2 8k ’
< (& + 2oy o +4kf,) e+ 2 (1 + ) ul?
e 0

A

2
~2¢lg w)[*

We have

d
=y ®+ey® < Cy (Il + |u]")

(28)
2
+Cz(|f(t)|2 +|f o ) (33)
4(1+ ) kg.
By the Gronwall lemma, we have
t
y (@) < eigr)’ t-17)+4 (l + Q) k(z) j e*@(t*S)dS
t—1
(29) t 2
+C J e (Jull} + |u|*) ds (34)
t—1
t oltes 5
+G J e (If(t)l2 +|f @) )ds
t—1
Set
Cy = max {1+2¢°A™",2} =1+ 2+£ 1
3 4 > > Qo 0 3 A
(35)

Then
lully + e[} < 4Cse (ol |3 + e}
“ (2lg ()| +2/f ¢ -DI)

e ts)(||u||1 |ut|2)ds

+8Cse

t
+ 2C1C3J
t

=T

+2C,C; J: I (|fof +]r @ ) ds

2 1 ' 2
4(1+ X +41 —+1 X, t t
(1+o)lf ot <Q > |f ( )' +8C; (1 +0)kp J e s
t—7
4(1+9)k;. ac
(30) 3 ||u||1 +8C;|g W) +8C,|f (1)[.
Set (36)
8k’ 8k§ .
C, = max — +2k” + 4k, (1 +0)f, From Theorem 8, we have
e e
& 2 2 -5 2 2
C, = max {4(1 +0) 4(1 + 1)} ) fleelly + |ut| <cge’ ("“1”1 + |u2| )
¢ -5t (37)
ce T 2¢ ocM
Thus, denote + l(x_l L_ 6E|f (E)| dé + 1
2 |1 ?
y () = I + | 5 Au -+ 2k where
_ 24-1
+ %Au+\/§g(u)—\/§f(x, fort>1 cl—max{2,1+2a}t }’ (38)

(32) ¢, = max {2, 1+A7" (2042 + k)} ,



and then

t
J e o) (||u||f + |ut|2) ds
t—7

t
Scice (full +uf) [ et rus e 2924
—00

t t
+ :Tl <J e&|f(5)|2ds> <J eiésefg(tfs)ds>
1 —00 -0

GG -6t 2 2\ 2qaM q
<2 + + +
1 (4 k) + 2 B
t
X J eia(t75)|f(s)|2ds.
(39)
Set
2¢,6,C,C
C4 = max {4C3, Lﬁ} R
Q
C. = max {26,C,, 2991 [ (40)
a (0-9)
1 4¢,00MC,C
C¢ = 8C; (1 + &>k3 + % +8C;kp.
1

Let D = {D(t)};cp € Dy, . Combining (36) and (39), we
have

I (7.t = 7, )

<C, (e_gT + 6_87) ("“1”2 + “”2"?)

%, = Il + ]

+Cy (joo eI (IfOF +[f O )ds
¢ (41)
+ J_ e_‘s(t_s)lf (s)|2ds>

+16C5e | (t - 7)|” + 16C;k2e

4C. K
3 ull? + 8Cs | f 0| + Ce

MY

forall y, e D(t —7),t € R,and 7 > 0.
Set

(Ros, (1) =2Cs (th e (| O + |1 (s)|2) ds

+ Jt e_‘s(t_s)|f(s)|2ds>

8C,k*

+ 32C3k(2)e_gT + (Ré\’go (t))z

+16Cs|| f ()| + 2C¢
(42)
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and consider the family E&gl of closed balls in &, defined by
Byg, (t) = {z € & s lzllg, < Ryg, (O} (43)

From (18) and (41), E@)gl isapullback ;5 i -absorbing for the
cocycle ¢ in &.

Next, we show that the cocycle ¢ satisfies the pullback
D5z, -Condition (C).

We assume that A,,i = 1,2, ..., are eigenvalue of operator
A in D(A), satistying

0<7»1</~\2S---</~\j<--~, Aj — 00, as j — 00,
(44)

@; denotes eigenvector corresponding to eigenvalue A;,i =
1,2,3,..., which forms an orthogonal basis in D(A), and at
the same time they are also a group of canonical bases in D(A)
or V and satisfy

A@; = A,@;,, VieN. (45)

LetV,, = span{@,,®,,...,®,}and P,, : V — V,_ isan
orthogonal projector. For any (u,u,) € &,, we write

(1) = (g uy,) + (g5 1) s (46)

where (u,,u,,) = (P,u, P,u,).
Taking the scalar product with Av,(t) = Au,,(t)+0Au,(t)
for (1) in H, we have

1d
S (sl +alls) + ol + e = o) s
=0 (u=0) (upvy), +k(u', Avy) + (g (), Av,)

= (f(x,1),Av,).
(47)

Similar to the estimate of (21) and (22), we have
0“”2"2 +(u—-o0) ||V2"f — 0 (u=0)(uyvy),

30 o
> 2 Jualf+ 2l

(48)

(K ) Avs) > (), ) 4 ko (), )

0 4k* 2
L E e,
(49)
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Moreover, we obtain

d !
(9w, Av) = (9 ), Aw) ~ (g’ ), Au)

+0((g W), Au,)

d
> 2 ((gw0), As) + 0 {(9 (), Auc)

>

o 4 2
~telwl - 1@ aou,|
(50)

((I=P,) f (e.1), Av,y)

= % (fn (X, 1), Aty ) — <fr’n(x,t),Au>

+0(f(x1),Au,)

S % <fm (X, t) ’Au2> +o <fm (X, t) ,Abl2>
2 1
+ Sl + 2| e
(51)

where f, (x,t) = (I - P,) f(x,t).
Combining (48)-(51), we obtain from (47)

& (all + ol + 26 (")) +2 (9 00 )
= 2(fn (1), A} ) 0 ([l + ol
+2k ((u"),, Auy)
+2((g (), Au,)
=2 {fp (1), Auy) )
8k?

+ 81/ 4, ,
)+ e ) 2o
(52)

IN

Like for (26)-(29), using the Hélder and Young inequali-
ties, we get

d +
= []Au2 k), + (g@), ~ fru @] + ”Vz”ﬂ

o [|Au2 +k(u"), + (g W), - fm (t)lz + ”Vzllﬂ

2
< 1)l + 2 w2 of

o
#2067 ("), ] - 1), + 2] (g W), - |(9" ) wy),|
+21f, @ [ ] + 2| (" @) |- | £ O]

+2|(g )| - | £ )] + 2k ("), ] - |(g @),

7
+2k |(”+)2| ) |(g, (u) “t)z' +2k |(”+)2t| : |fm (t)l
+2k |(“+)2| ) |fr’n (t)l + ak2|(u+)2|2 +0l(g (”))2|2
+01£ O +20 (g @), - | £,x 0]
+2ko |(u"),] - (g W),| + 2ka |(u"),] - | £ ()]
s a2 11KE L 2 2
< 50k7|(u'),|” + T|(u )oel” +50|(g W),
11 ’ 9 3 4
+ ;|<g (u) ut)z'z + ;|fm O + (—I|fm (t)'2
<I (|6, + 1@, )
+1 (g @), + (g ww),[)
+L(Ifu©F + |1, 0[),
(53)

where [, = max{50k?, 11k%/a}, I, = max{50,11/0},and I, =
max{9/o, 3/0}.
By the Gronwall lemma, we have

|Aw, () + |Auy, )]
< dle ™ ([Aup| + | Auy,|)
+ 81”77 (2|(g @)|* + 2| fn =)
+ 4y (K])," +2l(g @), + 2|1, O )

t
t—1

+ 21l J e 7t (|(u+)2|2 + |(u+)2t|2) ds

t
t—1

+ 20,1, J e 7t (|(£] (”))zlz + |(g’ (1) ut)2|2) ds

+ 2L, fm e (| fu O+, @ ) s

=L+L+L+1,+1;+ 1,
(54)

where [, = max{1 + 20°A7", 2}.
Then, given any D € D4 ¢ , we have
»61

I, (7.t - 7, )’0)";l Sh+hL+L+1L+Is+1;,  (55)

for any y, € D(t — ) and 7 > 0.

Now we estimate I, I, I5, I, I5, and I, one by one. Given
any € > 0 and any ¢ € R, first, by the definition of D5 , it
is easy to see that there exists 7, > 0 such that, for 7> 7,
I, I, < €/6.

Second, it is easy to see that

lfm O] =|(I-P,) f (1)) — 0 asn— co. (56)



By Theorem 8, there exists 7, > 0 such that 7 > 1,, |Au(®)* <
(R&fgo(l‘))2 < 0o. Lemma 10, we can choose #; large enough
such that I; < €/6, forn> ny, 7> 1,.

Third, by Lemmas 10 and 11, we know that there exist 75 >
0 and n, such that I,, I, <€/6,forn > n,, 7 > 5.

Finally, by Lemma 9, we can choose 75 large enough so
that

P e 2 €
21213J 09 (Ifm O +|f50) )ds <¢
—00 6
forn = nj.
By the above analysis and (55), we know that, for any € >
0, there exist 1, = max{r,,7,, 73} and n, = max{n,n,,ns};
then

s (2.t - 7, J’o)”zg1 SE€

(58)
for any 7 > 7y,n > ny and any y, € D(t - 1),
which implies the pullback Dj & -Condition (C).
We complete the proof. O
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