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In an abstract framework, we consider the following initial value problem: u󸀠󸀠 + 𝜇Au + F(u)u = f in (0,T), 𝑢(0) = 𝑢
0
, 𝑢

󸀠
(0) = 𝑢

1,
where 𝜇 is a positive function and f a nonsmooth function. Given u0, u1, and f we determine 𝐹(𝑢) in order to have a solution u of
the previous equation. We analyze two cases of 𝐹(𝑢). In our approach, we use theTheory of Linear Operators in Hilbert Spaces, the
compactness Aubin-LionsTheorem, and an argument of Fixed Point. One of our two results provides an answer in a certain sense
to an open question formulated by Lions in (1981, Page 284).

1. Introduction

Let𝑉 and𝐻 be two real separableHilbert spaceswith𝑉dense
in𝐻 and𝑉 continuously embedding in𝐻.The scalar product
and norms of 𝑉 and𝐻 are represented, respectively, by

(𝑢, V) , |𝑢| , ((𝑢, V)) , ‖𝑢‖ . (1)

Let 𝐴 be the self-adjoint operator of 𝐻 defined by the
triplet {𝑉,𝐻, ((𝑢, V))}. Consider 𝛼 ∈ R, 𝛼 ≥ 0. We denote
by𝐷(𝐴𝛼

) the Hilbert space

𝐷(𝐴
𝛼
) = {𝑢 ∈ 𝐻;𝐴

𝛼
𝑢 ∈ 𝐻} (2)

equipped with the scalar product

(𝑢, V)
𝐷(𝐴
𝛼
)
= (𝐴

𝛼
𝑢, 𝐴

𝛼V) (3)

(cf. Lions [1]).
Consider the following initial value problem:

𝑢
󸀠󸀠
+ 𝜇𝐴𝑢 + 𝐹 (𝑢) 𝑢 = 𝑓 in (0, 𝑇) ,

𝑢 (0) = 𝑢
0
, 𝑢

󸀠

(0) = 𝑢
1
,

(4)

where 𝜇 is a positive function and 𝑓 a nonsmooth function.

The objective of this work is to study the following inverse
problem: given 𝑢0, 𝑢1, and𝑓 ∈ 𝐿

2
(0, 𝑇;𝐷(𝐴

𝛼
)
󸀠

) (𝐷(𝐴𝛼
)
󸀠 dual

space of𝐷(𝐴𝛼
)) to determine 𝐹(𝑢) such that Problem (4) has

a solution 𝑢.We analyze two cases of𝐹(𝑢), more precisely, the
cases

𝐹 (𝑢) =
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2𝑝

, (5)

𝐹 (𝑢) = ‖𝑢‖
𝐶
0
([0,𝑇];𝑋)

, (6)

where𝑋 is an appropriate Hilbert space.
In Lions [2, Page 284], the following problem is formu-

lated

𝑢
󸀠󸀠
− Δ𝑢 + [∫

𝑡

0

(∫
Ω

𝑢
2
𝑑𝑥) 𝑑𝑠] 𝑢

= V (𝑡) 𝛿 (𝑥 − 𝑥
0
) in Ω × (0, 𝑇) ,

𝑢 = 0 on Γ × (0, 𝑇) ,

𝑢 (𝑥, 0) = 0, 𝑢
󸀠

(𝑥, 0) = 0, 𝑥 ∈ Ω,

(7)

where Ω is an open bounded set of R𝑛 with boundary Γ,
𝑥
0
∈ Ω, and 𝛿(𝑥 − 𝑥

0
) being the Dirac mass supported at

{𝑥
0
}. He says not to know if this problem admits a solution.
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He say also that one of the difficulties in the study of existence
of solutions of the nonlinear equations lies in the difficulty
in defining weak solutions, since the transposition method is
essentially a linear method. This is ultimately connected to
the fact that one cannot multiply distributions.

Problem (4) with 𝐹(𝑢) of the form (6) is an abstract
formulation of Problem (7) with a slight modification of the
nonlinear term.Theorem 3 gives the existence of solutions of
this problem. In applications we give examples of Problem
(7), with the modification of the nonlinear term, for Ω an
open bounded set of R𝑛, 𝑛 = 1, 2, 3.

In Grotta Ragazzo [3] the following equation is studied:

𝑢
𝑡𝑡
− 𝑢

𝑥𝑥
− 𝑎𝑢 + (

1

𝜋
∫

𝜋

0

𝑢
2
𝑑𝑥)

𝛼

𝑢 = 0 in (0, 𝜋) ×R. (8)

This equation is considered as a first approximation of the
Klein-Gordon equation

𝑢
𝑡𝑡
− 𝑢

𝑥𝑥
− 𝑎𝑢 + 𝑢

1+2𝛼
= 0 in (0, 𝜋) ×R. (9)

Observe that (8) with 𝑎 = 0 and 𝛼 = 1 is the meson equation
of Schiff [4] (cf. also Jörgens [5]).

The physical motivation of (8) with 𝛼 = 1 can be seen in
Lourêdo et al. [6].

Problem (4) with 𝐹(𝑢) of the form (5) generalizes (8)
when 𝑎 = 0. The existence of solutions of this problem is
studied inTheorem 1.

In Louredo et al., loc.cit., is analyzed the equation

𝑢
󸀠󸀠
− 𝜇 (𝑡) Δ𝑢 + 𝑎 (∫

Ω

𝑢
2
𝑑𝑥) 𝑢 + 𝑏 (∫

Ω

𝑢
󸀠2

𝑑𝑥) 𝑢
󸀠

= 0 in Ω × (0,∞)

(10)

with nonlinear boundary condition. The 𝐹(𝑢) given in (5) is
different from the 𝑎(∫

Ω
𝑢
2
𝑑𝑥) of this equation.The term 𝐹(𝑢)

is related to the nonsmoothness of 𝑓.

2. Main Results

We use the notation 𝐷(𝐴
𝛼
)
󸀠

= 𝐷(𝐴
−𝛼
), 𝛼 ∈ R, 𝛼 ≥ 0.

Identifying𝐻 with𝐻󸀠, we have

𝐷(𝐴
𝛼
) 󳨅→ 𝐻 󳨅→ 𝐷(𝐴

−𝛼
) . (11)

Here and in what follows the notation𝑋 󳨅→ 𝑌means that the
space𝑋 in dense in the space 𝑌 and the embedding of𝑋 in 𝑌
are continuous. Note that𝐷(𝐴−𝛼

)
󸀠

= 𝐷(𝐴
𝛼
). Also, if 𝛽, 𝛾 ∈ R

with 𝛽 ≥ 𝛾, we have

𝐷(𝐴
𝛽
) 󳨅→ 𝐷 (𝐴

𝛾
) . (12)

Assume that

the embedding of 𝑉 in 𝐻 is compact. (13)

First we analyze Problem (2) with 𝐹(𝑢) = |𝐴
−𝜃/2

𝑢|
2𝑝, that

is, the problem

𝑢
󸀠󸀠
+ 𝜇𝐴𝑢 +

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2𝑝

𝑢 = 𝑓 in (0, 𝑇) ,

𝑢 (0) = 𝑢
0
, 𝑢

󸀠

(0) = 𝑢
0
.

(14)

Theorem 1. Assume condition (13). Let 𝜃 and 𝑝 be real
numbers with 𝑝 ≥ 1. Consider

𝑢
0
∈ 𝐷 (𝐴

(1−𝜃)/2
) , 𝑢

1
∈ 𝐷 (𝐴

−𝜃/2
) ,

𝜇 ∈ 𝑊
1,1

(0, 𝑇) , 𝜇 (𝑡) ≥ 𝜇
0
> 0,

∀𝑡 ∈ [0, 𝑇] (𝜇
0
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) ,

𝑓 ∈ 𝑊
1,1

(0, 𝑇;𝐷 (𝐴
−(1+𝜃)/2

)) .

(15)

Then there exists a function 𝑢 in the class

𝑢 ∈ 𝐿
∞
(0, 𝑇;𝐷 (𝐴

(1−𝜃)/2
)) ,

𝑢
󸀠
∈ 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−𝜃/2
)) ,

𝑢
󸀠󸀠
∈ 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−(1+𝜃)/2
))

(16)

such that 𝑢 is solution of the equation

𝑢
󸀠󸀠
+ 𝜇𝐴𝑢 +

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2𝑝

𝑢

= 𝑓 𝑖𝑛 𝐿
∞
(0, 𝑇;𝐷 (𝐴

−(1+𝜃)/2
))

(17)

and satisfies the initial conditions

𝑢 (0) = 𝑢
0
, 𝑢

󸀠

(0) = 𝑢
1
. (18)

Remark 2. When 𝜇 = 1 it is possible to obtain a solution 𝑢

of Problem (14) by using the Theory of Semigroups (cf. Pazy
[7]).

To formulate the second problem, we introduce some
notations. In fact, let us define

𝑌 = 𝐷(𝐴
(1−𝜃)/2

) , 𝑍 = 𝐷 (𝐴
−𝜃/2

) , 𝑋 = 𝐷 (𝐴
𝜆
) ,

(19)

where

−
𝜃

2
≤ 𝜆 <

1 − 𝜃

2
, 𝜆 ∈ R. (20)

By (12) we have

𝑌 󳨅→ 𝑋 󳨅→ 𝑍. (21)

Consider Problem (4) with 𝐹(𝑢) = ‖𝑢‖
𝐶
0
([0,𝑇];𝑋)

and 𝑢
0
=

0, that is, the problem

𝑢
󸀠󸀠
+ 𝜇𝐴𝑢 + ‖𝑢‖

𝐶
0
([0,𝑇];𝑋)

𝑢 = 𝑓 in (0, 𝑇) ,

𝑢 (0) = 0, 𝑢
󸀠

(0) = 𝑢
1
.

(22)

Theorem 3. Assume that 𝜃, 𝑢1, and 𝑓 satisfy the hypotheses
of Theorem 1 and 𝑢0 = 0. Then there exists a function 𝑢 in the
class (16) such that 𝑢 is solution of the problem

𝑢
󸀠󸀠
+ 𝜇𝐴𝑢 + ‖𝑢‖

𝐶
0
([0,𝑇];𝑋)

𝑢

= 𝑓 𝑖𝑛 𝐿
∞
(0, 𝑇;𝐷 (𝐴

−(1+𝜃)/2
)) ,

𝑢 (0) = 0, 𝑢
󸀠

(0) = 𝑢
1
.

(23)
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Remark 4. Note that if 𝑢 belongs to class (16) then 𝑢 ∈

𝐶
0
([0, 𝑇]; 𝑋) (cf. Lions and Magenes [8]).

Corollary 5. Under the same hypotheses of Theorem 1, there
exists a function 𝑢 in the class (16) such that 𝑢 is solution of the
problem

𝑢
󸀠󸀠
+ 𝜇𝐴𝑢 + ‖𝑢‖

𝑝

𝐿
𝑝
(0,𝑇;𝑋)

𝑢 = 𝑓 𝑖𝑛 𝐿
∞
(0, 𝑇;𝐷 (𝐴

−(1+𝜃)/2
)) ,

𝑢 (0) = 0, 𝑢
󸀠

(0) = 𝑢
1
.

(24)

We analyze the uniqueness of solutions. Consider 𝜃 = 0

inTheorem 1.Then the solution 𝑢 gives by this theoremwhen
𝜃 = 0 satisfies

𝑢 ∈ 𝐿
∞
(0, 𝑇;𝐷 (𝐴

1/2
)) ,

𝑢
󸀠
∈ 𝐿

∞

(0, 𝑇;𝐻) ,

𝑢
󸀠󸀠
∈ 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−1/2
)) ,

(25)

𝑢
󸀠󸀠
+ 𝜇𝐴𝑢 + |𝑢|

2𝑝
𝑢 = 𝑓 in 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−1/2
)) ,

𝑢 (0) = 𝑢
0
, 𝑢

󸀠

(0) = 𝑢
1
.

(26)

Theorem 6. Let 𝑝 ≥ 1 be a real number. Consider

𝑢
0
∈ 𝐷 (𝐴

1/2
) , 𝑢

1
∈ 𝐻,

𝜇 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 (15)
2
𝑤𝑖𝑡ℎ 𝜇

󸀠
∈ 𝐿

∞

(0, 𝑇) ,

𝑓 ∈ 𝑊
1,1

(0, 𝑇;𝐷 (𝐴
−1/2

)) .

(27)

Then there exists a unique solution 𝑢 of Problem (26) in the
class (25).

We do not know if there is uniqueness of solutions for
Theorem 3, even when 𝜃 = 0.

In what follows we prove the above results.

3. Proof of Theorem 1

Before proving the theorem, we make some considerations
on the operator 𝐴𝛼. Recall hypothesis (13). By solving the
spectral problem ((𝑢, V)) = 𝜆(𝑢, V), for all V ∈ 𝑉, we
determine the eigenfunctions and eigenvalues, respectively,
(𝑤]) and (𝜆]) of the operator 𝐴, that is,

𝐴𝑤] = 𝜆]𝑤], ] = 1, 2, . . . ,

𝜆] 󳨀→ ∞, ] 󳨀→ ∞.

(28)

Note that (𝑤]) is a Hilbert basis of 𝐻 (cf. Brezis [9] and
Komornik [10]).

Let be 𝛼 ∈ R, 𝛼 ≥ 0. Then the linear operator

𝐴
𝛼
: 𝐷 (𝐴

𝛼
) 󳨀→ 𝐻 (29)

is continuous, bijective, and

𝐴
𝛼
𝑢 =

∞

∑

]=1
𝜆
𝛼

] (𝑢, 𝑤]) 𝑤], ∀𝑢 ∈ 𝐷 (𝐴
𝛼
) . (30)

Also,

(𝐴
𝛼
)
−1

: 𝐻 󳨀→ 𝐷(𝐴
𝛼
) (31)

is given by

(𝐴
𝛼
)
−1

𝑓 =

∞

∑

]=1
𝜆
−𝛼

] (𝑓, 𝑤]) 𝑤], ∀𝑓 ∈ 𝐻. (32)

These results can be found in Lions [1] and Medeiros and
Milla Miranda [11].

Introduce the adjoint operator (𝐴𝛼
)
∗ of 𝐴𝛼, that is,

(𝐴
𝛼
)
∗

: 𝐻 󳨀→ 𝐷(𝐴
𝛼
)
󸀠

⟨(𝐴
𝛼
)
∗

𝑓, 𝑧⟩
X󸀠×X

= (𝑓, 𝐴
𝛼
𝑧) , ∀𝑧 ∈ X,

(33)

whereX = 𝐷(𝐴
𝛼
). Note that𝐻 is identified with𝐻

󸀠. By the
properties of 𝐴𝛼, we have that

(𝐴
𝛼
)
∗ is linear, continuous and bijective. (34)

Thus, the linear operator

[(𝐴
𝛼
)
∗

]
−1

: 𝐷(𝐴
𝛼
)
󸀠

󳨀→ 𝐻 (35)

is continuous and bijective.

Proposition 7. Let 𝑓 ∈ 𝐻 and 𝑔 ∈ 𝐷(𝐴
𝛼
)
󸀠. Then one has the

following.

(i) ∑∞

]=1 𝜆
𝛼

](𝑓, 𝑤])𝑤]
converges in𝐷(𝐴𝛼

)
󸀠, and

(𝐴
𝛼
)
∗

𝑓 =

∞

∑

]=1
𝜆
𝛼

] (𝑓, 𝑤]) 𝑤]. (36)

(ii) ∑∞

]=1 𝜆
−𝛼

] ⟨𝑔, 𝑤]⟩X󸀠×X𝑤] converges in𝐻, and

[(𝐴
𝛼
)
∗

]
−1

𝑔 =

∞

∑

]=1
𝜆
−𝛼

] ⟨𝑔, 𝑤]⟩X󸀠×X𝑤], (37)

whereX = 𝐷(𝐴
𝛼
).

Proof. We prove (i). As 𝑓 ∈ 𝐻, we have

𝑓 =

∞

∑

]=1
(𝑓, 𝑤]) 𝑤]. (38)

Consider 𝑧 ∈ X. Then noting that ⟨𝑤], 𝑤𝜇
⟩X󸀠×X = (𝑤], 𝑤𝜇

),
we obtain

⟨

𝑛

∑

]=𝑚
𝜆
𝛼

] (𝑓, 𝑤]) 𝑤], 𝑧⟩
X󸀠×X

= ⟨

𝑛

∑

]=𝑚
𝜆
𝛼

] (𝑓, 𝑤]) 𝑤],

∞

∑

𝜇=1

(𝑧, 𝑤
𝜇
)𝑤

𝜇
⟩

X󸀠×X

=

𝑛

∑

]=𝑚
𝜆
𝛼

] (𝑓, 𝑤]) (𝑧, 𝑤]) .

(39)
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On the other hand, by (30) we derive

(

𝑛

∑

]=𝑚
(𝑓, 𝑤]) 𝑤], 𝐴

𝛼
𝑧) = (

𝑛

∑

]=𝑚
(𝑓, 𝑤]) 𝑤],

∞

∑

𝜇=1

𝜆
𝛼

𝜇
(𝑧, 𝑤

𝜇
)𝑤

𝜇
)

=

𝑛

∑

]=𝑚
𝜆
𝛼

] (𝑓, 𝑤]) (𝑧, 𝑤]) .

(40)

The last two expressions give

⟨

𝑛

∑

]=𝑚
𝜆
𝛼

] (𝑓, 𝑤]) 𝑤], 𝑧⟩
X󸀠×X

= (

𝑛

∑

]=𝑚
(𝑓, 𝑤]) 𝑤], 𝐴

𝛼
𝑧) .

(41)

This and (38) provide that
𝑛

∑

]=𝑚
𝜆
𝛼

] (𝑓, 𝑤]) 𝑤] 󳨀→ 0 in X
󸀠 as 𝑚, 𝑛 󳨀→ ∞. (42)

So (i)
1
is proved. Taking the limit in (41) and observing (33)

2
,

we obtain (36).
We prove (ii). We have that there exists a unique 𝑓 ∈ 𝐻

such that

(𝐴
𝛼
)
∗

𝑓 = 𝑔. (43)

By (33)
2
and (30)

1
, we have

⟨𝑔, 𝑤
𝜇
⟩
X󸀠×X

= (

∞

∑

]=1
(𝑓, 𝑤]) 𝑤], 𝐴

𝛼
𝑤
𝜇
) = 𝜆

𝛼

𝜇
(𝑓, 𝑤

𝜇
) .

(44)

Then
𝑛

∑

]=𝑚
𝜆
−𝛼

] ⟨𝑔, 𝑤]⟩X󸀠×X𝑤] =

𝑛

∑

]=𝑚
(𝑓, 𝑤]) 𝑤]. (45)

This implies that
𝑛

∑

]=𝑚
𝜆
−𝛼

] ⟨𝑔, 𝑤]⟩X󸀠×X𝑤] 󳨀→ 0 in 𝐻 as 𝑚, 𝑛 󳨀→ ∞. (46)

Thus (ii)
2
is proved. By (43) and (45), we obtain

∞

∑

]=1
𝜆
−𝛼

] ⟨𝑔, 𝑤]⟩X󸀠×X𝑤] =

∞

∑

]=1
(𝑓, 𝑤]) 𝑤] = 𝑓 = [(𝐴

𝛼
)
∗

]
−1

𝑔.

(47)

This concludes the proof of the proposition.

Motived by (37), we equip the space 𝐷(𝐴
𝛼
)
󸀠 with the

scalar product

(𝑔, ℎ)
𝐷(𝐴
𝛼
)
󸀠

= ([(𝐴
𝛼
)
∗

]
−1

𝑔, [(𝐴
𝛼
)
∗

]
−1

ℎ)

= (

∞

∑

]=1
𝜆
−𝛼

] ⟨𝑔, 𝑤]⟩X󸀠×X𝑤],

∞

∑

𝜇=1

𝜆
−𝛼

𝜇
⟨ℎ, 𝑤

𝜇
⟩
X󸀠×X

𝑤
𝜇
) ,

(48)

whereX = 𝐷(𝐴
𝛼
). This scalar product onX󸀠 yields a norm

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐷(𝐴

𝛼
)
󸀠 =

󵄩󵄩󵄩󵄩󵄩󵄩
[(𝐴

𝛼
)
∗

]
−1

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

]=1
𝜆
−𝛼

] ⟨𝑔, 𝑤]⟩X󸀠×X𝑤]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(49)

which is equivalent to the usual norm of𝐷(𝐴𝛼
)
󸀠.

By similarity between expressions (30) and (36) and
between (32) and (37), respectively, we introduce the nota-
tions

(𝐴
𝛼
)
∗

= 𝐴
𝛼
, [(𝐴

𝛼
)
∗

]
−1

= (𝐴
𝛼
)
−1

. (50)

Also we use the notation

(𝐴
𝛼
)
−1

= 𝐴
−𝛼

= 𝐷(𝐴
𝛼
)
󸀠

. (51)

With these considerations and expressions (29) and (33), we
obtain

𝐷(𝐴
𝛼
)

𝐴
𝛼

󳨀→ 𝐻
𝐴
𝛼

󳨀→ 𝐷(𝐴
−𝛼
) (52)

and by expressions (35) and (31),

𝐷(𝐴
−𝛼
)

𝐴
−𝛼

󳨀→ 𝐻
𝐴
−𝛼

󳨀→ 𝐷(𝐴
𝛼
) . (53)

Also by (37) and (48), (49), respectively, we find

𝐴
−𝛼
𝑔 =

∞

∑

]=1
𝜆
−𝛼

] ⟨𝑔, 𝑤]⟩𝐷(𝐴
−𝛼
)×𝐷(𝐴

𝛼
)
𝑤], ∀𝑔 ∈ 𝐷 (𝐴

−𝛼
) ,

(54)

(𝑔, ℎ)
𝐷(𝐴
−𝛼
)
= (𝐴

−𝛼
𝑔, 𝐴

−𝛼
ℎ) ,

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐷(𝐴

−𝛼
)
=
󵄨󵄨󵄨󵄨𝐴

−𝛼
𝑔
󵄨󵄨󵄨󵄨 .

(55)

Proposition 8. Consider 𝛽, 𝛾 ∈ R. Then the linear operator

𝐴
𝛾
: 𝐷 (𝐴

𝛽
) 󳨀→ 𝐷(𝐴

𝛾−𝛽
)
󸀠 (56)

defined by

⟨𝐴
𝛾
𝑦, 𝑧⟩

𝐷(𝐴
𝛾−𝛽

)
󸀠

×𝐷(𝐴
𝛾−𝛽

)
= (𝐴

𝛽
𝑦, 𝐴

𝛾−𝛽
𝑧) (57)

is continuous.

Proof. We obtain

󵄨󵄨󵄨󵄨󵄨
⟨𝐴

𝛾
𝑦, 𝑧⟩

Y󸀠×Y

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝐴
𝛽
𝑦
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐴
𝛾−𝛽

𝑧
󵄨󵄨󵄨󵄨󵄨
=
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝐷(𝐴

𝛽
)
‖𝑧‖ 𝑦, (58)

whereY = 𝐷(𝐴
𝛾−𝛽

). Then

󵄩󵄩󵄩󵄩𝐴
𝛾
𝑦
󵄩󵄩󵄩󵄩Y󸀠 ≤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝐷(𝐴

𝛽
)
, ∀𝑦 ∈ 𝐷 (𝐴

𝛽
) (59)

which proves the proposition.
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Proof of Theorem 1. We use the Galerkin method (cf. Lions
[12] and Vicente and Frota [13]). Thus consider an approxi-
mate solution 𝑢

𝑚
of Problem (14); that is,

𝑢
𝑚
(𝑡) =

𝑚

∑

𝑗=1

𝑔
𝑗𝑚

(𝑡) 𝑤
𝑗
; (60)

(𝑢
󸀠󸀠

𝑚
, 𝑤

𝑗
) + 𝜇 (𝐴𝑢

𝑚
, 𝑤

𝑗
) +

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2𝑝

(𝑢
𝑚
, 𝑤

𝑗
)

= ⟨𝑓,𝑤
𝑗
⟩
𝐷(𝐴
𝛾
0 )
󸀠

×𝐷(𝐴
𝛾
0 )
, 𝑗 = 1, 2, . . . , 𝑚;

𝑢
𝑚
(0) = 𝑢

0

𝑚
=

𝑚

∑

𝑗=1

⟨𝑢
0
, 𝑤

𝑗
⟩
𝐸
󸀠
×𝐸
𝑤
𝑗
;

𝑢
󸀠

𝑚
(0) = 𝑢

1

𝑚
=

𝑚

∑

𝑗=1

⟨𝑢
1
, 𝑤

𝑗
⟩
𝐺
󸀠
×𝐺
𝑤
𝑗
,

(61)

where 𝐸 = 𝐷(𝐴
−(1−𝜃)/2

) and 𝐺 = 𝐷(𝐴
𝜃/2

).

Remark 9. Note that

𝑢
0

𝑚
󳨀→ 𝑢

0 in 𝐷(𝐴
(1−𝜃)/2

) ,

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
0

𝑚

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
0󵄨󵄨󵄨󵄨󵄨
,

𝑢
1

𝑚
󳨀→ 𝑢

1 in 𝐷(𝐴
−𝜃/2

) ,

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
1

𝑚

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
1󵄨󵄨󵄨󵄨󵄨
.

(62)

Remark 10. Observe that if 𝛾 ≤ 0 then

⟨𝑧, 𝑤
𝑗
⟩
𝐷(𝐴
−𝛾
)×𝐷(𝐴

𝛾
)
= (𝑧, 𝑤

𝑗
) , 𝑗 = 1, 2, . . . (63)

Multiply both sides of (61)
1
by 𝑔󸀠

𝑗𝑚
(𝑡)𝜆

−𝜃

𝑗
and add from

𝑗 = 1 up to 𝑗 = 𝑚. We obtain

(𝑢
󸀠󸀠

𝑚
, 𝐴

−𝜃
𝑢
󸀠

𝑚
) + 𝜇 (𝐴𝑢

𝑚
, 𝐴

−𝜃
𝑢
󸀠

𝑚
)

+
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2𝑝

(𝑢
𝑚
, 𝐴

−𝜃
𝑢
󸀠

𝑚
)

= ⟨𝑓,𝐴
−𝜃
𝑢
󸀠

𝑚
⟩
𝑊
󸀠
×𝑊

,

(64)

where

𝑊 = 𝐷(𝐴
𝛾
0) , 𝛾

0
=
1 + 𝜃

2
. (65)

Then,

1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

+
1

2

𝑑

𝑑𝑡
(𝜇

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

)

+
1

2 (𝑝 + 1)

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2(𝑝+1)

=
1

2
𝜇
󸀠󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

+ ⟨𝑓,𝐴
−𝜃
𝑢
󸀠

𝑚
⟩
𝑊
󸀠
×𝑊

.

(66)

By Proposition 8 with 𝛾 = 0 and 𝛽 = −𝛾
0
and noting that

𝛾
0
− 𝜃 = (1 − 𝜃)/2, we obtain

⟨𝑓,𝐴
−𝜃
𝑤
𝑗
⟩
𝑊
󸀠
×𝑊

= (𝐴
−𝛾
0𝑓,𝐴

𝛾
0
−𝜃
𝑤
𝑗
) = (𝐴

−𝛾
0𝑓,𝐴

(1−𝜃)/2
𝑤
𝑗
) .

(67)

Substituting this equality into (66) and integrating on [0, 𝑡],
we obtain

1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󸀠

𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

2
𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

2 (𝑝 + 1)

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2(𝑝+1)

=
1

2
∫

𝑡

0

𝜇
󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

+ ∫

𝑡

0

(𝐴
−𝛾
0𝑓 (𝑠) , 𝐴

(1−𝜃)/2
𝑢
󸀠

𝑚
(𝑠)) 𝑑𝑠

+
1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
1

𝑚

󵄨󵄨󵄨󵄨󵄨

2

+
1

2
𝜇 (0)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
0

𝑚

󵄨󵄨󵄨󵄨󵄨

2

+
1

2 (𝑝 + 1)

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
0

𝑚

󵄨󵄨󵄨󵄨󵄨

2(𝑝+1)

.

(68)

Note that

1

2
∫

𝑡

0

𝜇
󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

≤ 2∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠
(𝑠)

󵄨󵄨󵄨󵄨󵄨

𝜇
0

[
1

4
𝜇 (𝑠)]

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(69)

Also

∫

𝑡

0

(𝐴
−𝛾
0𝑓 (𝑠) , 𝐴

(1−𝜃)/2
𝑢
󸀠

𝑚
(𝑠)) 𝑑𝑠

= (𝐴
−𝛾
0𝑓 (𝑡) , 𝐴

(1−𝜃)/2
𝑢
𝑚
(𝑡))

− (𝐴
−𝛾
0𝑓 (0) , 𝐴

(1−𝜃)/2
𝑢
0

𝑚
)

− ∫

𝑡

0

(𝐴
−𝛾
0𝑓

󸀠

(𝑠) , 𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑠)) 𝑑𝑠,

(70)

󵄨󵄨󵄨󵄨󵄨
(𝐴

−𝛾
0𝑓 (𝑡) ,A(1−𝜃)/2

𝑢
𝑚
(𝑡))

󵄨󵄨󵄨󵄨󵄨

≤
1

𝜇
0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐿
∞(0,𝑇;𝐷(𝐴−𝛾0))

+
1

4
𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

(𝐴
−𝛾
0𝑓

󸀠

(𝑠) , 𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

𝜇
0

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝛾
0𝑓

󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

+
1

4
∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝛾
0𝑓

󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
[𝜇 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠] .

(71)
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Substituting (69)–(71) into (68), we find

1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󸀠

𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

4
𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

2 (𝑝 + 1)

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2(𝑝+1)

≤ 2∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠
(𝑠)

󵄨󵄨󵄨󵄨󵄨

𝜇
0

[
1

4
𝜇 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

+𝑀 +
󵄨󵄨󵄨󵄨𝐴

−𝛾
0𝑓 (0)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
0󵄨󵄨󵄨󵄨󵄨
+ 𝑁

+
1

4
∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝛾
0𝑓

󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
[𝜇 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

+ 𝐸 (0) ,

(72)

where

𝑀 =
1

𝜇
0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐿
∞
(0,𝑇;𝐷(𝐴

−𝛾
0 ))
,

𝑁 =
1

𝜇
0

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑓
󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠,

𝐸 (0) =
1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
1󵄨󵄨󵄨󵄨󵄨

2

+
1

2
𝜇 (0)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
0󵄨󵄨󵄨󵄨󵄨

2

+
1

2 (𝑝 + 1)

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
0󵄨󵄨󵄨󵄨󵄨

2(𝑝+1)

.

(73)

Applying Gronwall inequality in (72), we deduce

1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󸀠

𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

4
𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

2 (𝑝 + 1)

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2(𝑝+1)

≤ (𝐸 (0) + 𝑀 +
󵄨󵄨󵄨󵄨𝐴

−𝛾
0𝑓 (0)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
0󵄨󵄨󵄨󵄨󵄨
+ 𝑁)

× exp∫
𝑇

0

[(2/𝜇
0
)|𝜇
󸀠

(𝑡)|+|𝐴
−𝛾
0𝑓
󸀠

(𝑡)|]𝑑𝑡
,

∀𝑡 ∈ [0, 𝑇] .

(74)

With this inequality, we determine a subsequence of (𝑢
𝑚
),

still denoted by (𝑢
𝑚
), and a function 𝑢 such that

𝑢
𝑚
󳨀→ 𝑢 weak star in 𝐿

∞
(0, 𝑇;𝐷 (𝐴

(1−𝜃)/2
)) ,

𝑢
󸀠

𝑚
󳨀→ 𝑢

󸀠 weak star in 𝐿
∞
(0, 𝑇;𝐷 (𝐴

−𝜃/2
)) .

(75)

By (13) we have that

𝐷(𝐴
(1−𝜃)/2

) is compactly embedding in 𝐷(𝐴
−𝜃/2

) (76)

(cf. [1] and [11]). Then convergences (75) and Aubin-Lions
Theorem (cf. [14]) imply

𝑢
𝑚
󳨀→ 𝑢 in 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−𝜃/2
)) . (77)

Therefore,
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2𝑝

󳨀→
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2𝑝

in 𝐿
∞

(0, 𝑇) . (78)

This convergence and convergence (75)
1
provide

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2𝑝

𝑢
𝑚
󳨀→

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2𝑝

𝑢

weak star in 𝐿
∞
(0, 𝑇;𝐷 (𝐴

(1−𝜃)/2
))

(79)

which implies
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2𝑝

𝑢
𝑚
󳨀→

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2𝑝

𝑢

weak star in 𝐿
∞
(0, 𝑇;𝐷 (𝐴

−𝛾
0))

(80)

since (1 − 𝜃)/2 > −𝛾
0
, 𝛾

0
defined in (65).

In order to obtain an estimate for (𝑢
󸀠󸀠

𝑚
), we apply the

method of projections to the approximate equation (61) (cf.
Lions [12]). Thus, we consider the orthogonal projection

𝑃
𝑚
: 𝐻 󳨀→ 𝑉

𝑚
⊂ 𝐻, 𝑃

𝑚
𝑧 =

𝑚

∑

𝑗=1

(𝑧, 𝑤
𝑗
)𝑤

𝑗
, (81)

where 𝑉
𝑚
is the subspace generated by 𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑚
.

By similar arguments employed to obtain (67) and by (54)
or (30), we find

⟨𝑓,𝑤
𝑗
⟩
𝐷(𝐴
−𝛾
0 )×𝐷(𝐴

𝛾
0 )
= (𝐴

−𝛾
0𝑓,𝐴

𝛾
0𝑤

𝑗
) = 𝜆

𝛾
0

𝑗
(𝐴

−𝛾
0𝑓,𝑤

𝑗
) .

(82)

Multiply both members of (61)
1
by 𝜆

−𝛾
0

𝑗
𝑤
𝑗
and add

from 𝑗 = 1 up to 𝑗 = 𝑚. Then, applying to this result,
expression (82), affirmation (54), or (30) and noting that
𝐴
−𝛾
0𝑢

󸀠󸀠

𝑚
, 𝐴−𝛾

0(𝐴𝑢
𝑚
), |𝐴−𝜃/2

𝑢
𝑚
|
2𝑝
𝐴
−𝛾
0𝑢

𝑚
belong to 𝑉

𝑚
, we

obtain

𝐴
−𝛾
0𝑢

󸀠󸀠

𝑚
+ 𝜇𝐴

−𝛾
0 (𝐴𝑢

𝑚
) +

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2𝑝

𝐴
−𝛾
0𝑢

𝑚

= 𝑃
𝑚
(𝐴

−𝛾
0𝑓)

(83)

which gives
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝛾
0𝑢

󸀠󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨
≤ 𝜇

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

+ 𝐶
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2𝑝 󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝐴

−𝛾
0𝑓
󵄨󵄨󵄨󵄨 .

(84)

Then estimates (74) and (80) provide

(𝑢
󸀠󸀠

𝑚
) is bounded in 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−𝛾
0)) . (85)

Thus, there exists a subsequence of (𝑢󸀠󸀠
𝑚
), still denoted by (𝑢󸀠󸀠

𝑚
),

such that

𝑢
󸀠󸀠

𝑚
󳨀→ 𝑢

󸀠󸀠 weak star in 𝐿
∞
(0, 𝑇;𝐷 (𝐴

−𝛾
0)) . (86)

Expressions (75) and (86) tell us that 𝑢 belongs to class
(16). Convergences (75)

1
, (80), and (86) allow us to pass to

limit in (83) and to obtain

𝐴
−𝛾
0𝑢

󸀠󸀠
+ 𝐴

−𝛾
0 (𝜇𝐴𝑢) +

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󵄨󵄨󵄨󵄨󵄨

2𝑝

𝐴
−𝛾
0𝑢 = 𝐴

−𝛾
0𝑓 (87)

which provides (17). Initial conditions (18) follow from
convergences (75) and (86).
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4. Proof of Theorem 3

The idea is to apply a fixed point argument to the problem

𝑢
󸀠󸀠

𝑘
+ 𝜇𝐴𝑢

𝑘
+ 𝑘𝑢

𝑘
= 𝑓 in (0, 𝑇) ,

𝑢
𝑘
(0) = 0, 𝑢

󸀠

𝑘
(0) = 𝑢

1
,

(88)

where 𝑘 ∈ R, 𝑘 ≥ 0.
We solve (88). Consider an approximate solution 𝑢

𝑘𝑚
of

(88) given by

𝑢
𝑘𝑚

(𝑡) =

𝑚

∑

𝑗=1

𝑔
𝑗𝑘𝑚

(𝑡) 𝑤
𝑗
, (89)

(𝑢
󸀠󸀠

𝑘𝑚
, 𝑤

𝑗
) + 𝜇 (𝐴𝑢

𝑘𝑚
, 𝑤

𝑗
) + 𝑘 (𝑢

𝑘𝑚
, 𝑤

𝑗
)

= ⟨𝑓,𝑤j⟩
𝐷(𝐴
𝛾
0 )
󸀠

×𝐷(𝐴
𝛾
0 )
, 𝑗 = 1, 2, . . . , 𝑚;

𝑢
𝑘𝑚

(0) = 0, 𝑢
󸀠

𝑘𝑚
(0) = 𝑢

1

𝑚
.

(90)

By similar arguments used to obtain (74), we derive
1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󸀠

𝑘𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

4
𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑘𝑚

(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
𝑘

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
𝑘𝑚

(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐿 exp∫
𝑇

0

𝑎(𝑡)𝑑𝑡
= 𝑅,

∀𝑡 ∈ [0,T] , ∀𝑘 ≥ 0, ∀𝑚,

(91)

where

𝐿 =
1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
1󵄨󵄨󵄨󵄨󵄨

2

+𝑀 +𝑁 (𝑀 and 𝑁 defined in (73)) ,

𝑎 (𝑡) =
2

𝜇
0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝛾
0𝑓

󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
.

(92)

The preceding inequality gives

(𝑢
𝑘𝑚
) is bounded in 𝐿

∞
(0, 𝑇;𝐷 (𝐴

(1−𝜃)/2
)) ,

∀𝑚, ∀𝑘 ≥ 0;

(𝑢
󸀠

𝑘𝑚
) is bounded in 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−𝜃/2
)) ,

∀𝑚, ∀𝑘 ≥ 0.

(93)

By the projection method, we obtain, as in (83),

𝐴
−𝛾
0𝑢

󸀠󸀠

𝑘𝑚
+ 𝜇𝐴

−𝛾
0 (𝐴𝑢

𝑘𝑚
) + 𝑘𝐴

−𝛾
0𝑢

𝑘𝑚
= 𝑃

𝑚
(𝐴

−𝛾
0𝑓) . (94)

This and estimate (91) provide

(𝑢
󸀠󸀠

𝑘𝑚
) is bounded in 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−𝛾
0)) , ∀𝑚. (95)

Estimates (93) and (95) allow us to find a subsequence of
(𝑢

𝑘𝑚
), still denoted by (𝑢

𝑘𝑚
), and a function 𝑢

𝑘
such that, by

passing to limit in (94), we obtain

𝐴
−𝛾
0𝑢

󸀠󸀠

𝑘
+ 𝐴

−𝛾
0𝜇 (𝐴𝑢

𝑘
) + 𝑘𝐴

−𝛾
0𝑢

𝑘

= 𝐴
−𝛾
0𝑓 in 𝐿

∞

(0, 𝑇;𝐻) .

(96)

This, initial conditions (90)
2
, and estimates (95) imply

𝑢
󸀠󸀠

𝑘
+ 𝜇𝐴𝑢

𝑘
+ 𝑘𝑢

𝑘
= 𝑓 in 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−𝛾
0)) ;

𝑢
𝑘
(0) = 0, 𝑢

󸀠

𝑘
(0) = 𝑢

1
.

(97)

By taking the lim inf in both side of (91), we obtain

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠

𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(0,𝑇;𝑍)

+
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝑌)

≤ 𝑃, ∀𝑘 ≥ 0. (98)

As 𝑌 󳨅→ 𝑋 󳨅→ 𝑍 and the embedding 𝑌 in𝑋 are compact
(𝜆 < (1 − 𝜃)/2), it follows from of Aubin-LionsTheorem (see
Simon [14]) that

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐶0([0,𝑇];𝑋)

≤ 𝑃
1
, ∀𝑘 ≥ 0. (99)

Define the map

𝜓 : [0,∞) 󳨀→ R, 𝜓 (𝑘) =
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩𝐶0([0,𝑇];𝑋)
, (100)

where 𝑢
𝑘
is the solution of Problem (97).We will prove that𝜓

has a fixed point. Consider only the case𝑓 ̸= 0.The case𝑓 = 0

is outside of our attention.Wewill prove the following results.

(I) One has 𝜓(0) > 0.

In fact if 𝜓(0) = 0, we have that 𝑢
0
= 0 is a solution of

(97) with 𝑘 = 0, but this a contradiction since 𝑓 ̸= 0.

(II) One has 𝜓 is continuous on [0,∞).

Let 𝑘
0
> 0. Consider 𝑘 > 0. By (94) and (90)

2
we obtain

𝑢
󸀠󸀠

𝑘𝑚
+ 𝜇𝐴𝑢

𝑘𝑚
+ 𝑘𝑢

𝑘𝑚
= 𝐴

𝛾
0𝑃

𝑚
(𝐴

−𝛾
0𝑓) ;

𝑢
𝑘𝑚

(0) = 0, 𝑢
󸀠

𝑘𝑚
(0) = 𝑢

1

𝑚
,

𝑢
󸀠󸀠

𝑘
0
𝑚
+ 𝜇𝐴𝑢

𝑘
0
𝑚
+ 𝑘

0
𝑢
𝑘
0
𝑚
= 𝐴

𝛾
0𝑃

𝑚
(𝐴

−𝛾
0𝑓) ,

𝑢
𝑘
0
𝑚
(0) = 0, 𝑢

󸀠

𝑘
0
𝑚
(0) = 𝑢

1

𝑚
.

(101)

Use the notation 𝑧
𝑚

= 𝑢
𝑘𝑚

− 𝑢
𝑘
0
𝑚
. Then the preceding

problems give

𝑧
󸀠󸀠

𝑚
+ 𝜇𝐴𝑧

𝑚
+ 𝑘

0
𝑧
𝑚
= − (𝑘 − 𝑘

0
) 𝑢

𝑘𝑚
;

𝑧
𝑚
(0) = 0, 𝑧

󸀠

𝑚
(0) = 0.

(102)

Taking the scalar product of 𝐻 of both sides of this
equation with 𝐴−𝜃

𝑧
󸀠

𝑚
, we find

1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑧
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

+
1

2

𝑑

𝑑𝑡
[𝜇
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚

󵄨󵄨󵄨󵄨󵄨

2

]

+
𝑘
0

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑧
𝑚

󵄨󵄨󵄨󵄨󵄨

2

=
1

2
𝜇
󸀠󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚

󵄨󵄨󵄨󵄨󵄨

2

− (𝑘 − 𝑘
0
) (𝑢

𝑘𝑚
, 𝐴

−𝜃
𝑧
󸀠

𝑚
) .

(103)

We have

(𝑢
𝑘𝑚
, 𝐴

−𝜃
𝑧
󸀠

𝑚
) = (𝐴

−𝛾
0𝑢

𝑘𝑚
, 𝐴

(1−𝜃)/2
𝑧
󸀠

𝑚
) . (104)
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Integrating on [0, 𝑡] both sides of the last two expressions, we
derive

1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑧
󸀠

𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

2
𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
𝑘
0

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑧
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

=
1

2
∫

𝑡

0

𝜇
󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠

− (𝑘 − 𝑘
0
) ∫

𝑡

0

(𝐴
−𝛾
0𝑢

𝑘𝑚
(𝑠) , 𝐴

(1−𝜃)/2
𝑧
󸀠

𝑚
(𝑠)) 𝑑𝑠.

(105)

We obtain

∫

𝑡

0

(𝐴
−𝛾
0𝑢

𝑘𝑚
(𝑠) , 𝐴

(1−𝜃)/2
𝑧
󸀠

𝑚
(𝑠)) 𝑑𝑠

= (𝐴
−𝛾
0𝑢

𝑘𝑚
(𝑡) , 𝐴

(1−𝜃)/2
𝑧
𝑚
(𝑡))

− ∫

𝑡

0

(𝐴
−𝛾
0𝑢

󸀠

𝑘𝑚
(𝑠) , 𝐴

(1−𝜃)/2
𝑧
𝑚
(𝑠)) 𝑑𝑠.

(106)

As (1 − 𝜃)/2 > −𝛾
0
, we have

󵄨󵄨󵄨󵄨󵄨
(𝐴

−𝛾
0𝑢

𝑘𝑚
(𝑡) , 𝐴

(1−𝜃)/2
𝑧
𝑚
(𝑡))

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑘𝑚

(𝑡)
󵄩󵄩󵄩󵄩󵄩
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
𝐶
2

2𝜇
0

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑢
𝑘𝑚

(𝑡)
󵄨󵄨󵄨󵄨󵄨
+
1

2
𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

.

(107)

Also,

(𝐴
−𝛾
0𝑢

󸀠

𝑘𝑚
, 𝐴

(1−𝜃)/2
𝑧
𝑚
) = (𝐴

−𝜃/2
𝑢
󸀠

𝑘𝑚
, 𝐴

−𝜃/2
𝑧
𝑚
) , (108)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

(𝐴
−𝛾
0𝑢

󸀠

𝑘𝑚
(𝑠) , 𝐴

(1−𝜃)/2
𝑧
𝑚
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󸀠

𝑘𝑚
(𝑠)

󵄩󵄩󵄩󵄩󵄩
𝐴
−𝜃/2

𝑧
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ ∫

𝑡

0

𝐶
󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󸀠

𝑘𝑚
(𝑠)

󵄩󵄩󵄩󵄩󵄩
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤
𝐶
2

2𝜇
0

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑢
󸀠

𝑘𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

+
1

2
∫

𝑡

0

𝜇 (𝑠)
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(109)

Taking into account estimate (91) in (107) and (109), we
find

󵄨󵄨󵄨󵄨󵄨
(𝐴

−𝛾
0𝑢

𝑘𝑚
(𝑡) , 𝐴

(1−𝜃)/2
𝑧
𝑚
(𝑡))

󵄨󵄨󵄨󵄨󵄨

≤
2𝐶

2
𝑅

𝜇2
0

+
1

2
𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

(𝐴
−𝛾
0𝑢

󸀠

𝑘𝑚
(𝑠) , 𝐴

(1−𝜃)/2
𝑧
𝑚
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶
2
𝑅𝑇

𝜇
0

+
1

2
∫

𝑡

0

𝜇 (𝑠)
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(110)

Substituting the last two inequalities into (106), we obtain

󵄨󵄨󵄨󵄨𝑘 − 𝑘
0

󵄨󵄨󵄨󵄨 ∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
(𝐴

−𝛾
0𝑢

𝑘𝑚
(𝑠) , 𝐴

(1−𝜃)/2
𝑧
󸀠

𝑚
(𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤
2𝐶

2
𝑅

𝜇2
0

󵄨󵄨󵄨󵄨𝑘 − 𝑘
0

󵄨󵄨󵄨󵄨

+
1

2

󵄨󵄨󵄨󵄨𝑘 − 𝑘
0

󵄨󵄨󵄨󵄨 𝜇 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
𝐶
2
𝑅𝑇

𝜇
0

󵄨󵄨󵄨󵄨𝑘 − 𝑘
0

󵄨󵄨󵄨󵄨

+
1

2

󵄨󵄨󵄨󵄨𝑘 − 𝑘
0

󵄨󵄨󵄨󵄨 ∫

𝑡

0

𝜇 (𝑠)
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(111)

Combining this inequality with (105), we derive

1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑧
󸀠

𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
(1 −

󵄨󵄨󵄨󵄨𝑘 − 𝑘
0

󵄨󵄨󵄨󵄨)

2
𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
𝑘
0

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑧
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

≤
1

2𝜇
0

∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
[𝜇 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑠

+ [
2𝐶

2
𝑅

𝜇2
0

+
𝐶
2

𝜇
0

𝑅𝑇]
󵄨󵄨󵄨󵄨𝑘 − 𝑘

0

󵄨󵄨󵄨󵄨

+
1

2

󵄨󵄨󵄨󵄨𝑘 − 𝑘
0

󵄨󵄨󵄨󵄨 ∫

𝑡

0

𝜇 (𝑠)
󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(112)

Considering |𝑘−𝑘
0
| < 1/2 and using the Gronwall inequality,

this expression gives

1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑧
󸀠

𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

4
𝜇
0

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

𝑧
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
𝑘
0

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

𝑧
𝑚
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑅
1

󵄨󵄨󵄨󵄨𝑘 − 𝑘
0

󵄨󵄨󵄨󵄨 ,

∀𝑡 ∈ [0, 𝑇] ,

(113)
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where the constant 𝑅
1
> 0 is independent of𝑚 and 𝑘. Taking

the lim inf in both sides of this inequality, we find

1

2

󵄨󵄨󵄨󵄨󵄨
𝐴
−𝜃/2

(𝑢
󸀠

𝑘
(𝑡) − 𝑢

󸀠

𝑘
0

(𝑡))
󵄨󵄨󵄨󵄨󵄨

2

+
𝜇
0

4

󵄨󵄨󵄨󵄨󵄨
𝐴
(1−𝜃)/2

(𝑢
𝑘
(𝑡) − 𝑢

𝑘
0

(𝑡))
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝑅
1

󵄨󵄨󵄨󵄨𝑘 − 𝑘
0

󵄨󵄨󵄨󵄨 , ∀𝑡 ∈ [0, 𝑇] .

(114)

By Simon [14] and noting that the embedding of 𝑌 in 𝑋 is
compact, we derive

𝑢
𝑘
󳨀→ 𝑢

𝑘
0

in 𝐶
0

([0, 𝑇] ; 𝑋) , 𝑘 󳨀→ 𝑘
0
. (115)

Thus.
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩𝐶0([0,𝑇];𝑋)
󳨀→

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
0

󵄩󵄩󵄩󵄩󵄩𝐶0([0,𝑇];𝑋)
, 𝑘 󳨀→ 𝑘

0 (116)

which proves the continuity of 𝜓 at 𝑘
0
> 0. In similar way we

prove the continuity of 𝜓 at 𝑘
0
= 0.

(III) One has 𝜓(𝑘) → 0 as 𝑘 → ∞.

Let (𝑘
𝑙
) be a sequence of positive numbers with 𝑘

𝑙
→ ∞.

It follows from (98) and the compactness of the embedding
of 𝑌 in𝑋 that there exists a subsequence of (𝑘

𝑙
), still denoted

by (𝑘
𝑙
), and a function 𝜒 such that

𝑢
𝑘
𝑙

󳨀→ 𝜒 in 𝐶
0

([0, 𝑇] ; 𝑋) . (117)

This implies

𝑢
𝑘
𝑙

󳨀→ 𝜒 in 𝐿
2

(0, 𝑇; 𝑍) . (118)

By estimate (91), we obtain

𝑘

2

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩
2

𝐿
2
(0,𝑇;𝑍)

≤ 𝑅, ∀𝑘 ≥ 0. (119)

Then

𝑢
𝑘
𝑙

󳨀→ 0 in 𝐿
2

(0, 𝑇; 𝑍) . (120)

Convergences (118) and (120) provide

𝜒 = 0. (121)

Thus by (117) we find

𝑢
𝑘
𝑙

󳨀→ 0 in 𝐶
0

([0, 𝑇] ; 𝑋) . (122)

As the sequence (𝑘
𝑙
) was arbitrary and the limit of (𝑢

𝑘
𝑙

) is
always the same, we conclude that

𝑢
𝑘
󳨀→ 0 in 𝐶

0

([0, 𝑇] ; 𝑋) , 𝑘 󳨀→ ∞. (123)

Thus
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩𝐶0([0,𝑇];𝑋)
󳨀→ 0, 𝑘 󳨀→ ∞ (124)

which proves part (III).

By (I)–(III), we deduce that there exists 𝑘 > 0, 𝑘 ∈ R such
that

𝜓 (𝑘) = 𝑘. (125)

Considering this 𝑘 in (97), we obtain a solution 𝑢 of (22) that
satisfies all conditions of the theorem.

The proof of Corollary 5 follows by defining the map

𝜓 : [0,∞) 󳨀→ R, 𝜓 (𝑘) =
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩
𝑝

𝐿
𝑝
(0,𝑇;𝑋)

, (126)

where 𝑢
𝑘
is the solution of the problem

𝑢
󸀠󸀠

𝑘
+ 𝜇𝐴𝑢

𝑘
+ 𝑘𝑢

𝑘
= 𝑓 in 𝐿

∞
(0, 𝑇;𝐷 (𝐴

−(1+𝜃)/2
)) ;

𝑢 (0) = 0, 𝑢
󸀠

(0) = 𝑢
1
,

(127)

and applying similar arguments to those used in the proof of
Theorem 3.

5. Proof of Theorem 6

Let 𝑢 and 𝑧 be solutions of Problem (26) with 𝑢 and 𝑧 in class
(25). Consider 𝑤 = 𝑢 − 𝑧. Then by (26) we have

𝑤
󸀠󸀠
+ 𝜇𝐴𝑤 + |𝑢|

2𝑝
𝑤 + (|𝑢|

2𝑝
− |𝑧|

2𝑝
) 𝑧

= 0 in 𝐿
∞
(0, 𝑇;𝐷 (𝐴

−1/2
)) ,

𝑤 (0) = 0, 𝑤
󸀠

(0) = 0.

(128)

Fix 0 < 𝑠 ≤ 𝑇. Consider 0 ≤ 𝑡 ≤ 𝑠. Introduce the function

𝑦 (𝑡) = ∫

𝑡

𝑠

𝑤 (𝜏) 𝑑𝜏. (129)

We have

𝑦 ∈ 𝐶
0
([0, 𝑠] ; 𝐷 (𝐴

1/2
)) ;

𝑦 (𝑠) = 0, 𝑦
󸀠

(𝑡) = 𝑤 (𝑡) a.e. 𝑡 ∈ (0, 𝑠) ;

𝐴
1/2
𝑦 (𝑡) = ∫

𝑡

𝑠

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏, 𝐴

1/2
𝑦
󸀠

(𝑡) = 𝐴
1/2
𝑤 (𝑡) ;

𝑦 (𝑡) = −∫

𝑠

0

𝑤 (𝜏) 𝑑𝜏 + ∫

𝑡

0

𝑤 (𝜏) 𝑑𝜏.

(130)

Apply the operator given by the firstmember of (128)
1
to𝑦(𝑡).

We obtain

⟨𝑤
󸀠󸀠

(𝑡) , 𝑦 (𝑡)⟩
𝐸
󸀠
×𝐸

+ 𝜇 (𝑡) ⟨𝐴𝑤 (𝑡) , 𝑦 (𝑡)⟩
𝐸
󸀠
×𝐸

+ |𝑢 (𝑡)|
2𝑝
(𝑤 (𝑡) , 𝑦 (𝑡))

+ (|𝑢 (𝑡)|
2𝑝
− |𝑧 (𝑡)|

2𝑝
) (𝑧 (𝑡) , 𝑦 (𝑡))

= 0, a.e. 𝑡 ∈ (0, 𝑠) ,

(131)
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where 𝐸 = 𝐷(𝐴
1/2
). By (130)

2
, we find

⟨𝑤
󸀠󸀠

(𝑡) , 𝑦 (𝑡)⟩
𝐸
󸀠
×𝐸

=
𝑑

𝑑𝑡
⟨𝑤

󸀠

(𝑡) , 𝑤 (𝑡)⟩ −
1

2

𝑑

𝑑𝑡
|𝑤 (𝑡)|

2
.

(132)

Also by (130)
3
,

𝜇 (𝑡) ⟨𝐴𝑤 (𝑡) , 𝑦 (𝑡)⟩
𝐸
󸀠
×𝐸

=
1

2

𝑑

𝑑𝑡
[𝜇 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝐴
1/2
𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

]

−
1

2
𝜇
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝐴
1/2
𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

.

(133)

Integrate (131) on [0, 𝑠] and use (128)
1
, (130), (132), and (133).

We deduce

1

2
|𝑤 (𝑠)|

2
+
1

2
𝜇 (0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

𝐴
1/2
𝑤 (𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= −
1

2
∫

𝑠

0

𝜇
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝐴
1/2
𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

+ ∫

𝑠

0

|𝑢 (𝑡)|
2𝑝
(𝑤 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡

+ ∫

𝑠

0

[|𝑢 (𝑡)|
2𝑝
− |𝑧 (𝑡)|

2𝑝
] (𝑧 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡.

(134)

Wemodify each termof the secondmember of (134).Wehave

𝐴
1/2
𝑦 (𝑡) = ∫

𝑡

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏 − ∫

𝑠

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏. (135)

Then

∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠

(𝑡)
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2
𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 2∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

+ 2∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 2∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝜇
0

𝜇 (0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

+ 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡.

(136)

First, we assume that 𝜇󸀠 ̸= 0. In this case, we choose 𝑠
0

=

min{𝜇(0)/8‖𝜇󸀠‖
𝐿
∞
(0,𝑇)

, 1, 𝑇} > 0. We have

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤
1

4
𝜇 (0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

,

0 ≤ 𝑠 ≤ 𝑠
0
.

(137)

Combining this last inequality with (136), we find

∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠

(𝑡)
󵄩󵄩󵄩󵄩󵄩
𝐴
1/2
𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

≤ 2∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝜇
0

[𝜇 (0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]𝑑𝑡

+
1

4
𝜇 (0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

, 0 ≤ 𝑠 ≤ 𝑠
0
.

(138)

We introduce the notations

‖𝑢‖
𝐿
∞
(0,𝑇;𝐻)

≤ 𝑆
1
, ‖𝑧‖

𝐿
∞
(0,𝑇;𝐻)

≤ 𝑆
2
. (139)

(Note that 𝑤 ∈ 𝐶
0
([0, 𝑇];𝐻) since 𝑤 belongs to class (25)).

We have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

|𝑢 (𝑡)|
2𝑝
(𝑤 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2
𝑆
2𝑝

1
∫

𝑠

0

|𝑤 (𝑡)|
2
𝑑𝑡 +

1

2
𝑆
2𝑝

1
∫

𝑠

0

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡.

(140)

By (130)
4
, we obtain

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨
2

≤ 2[∫

𝑠

0

|𝑤 (𝜏)| 𝑑𝜏]

2

+ 2[∫

𝑡

0

|𝑤 (𝜏)| 𝑑𝜏]

2

≤ 4𝑠∫

𝑠

0

|𝑤 (𝜏)|
2
𝑑𝜏.

(141)

Therefore

∫

𝑠

0

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡 ≤ 4𝑠
2
∫

𝑠

0

|𝑤 (𝑡)|
2
𝑑𝑡. (142)

Combining (140) and (142), we deduce
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

|𝑢 (𝑡)|
2𝑝
(𝑤 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑆
2𝑝

1
∫

𝑠

0

1

2
|𝑤 (𝑡)|

2
𝑑𝑡 + 4𝑆

2𝑝

1
𝑠
2
∫

𝑠

0

1

2
|𝑤 (𝑡)|

2
𝑑𝑡.

(143)

The preceding inequality with 0 ≤ 𝑠 ≤ 𝑠
0
gives

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

|𝑢 (𝑡)|
2𝑝
(𝑤 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 5𝑆

2𝑝

1
∫

𝑠

0

1

2
|𝑤 (𝑡)|

2
𝑑𝑡. (144)

On the other hand,

|𝑢 (𝑡)|
2𝑝
− |𝑧 (𝑡)|

2𝑝
= (|𝑢 (𝑡)|

𝑝
+ |𝑧 (𝑡)|

𝑝
) (|𝑢 (𝑡)|

𝑝
− |𝑧 (𝑡)|

𝑝
) ,

󵄨󵄨󵄨󵄨|𝑢 (𝑡)|
𝑝
− |𝑧 (𝑡)|

𝑝󵄨󵄨󵄨󵄨 ≤ 𝑝(𝑆
1
+ 𝑆

2
)
𝑝−1

|𝑤 (𝑡)| .

(145)

Hence,
󵄨󵄨󵄨󵄨󵄨
|𝑢 (𝑡)|

2𝑝
− |𝑧 (𝑡)|

2𝑝󵄨󵄨󵄨󵄨󵄨
≤ 𝑁 |𝑤 (𝑡)| , (146)

where

𝑁 = 𝑝 (𝑆
𝑝

1
+ 𝑆

𝑝

2
) (𝑆

1
+ 𝑆

2
)
𝑝−1

. (147)
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Thus estimate (146) gives

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

(|𝑢 (𝑡)|
2𝑝
− |𝑧 (𝑡)|

2𝑝
) (𝑧 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑁𝑆
2
∫

𝑠

0

|𝑤 (𝑡)|
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡

≤ 𝑁𝑆
2
∫

𝑠

0

1

2
|𝑤 (𝑡)|

2
𝑑𝑡 +

1

2
𝑁𝑆

2
∫

𝑠

0

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡.

(148)

This expressions, (142), and 0 ≤ 𝑠 ≤ 𝑠
0
provide

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

(|𝑢 (𝑡)|
2𝑝
− |𝑧 (𝑡)|

2𝑝
) (𝑧 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 5𝑁𝑆
2
∫

𝑠

0

1

2
|𝑤 (𝑡)|

2
𝑑𝑡.

(149)

Combining inequalities (138), (144), and (149) with inequality
(134), we obtain

1

2
|𝑤 (𝑠)|

2
+
1

4
𝜇 (0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑠

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 2∫

𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝜇
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝜇
0

[𝜇 (0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝐴
1/2
𝑤 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]𝑑𝑡

+ (5𝑆
2𝑝

1
+ 5𝑁𝑆

2
)∫

𝑠

0

1

2
|𝑤 (𝑡)|

2
𝑑𝑡, 0 ≤ 𝑠 ≤ 𝑠

0
.

(150)

This implies

𝑤 (𝑠) = 0, 0 ≤ 𝑠 ≤ 𝑠
0
. (151)

We will prove that 𝑤󸀠
(𝑠

0
) = 0. In fact as 𝑤 belongs to

class (25) we have that𝑤󸀠
∈ 𝐶

0

𝑠
([0, 𝑠

0
];𝐻); that is, (𝑤󸀠

(𝑡), 𝜉) is
continuous on [0, 𝑠

0
] for all 𝜉 ∈ 𝐻. Consider 𝜉 ∈ 𝐷(𝐴). Then

by (128)
1
we obtain

⟨𝑤
󸀠󸀠

(𝑡) , 𝜉⟩
𝐸
󸀠
×𝐸

+ ⟨𝐴𝑤 (𝑡) , 𝜉⟩
𝐸
󸀠
×𝐸

+ |𝑢 (𝑡)|
2𝑝

(𝑤 (𝑡) , 𝜉)

+ (|𝑢 (𝑡)|
2𝑝
− |𝑧 (𝑡)|

2𝑝
) (𝑧 (𝑡) , 𝜉)

= 0, a.e. 𝑡 ∈ (0, 𝑠
0
) .

(152)

Integrating this equality on [0, 𝑠
0
] and using (151), we derive

(𝑤
󸀠
(𝑠

0
) , 𝜉) + ∫

𝑠
0

0

(|𝑢 (𝑡)|
2𝑝
− |𝑧 (𝑡)|

2𝑝
) (𝑧 (𝑡) , 𝜉) 𝑑𝑡 = 0.

(153)

This, (146), and (151) give

󵄨󵄨󵄨󵄨󵄨
(𝑤

󸀠
(𝑠

0
) , 𝜉)

󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝑠
0

0

󵄨󵄨󵄨󵄨󵄨
(|𝑢 (𝑡)|

2𝑝
− |𝑧 (𝑡)|

2𝑝
) ‖𝑧 (𝑡)‖ 𝜉

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤ ∫

1

0

𝑁
󵄨󵄨󵄨󵄨𝑤 (𝑡) ‖𝑧 (𝑡)‖ 𝜉

󵄨󵄨󵄨󵄨 𝑑𝑡 = 0.

(154)

Therefore, (𝑤󸀠
(𝑠

0
), 𝜉) = 0 for all 𝜉 ∈ 𝐷(𝐴). By density we

obtain (𝑤
󸀠
(𝑠

0
), 𝜉) = 0 for all 𝜉 ∈ 𝐻. Thus 𝑤󸀠

(𝑠
0
) = 0. Note

that the constants 𝑆
1
, 𝑆

2
, and 𝑁 given, respectively, by (139)

and (147) are independent of 0 ≤ 𝑠 ≤ 𝑠
0
.

We apply similar arguments to the problem

𝑤
󸀠󸀠
+ 𝐴𝑤 + |𝑢|

2𝑝
𝑤 + (|𝑢|

2𝑝
− |𝑧|

2𝑝
) 𝑧

= 0 in 𝐿
∞
(𝑠

0
, 2𝑠

0
; 𝐷 (𝐴

−1/2
)) ,

𝑤 (𝑠
0
) = 0, 𝑤

󸀠
(𝑠

0
) = 0

(155)

and we obtain𝑤(𝑠) = 0 for 𝑠
0
≤ 𝑠 ≤ 2𝑠

0
. After a finite number

of steps we proof that 𝑤(𝑠) = 0 for 0 ≤ 𝑠 ≤ 𝑇.
When 𝜇

󸀠
= 0, that is, 𝜇(𝑡) = 𝜇

0
, for all 𝑡 ∈ [0, 𝑇],

expressions (144), (149), and similar arguments used to obtain
the preceding result, allow us to deduce the uniqueness of
solutions in this case.

6. Applications

Let Ω be an open bounded set of R𝑛 with boundary Γ of
class 𝐶∞. Let 𝐴 = −Δ be the self-adjoint operator defined by
the triplet {𝐻1

0
(Ω), 𝐿

2
(Ω), ((𝑢, V))}, where ((𝑢, V)) denotes the

usual scalar product of𝐻1

0
(Ω). The norm of 𝐿2(Ω) is denoted

by |𝑢|.

Lemma 11. Let 𝜃 ≥ −1 be a real number. Then, 𝐷(𝐴(1+𝜃)/2
) is

contained in𝐻1+𝜃
(Ω) and

𝑡ℎ𝑒 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑜𝑓 𝐷 (A(1+𝜃)/2
) 𝑖𝑛 𝐻

1+𝜃

(Ω) 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠.

(156)

Proof. First we prove (156) when (1 + 𝜃)/2 = 𝑚, 𝑚 a natural
number. More precisely, we prove that if 𝑢 ∈ 𝐷(𝐴

𝑚
), then

𝑢 ∈ 𝐻
2𝑚
(Ω) and

‖𝑢‖
𝐻
2𝑚
(Ω)

≤ 𝐶
𝑚

󵄨󵄨󵄨󵄨𝐴
𝑚
𝑢
󵄨󵄨󵄨󵄨 . (157)

To prove (157), we use themethod ofmathematical induction.
Consider 𝑚 = 1 and 𝑢 ∈ 𝐷(𝐴). Then, by the regularity of
solutions of elliptic problems, we obtain 𝑢 ∈ 𝐻

2
(Ω) and

‖𝑢‖
𝐻
2
(Ω)

≤ 𝐶
1
|𝐴𝑢| . (158)

Assume that (157) holds for 𝑚 = ℎ. Consider 𝑢 ∈ 𝐷(𝐴
ℎ+1

).
Then, 𝐴𝑢 ∈ 𝐷(𝐴

ℎ
). By induction hypothesis it follows that

𝐴𝑢 ∈ 𝐻
2ℎ
(Ω) and

‖𝐴𝑢‖
𝐻
2ℎ
(Ω)

≤ 𝐶
ℎ

󵄨󵄨󵄨󵄨󵄨
𝐴
ℎ

(𝐴𝑢)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝐴
ℎ+1

𝑢
󵄨󵄨󵄨󵄨󵄨
. (159)

Consider the problem

𝐴𝑢 = 𝑔 in Ω,

𝑢 = 0 on Γ,

(160)

where 𝑔 = 𝐴𝑢. As 𝑔 ∈ 𝐻
2ℎ
(Ω), by the regularity of solutions

of elliptic problems, we have 𝑢 ∈ 𝐻
2ℎ+2

(Ω) and

‖𝑢‖
𝐻
2ℎ+2

(Ω)
≤ 𝐶

∗

‖𝐴𝑢‖
𝐻
2ℎ
(Ω)

. (161)
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Inequalities (159) and (161) provide

‖𝑢‖
𝐻
2ℎ+2

(Ω)
≤ 𝐶

∗
𝐶
ℎ

󵄨󵄨󵄨󵄨󵄨
𝐴
ℎ+1

𝑢
󵄨󵄨󵄨󵄨󵄨
= 𝐶

ℎ+1

󵄨󵄨󵄨󵄨󵄨
𝐴
ℎ+1

𝑢
󵄨󵄨󵄨󵄨󵄨
. (162)

This and (158) prove (157).
Next we use the interpolation of Hilbert spaces. Consider

a natural number 𝑚 such that 2𝑚 > 1 + 𝜃. By results of
intermediate spaces, we have

[𝐻
2𝑚

(Ω) , 𝐿
2

(Ω)]
𝛾
= 𝐻

(1−𝛾)2𝑚

(Ω) , 0 ≤ 𝛾 ≤ 1. (163)

(cf. Lions and Magenes [8]). We have by (157) that the
injections

𝐷(𝐴
𝑚
) 󳨀→ 𝐻

2𝑚
(Ω) ,

𝐷 (𝐴
0
) = 𝐿

2
(Ω) 󳨀→ 𝐿

2
(Ω)

(164)

are continuous. Then, by interpolation of Hilbert spaces, we
have that the injection

[𝐷 (𝐴
𝑚
) , 𝐿

2

(Ω)]
𝛾
󳨀→ [𝐻

2𝑚

(Ω) , 𝐿
2

(Ω)]
𝛾
, 0 ≤ 𝛾 ≤ 1

(165)

is continuous. We choose 𝛾
0
= 1− (1+ 𝜃)/2𝑚. Then, by (163),

we obtain

[𝐻
2𝑚

(Ω) , 𝐿
2

(Ω)]
𝛾
0

= 𝐻
1+𝜃

(Ω) . (166)

Also

[𝐷 (𝐴
𝑚
) , 𝐿

2

(Ω)]
𝛾
0

= 𝐷(𝐴
(1+𝜃)/2

) . (167)

These last two equalities and (165) give the lemma.

Consider the operator 𝛿(𝑥−𝑥
0
), 𝑥

0
∈ Ω. For 𝜃 > (𝑛/2)−1;

we have that

𝐻
1+𝜃

(Ω) 󳨅→ 𝐶
0
(Ω) . (168)

This embedding and (156) imply that

the embedding of 𝐷(A(1+𝜃)/2
) in 𝐶

0
(Ω)

is continuous (𝜃 >
𝑛

2
− 1) .

(169)

Define

⟨𝛿 (𝑥 − 𝑥
0
) , 𝜑⟩ = 𝜑 (𝑥

0
) , 𝜑 ∈ 𝐷 (𝐴

(1+𝜃)/2
) . (170)

By (169) we have that 𝛿(𝑥 − 𝑥
0
) ∈ 𝐷(𝐴

−(1+𝜃)/2
). Thus, for

𝑓 = V𝛿 (𝑥 − 𝑥
0
) with V ∈ 𝑊

1,1

(0, 𝑇) ,

𝛿 (𝑥 − 𝑥
0
) ∈ 𝐷 (𝐴

−(1+𝜃)/2
) (𝜃 >

𝑛

2
− 1) ,

(171)

Theorems 1 and 3 give, respectively, solutions 𝑢 of problems
(14) and (22).

Consider (171) for the particular case 𝜃 = 0. Then
Theorems 1 and 6 provide a unique solution 𝑢 of the problem

𝑢
𝑡𝑡
− 𝜇𝑢

𝑥𝑥
+ (∫

𝑏

𝑎

|𝑢|
2
𝑑𝑥)

𝑝

𝑢

= V𝛿 (𝑥 − 𝑥
0
) in (𝑎, 𝑏) × (0, 𝑇) (𝑝 ≥ 1) ;

𝑢 (𝑎, 𝑡) = 𝑢 (𝑏, 𝑡) = 0, 𝑡 ∈ (0, 𝑇) ;

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) , 𝑢
𝑡
(𝑥, 0) = 𝑢

1

(𝑥) , 𝑥 ∈ (𝑎, 𝑏) .

(172)

On the other hand, we have𝑋 = 𝐿
2
(Ω) if 𝜆 = 0 (𝑋 defined in

(21)). In this case −𝜃/2 ≤ 0 < (1 − 𝜃)/2, that is, 0 ≤ 𝜃 < 1. The
two restrictions 𝜃 > 𝑛/2 − 1 and 0 ≤ 𝜃 < 1 give, respectively,
for 𝑛 = 1, 2, and 3 the variations 0 ≤ 𝜃 < 1, 0 < 𝜃 < 1, and
1/2 < 𝜃 < 1. In all three cases, Corollary 5 gives a solution 𝑢

of the problem

𝑢
󸀠󸀠
− 𝜇Δ𝑢 + [∫

𝑇

0

(∫
Ω

|𝑢|
2
𝑑𝑥)

𝑝/2

𝑑𝑡] 𝑢

= V𝛿 (𝑥 − 𝑥
0
) in Ω × (0, 𝑇) (𝑝 ≥ 1) ;

𝑢 = 0 in Γ × (0, 𝑇) ;

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) , 𝑢
󸀠

(𝑥, 0) = 𝑢
1

(𝑥) , 𝑥 ∈ Ω,

(173)

whereΩ is an open bounded set of R𝑛, 𝑛 = 1, 2, 3.
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[1] J.-L. Lions, Équations aux Dérivées Partielles-Interpolation. Vol.
I, EDP Sciences, Les Ulis, Paris, France, 2003, Oeuvres choisies
de Jacques Louis Lions, 2003.

[2] J.-L. Lions, Some Methods in the Mathematical Analysis of
System andTheir Control, Science Press, Beijing, China; Gordon
Breach, Science Publishers, New York, NY, USA, 1981.

[3] C. Grotta Ragazzo, “Chaos and integrability in a nonlinear wave
equation,” Journal of Dynamics and Differential Equations, vol.
6, no. 1, pp. 227–244, 1994.

[4] L. I. Schiff, “Nonlinear meson theory of nuclear forces. I. Neu-
tral scalar mesons with point-contact repulsion,” The Physical
Reviews, vol. 84, no. 1, pp. 1–9, 1951.

[5] K. Jörgens, “Des aufangswert problem in grossen für eine klasse
nichtlinearer wellengleichungen,” Mathematische Zeitschrift,
vol. 77, pp. 295–308, 1971.
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