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The Kalman filter gain arises in linear estimation and is associated with linear systems. The gain is a matrix through which the
estimation and the prediction of the state as well as the corresponding estimation and prediction error covariance matrices are
computed. For time invariant and asymptotically stable systems, there exists a steady state value of the Kalman filter gain. The
steady state Kalman filter gain is usually derived via the steady state prediction error covariance by first solving the corresponding
Riccati equation. In this paper, we present iterative per-step and doubling algorithms as well as an algebraic algorithm for the steady
state Kalman filter gain computation. These algorithms hold under conditions concerning the system parameters. The advantage
of these algorithms is the autonomous computation of the steady state Kalman filter gain.

1. Introduction

The Kalman filter gain arises in Kalman filter equations in
linear estimation and is associated with linear systems. State
space systems have been widely used in estimation theory
to describe discrete time systems [1–5]. It is known [1] for
time invariant systems that if the signal process model is
asymptotically stable, then there exists a steady state value of
the Kalman filter gain.Thus, the steady state gain is associated
with time invariant systems described by the following state
space equations:

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝑤𝑘,

𝑧𝑘 = 𝐻𝑥𝑘 + V𝑘,
(1)

for 𝑘 ≥ 0, where 𝑥𝑘 is the 𝑛-dimensional state vector at time
𝑘, 𝑧𝑘 is the𝑚-dimensional measurement vector at time 𝑘, 𝐹 is
the 𝑛×𝑛 system transitionmatrix,𝐻 is the𝑚×𝑛 outputmatrix,
𝑤𝑘 is the plant noise at time 𝑘, and V𝑘 is the measurement
noise at time 𝑘. Also, {𝑤𝑘} and {V𝑘} are Gaussian zero-mean

white random processes with covariance matrices 𝑄 and 𝑅,
respectively.

The discrete time Kalman filter [1, 6] is the most well-
known algorithm that solves the filtering problem. In fact,
Kalman filter faces simultaneously two problems as follows.

(i) Estimation: the aim is to recover at time 𝑘 information
about the state vector at time 𝑘 using measurements
up till time 𝑘.

(ii) Prediction: the aim is to obtain at time 𝑘 information
about the state vector at time 𝑘 + 1 using measure-
ments up till time 𝑘; it is clear that prediction is related
to the forecasting side of information processing.

Kalman filter uses the measurements up till time 𝑘 in order
to produce the (one step) prediction of the state vector and
the corresponding prediction error covariance matrix 𝑃𝑘+1/𝑘,
as well as producing the estimation of the state vector and
the corresponding estimation error covariance matrix 𝑃𝑘/𝑘.
The Kalman filter equations needed for the computation of

Hindawi Publishing Corporation
ISRN Applied Mathematics
Volume 2014, Article ID 417623, 10 pages
http://dx.doi.org/10.1155/2014/417623

http://dx.doi.org/10.1155/2014/417623


2 ISRN Applied Mathematics

the prediction and estimation error covariance matrices are
as follows:

𝐾𝑘 = 𝑃𝑘/𝑘−1𝐻
𝑇
[𝐻𝑃𝑘/𝑘−1𝐻

𝑇
+ 𝑅]

−1

, (2)

𝑃𝑘/𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘/𝑘−1, (3)

𝑃𝑘+1/𝑘 = 𝑄 + 𝐹𝑃𝑘/𝑘𝐹
𝑇
, (4)

for 𝑘 ≥ 0, with initial condition 𝑃0/−1 = 𝑃0 for the time
instant, where there are no measurements given. Note that
𝐾𝑘 is the Kalman filter gain.

From (2) to (4), we are able to derive the Riccati equation,
which is an iterative equation with respect to the prediction
error covariance:

𝑃𝑘+1/𝑘 = 𝑄 + 𝐹𝑃𝑘/𝑘−1𝐹
𝑇

− 𝐹𝑃𝑘/𝑘−1𝐻
𝑇
[𝐻𝑃𝑘/𝑘−1𝐻

𝑇
+ 𝑅]

−1

𝐻𝑃𝑘/𝑘−1𝐹
𝑇
.

(5)

In the general case, where 𝑅 and 𝑃0 are positive definite
matrices, using in (5) the matrix inversion lemma:

[𝐴 + 𝐵𝐶𝐷]
−1
= 𝐴
−1
− 𝐴
−1
𝐵[𝐶
−1
+ 𝐷𝐴
−1
𝐵]

−1

𝐷𝐴
−1
, (6)

the Riccati equation is formulated as

𝑃𝑘+1/𝑘 = 𝑄 + 𝐹[𝑃
−1

𝑘/𝑘−1
+ 𝐻
𝑇
𝑅
−1
𝐻]

−1

𝐹
𝑇
. (7)

The Riccati equation is a nonlinear iterative equation
with respect to the prediction error covariance. For time
invariant systems, it is well known [1] that if the signal process
model is asymptotically stable, then there exists a steady
state value 𝑃̃𝑝 of the prediction error covariance matrix. In
fact, the prediction error covariance tends to the steady state
prediction error covariance.

The steady state prediction error covariance satisfies the
steady state Riccati equation

𝑃̃𝑝 = 𝑄 + 𝐹[𝑃̃
−1

𝑝
+ 𝐻
𝑇
𝑅
−1
𝐻]

−1

𝐹
𝑇
. (8)

Then, from (2), it is clear that there also exists a steady
state value 𝐾̃ of the Kalman filter gain [7]. The steady state
gain can be calculated by

𝐾̃ = 𝑃̃𝑝𝐻
𝑇
[𝐻𝑃̃𝑝𝐻

𝑇
+ 𝑅]

−1

. (9)

Also, from (3), it is clear that there also exists a steady state
value 𝑃̃𝑒 of the estimation error covariance matrix [7], which
can be calculated by

𝑃̃𝑒 = 𝑃̃𝑝 − 𝑃̃𝑝𝐻
𝑇
[𝐻𝑃̃𝑝𝐻

𝑇
+ 𝑅]

−1

𝐻𝑃̃𝑝 = [𝑃̃
−1

𝑝
+ 𝐻
𝑇
𝑅
−1
𝐻]

−1

.

(10)

It is obvious from (9) that the steady state Kalman
filter gain can be derived via the steady state prediction
error covariance. The covariance matrix in Kalman filter
plays an important role in many applications [1, 4, 6, 8–10].
The steady state prediction error covariance can be derived

by solving the Riccati equation emanating from Kalman
filter. The discrete time Riccati equation has attracted recent
attention. In view of the importance of the Riccati equation,
there exists considerable literature on its algebraic solutions;
for example, in [1, 7, 11, 12], the authors have derived an
eigenvector solution, while the author of [13] has included
solving scalar polynomials. Other methods are based on the
iterative solutions [1, 13–18] concerning per-step or doubling
algorithms. The iterative algorithms that provide the steady
state Kalman filter gain together with the prediction error
covariance are the Chandrasekhar algorithms [1], as well as
the iterative algorithm that calculate the Kalman gain only
once for a period of the stationary channel, as opposed to
each data sample in the conventional filter [19]. A geometric
illustration of the Kalman filter gain is given in [20].

In this paper, we present algorithms for the steady
state Kalman filter gain autonomous computation. These
algorithms hold under conditions concerning the system
parameters. The paper is organized as follows: two new per-
step iterative algorithms, a new doubling iterative algorithm,
and an algebraic algorithm for the computation of the
steady state Kalman filter gain are presented in Section 2. In
Section 3, two examples verify the results. Finally, Section 4
summarizes the conclusions.

2. New Algorithms for the Steady State
Kalman Filter Computation

2.1. Assumptions. We assume the general case, where 𝑅 and
𝑃0 are positive definite matrices.

The Kalman filter gain𝐾𝑘 is a matrix of dimension 𝑛×𝑚.
We define the matrix

𝐺𝑘 = 𝐾𝑘𝐻. (11)

It is clear that𝐺𝑘 is a nonsymmetricmatrix of dimension 𝑛×𝑛.
It is also clear that there exists a steady state value

𝐺 = 𝐾̃𝐻. (12)

Also, we define the matrix

𝑆 = 𝐻
𝑇
𝑅
−1
𝐻. (13)

Note that 𝑆 is an 𝑛×𝑛 symmetric positive semidefinite matrix
and 𝑆 is a positive definite if rank(𝐻) = 𝑛; this means that 𝑆
is a nonsingular matrix in the case, rank(𝐻) = 𝑛 with𝑚 ≥ 𝑛,
[21].

2.2. Indirect Steady State Kalman Filter Gain Computation. In
this section, we present algorithms for 𝐺 computation. Then,
we show how to compute the steady state Kalman filter 𝐾̃
through 𝐺 = 𝐾̃𝐻.

2.2.1. Iterative Algorithms for 𝐺 Computation. In this section,
we present two iterative per-step algorithms and an iterative
doubling algorithm for 𝐺 computation.
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Per-Step Iterative Algorithm 1. Using (2) and (11), it is derived
that

𝐺𝑘 = 𝐾𝑘𝐻

= 𝑃𝑘/𝑘−1𝐻
𝑇
[𝐻𝑃𝑘/𝑘−1𝐻

𝑇
+ 𝑅]

−1

𝐻

= 𝑃𝑘/𝑘−1𝐻
𝑇
[𝐻𝑃𝑘/𝑘−1𝐻

𝑇
+ 𝑅]

−1

𝑅𝑅
−1
𝐻

= 𝑃𝑘/𝑘−1𝐻
𝑇
([𝐻𝑃𝑘/𝑘−1𝐻

𝑇
+ 𝑅]

−1

× [𝐻𝑃𝑘/𝑘−1𝐻
𝑇
+ 𝑅 − 𝐻𝑃𝑘/𝑘−1𝐻

𝑇
]) 𝑅
−1
𝐻

= 𝑃𝑘/𝑘−1𝐻
𝑇
([𝐻𝑃𝑘/𝑘−1𝐻

𝑇
+ 𝑅]

−1

[𝐻𝑃𝑘/𝑘−1𝐻
𝑇
+ 𝑅]

−[𝐻𝑃𝑘/𝑘−1𝐻
𝑇
+ 𝑅]

−1

𝐻𝑃𝑘/𝑘−1𝐻
𝑇
)𝑅
−1
𝐻

= 𝑃𝑘/𝑘−1𝐻
𝑇
(𝐼 − [𝐻𝑃𝑘/𝑘−1𝐻

𝑇
+ 𝑅]

−1

𝐻𝑃𝑘/𝑘−1𝐻
𝑇
)𝑅
−1
𝐻

= 𝑃𝑘/𝑘−1𝐻
𝑇
𝑅
−1
𝐻

− 𝑃𝑘/𝑘−1𝐻
𝑇
[𝐻𝑃𝑘/𝑘−1𝐻

𝑇
+ 𝑅]

−1

𝐻𝑃𝑘/𝑘−1𝐻
𝑇
𝑅
−1
𝐻

= (𝑃𝑘/𝑘−1 − 𝑃𝑘/𝑘−1𝐻
𝑇
[𝐻𝑃𝑘/𝑘−1𝐻

𝑇
+ 𝑅]

−1

𝐻𝑃𝑘/𝑘−1)

× 𝐻
𝑇
𝑅
−1
𝐻

= [𝑃
−1

𝑘/𝑘−1
+ 𝐻
𝑇
𝑅
−1
𝐻]

−1

𝐻
𝑇
𝑅
−1
𝐻

= [𝑃
−1

𝑘/𝑘−1
+ 𝑆]

−1

𝑆.

(14)

Thus, arises

𝐾𝑘𝐻 = [𝑃
−1

𝑘/𝑘−1
+ 𝑆]

−1

𝑆. (15)

Using the Riccati equation (7), (15), the nonsingularity of
𝑆, and some algebra we have

𝑃𝑘+1/𝑘 = 𝑄 + 𝐹[𝑃
−1

𝑘/𝑘−1
+ 𝐻
𝑇
𝑅
−1
𝐻]

−1

𝐹
𝑇

= 𝑄 + 𝐹[𝑃
−1

𝑘/𝑘−1
+ 𝑆]

−1

𝐹
𝑇
= 𝑄 + 𝐹𝐾𝑘𝐻𝑆

−1
𝐹
𝑇

󳨐⇒ 𝑃𝑘+1/𝑘𝑆 = 𝑄𝑆 + 𝐹𝐾𝑘𝐻𝑆
−1
𝐹
𝑇
𝑆

= 𝑄𝐹
−𝑇
𝑆[𝑆
−1
𝐹
−𝑇
𝑆]

−1

+ 𝐹𝐾𝑘𝐻[𝑆
−1
𝐹
−𝑇
𝑆]

−1

󳨐⇒ 𝑃𝑘+1/𝑘𝑆 (𝑆
−1
𝐹
−𝑇
𝑆) = 𝑄𝐹

−𝑇
𝑆 + 𝐹𝐾𝑘𝐻

󳨐⇒ 𝑆
−1
𝐹
−𝑇
𝑆 = 𝑆
−1
𝑃
−1

𝑘+1/𝑘
(𝑄𝐹
−𝑇
𝑆 + 𝐹𝐾𝑘𝐻)

󳨐⇒ 𝐾𝑘+1𝐻(𝑆
−1
𝐹
−𝑇
𝑆)

= 𝐾𝑘+1𝐻𝑆
−1
𝑃
−1

𝑘+1/𝑘
(𝑄𝐹
−𝑇
𝑆 + 𝐹𝐾𝑘𝐻) .

(16)

Also, from (2) and (13), we can write

𝐾𝑘 (𝐻𝑃𝑘/𝑘−1𝐻
𝑇
+ 𝑅) = 𝑃𝑘/𝑘−1𝐻

𝑇

󳨐⇒ 𝐾𝑘𝐻𝑃𝑘/𝑘−1𝐻
𝑇
+ 𝐾𝑘𝑅 = 𝑃𝑘/𝑘−1𝐻

𝑇

󳨐⇒ 𝐾𝑘𝑅 = 𝑃𝑘/𝑘−1𝐻
𝑇
− 𝐾𝑘𝐻𝑃𝑘/𝑘−1𝐻

𝑇

󳨐⇒ 𝐾𝑘𝑅 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘/𝑘−1𝐻
𝑇

󳨐⇒ 𝐾𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘/𝑘−1𝐻
𝑇
𝑅
−1

󳨐⇒ 𝐾𝑘𝐻 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘/𝑘−1𝐻
𝑇
𝑅
−1
𝐻

󳨐⇒ 𝐾𝑘𝐻 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘/𝑘−1𝑆.

(17)

Since the matrices 𝑃𝑘/𝑘−1, 𝑆 are nonsingular, the last
equation yields

𝐾𝑘𝐻𝑆
−1
𝑃
−1

𝑘/𝑘−1
= 𝐼 − 𝐾𝑘𝐻. (18)

Substituting in (16) the matrix 𝐾𝑘+1𝐻𝑆
−1
𝑃
−1

𝑘+1/𝑘
by (18), it

follows

𝐾𝑘+1𝐻(𝑆
−1
𝐹
−𝑇
𝑆) = 𝐾𝑘+1𝐻𝑆

−1
𝑃
−1

𝑘+1/𝑘
(𝑄𝐹
−𝑇
𝑆 + 𝐹𝐾𝑘𝐻)

= (𝐼 − 𝐾𝑘+1𝐻) (𝑄𝐹
−𝑇
𝑆 + 𝐹𝐾𝑘𝐻)

= 𝑄𝐹
−𝑇
𝑆 + 𝐹𝐾𝑘𝐻 − 𝐾𝑘+1𝐻𝑄𝐹

−𝑇
𝑆

− 𝐾𝑘+1𝐻𝐹𝐾𝑘𝐻,

(19)

whereby it is implied that

𝐾𝑘+1𝐻(𝑆
−1
𝐹
−𝑇
𝑆) + 𝐾𝑘+1𝐻𝑄𝐹

−𝑇
𝑆 + 𝐾𝑘+1𝐻𝐹𝐾𝑘𝐻

= 𝑄𝐹
−𝑇
𝑆 + 𝐹𝐾𝑘𝐻

󳨐⇒ 𝐾𝑘+1𝐻(𝑆
−1
𝐹
−𝑇
𝑆 + 𝑄𝐹

−𝑇
𝑆 + 𝐹𝐾𝑘𝐻)

= 𝑄𝐹
−𝑇
𝑆 + 𝐹𝐾𝑘𝐻

󳨐⇒ 𝐾𝑘+1𝐻 = (𝑄𝐹
−𝑇
𝑆 + 𝐹𝐾𝑘𝐻)

× [𝑆
−1
𝐹
−𝑇
𝑆 + 𝑄𝐹

−𝑇
𝑆 + 𝐹𝐾𝑘𝐻]

−1

.

(20)

Thus, the above equation can be written as

𝐾𝑘+1𝐻 = (𝑄𝐹
−𝑇
𝑆 + 𝐹𝐾𝑘𝐻) [𝑆

−1
𝐹
−𝑇
𝑆 + 𝑄𝐹

−𝑇
𝑆 + 𝐹𝐾𝑘𝐻]

−1

.

(21)

Combining (21) with (11), the following nonlinear itera-
tive equation with respect to 𝐺𝑘 is derived:

𝐺𝑘+1 = ((𝑄𝐹
−𝑇
𝑆) + (𝐹)𝐺𝑘)

× [(𝑆
−1
𝐹
−𝑇
𝑆 + 𝑄𝐹

−𝑇
𝑆) + (𝐹)𝐺𝑘]

−1

= (𝐶 + 𝐷𝐺𝑘) [𝐴 + 𝐵𝐺𝑘]
−1
,

(22)
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where

𝐴 = (𝑄 + 𝑆
−1
) 𝐹
−𝑇
𝑆,

𝐵 = 𝐹,

𝐶 = 𝑄𝐹
−𝑇
𝑆,

𝐷 = 𝐹.

(23)

The algorithm uses the initial condition 𝐺0 = 𝐾0𝐻 =
𝑃0𝐻
𝑇
[𝐻𝑃0𝐻

𝑇
+ 𝑅]
−1
𝐻. It is known [1] that the prediction

error covariance tends to the steady state prediction error
covariance and that the convergence is independent of the
initial uncertainty, that is, independent of the value of the
initial condition 𝑃0. Thus, we are able to assume zero initial
condition 𝑃0 = 0 and so we are to use the initial condition
𝐺0 = 0.

It is clear that 𝐺𝑘 tends to a steady state value 𝐺 and by
(22) 𝐺 satisfies

𝐺 = (𝐶 + 𝐷𝐺) [𝐴 + 𝐵𝐺]

−1

. (24)

Per-Step Iterative Algorithm 2. We rewrite (22) as

𝐺𝑘+1 = (𝐶 + 𝐷𝐺𝑘) [𝐴 + 𝐵𝐺𝑘]
−1

= (𝐶𝐴
−1
𝐴 + (𝐷 + 𝐶𝐴

−1
𝐵 − 𝐶𝐴

−1
𝐵)𝐺𝑘) [𝐴 + 𝐵𝐺𝑘]

−1

= (𝐶𝐴
−1
(𝐴 + 𝐵𝐺𝑘) + (𝐷 − 𝐶𝐴

−1
𝐵)𝐺𝑘) [𝐴 + 𝐵𝐺𝑘]

−1

= 𝐶𝐴
−1
+ (𝐷 − 𝐶𝐴

−1
𝐵)𝐺𝑘[𝐴 + 𝐵𝐺𝑘]

−1

= 𝐶𝐴
−1
+ (𝐷 − 𝐶𝐴

−1
𝐵) [𝐴𝐺

−1

𝑘
+ 𝐵]

−1

= 𝐶𝐴
−1
+ (𝐷 − 𝐶𝐴

−1
𝐵) [𝐺

−1

𝑘
+ 𝐴
−1
𝐵]

−1

𝐴
−1
.

(25)

Thus, the following nonlinear iterative equation with respect
to 𝐺𝑘 is derived:

𝐺𝑘+1 = 𝑐 + 𝑎[𝐺
−1

𝑘
+ 𝑏]

−1

𝑑, (26)

where

𝑎 = 𝐷 − 𝐶𝐴
−1
𝐵 = 𝐹 − 𝑄[𝑄 + 𝑆

−1
]

−1

𝐹,

𝑏 = 𝐴
−1
𝐵 = 𝑆
−1
𝐹
𝑇
[𝑄 + 𝑆

−1
]

−1

𝐹,

𝑐 = 𝐶𝐴
−1
= 𝑄[𝑄 + 𝑆

−1
]

−1

,

𝑑 = 𝐴
−1
= 𝑆
−1
𝐹
𝑇
[𝑄 + 𝑆

−1
]

−1

.

(27)

The algorithm uses the initial condition 𝐺0 = 𝐾0𝐻 =

𝑃0𝐻
𝑇
[𝐻𝑃0𝐻

𝑇
+ 𝑅]
−1
𝐻. It is known [1] that the prediction

error covariance tends to the steady state prediction error
covariance and that the convergence is independent of the

initial uncertainty, that is, independent of the value of the
initial condition 𝑃0. Thus, we are able to assume zero initial
condition 𝑃0 = 0. In this case, in order to avoid𝐺

−1

0
, we are to

use the initial condition 𝐺1 = 𝑐.
It is clear that 𝐺𝑘 tends to a steady state value 𝐺 and by

(26) 𝐺 satisfies

𝐺 = 𝑐 + 𝑎[𝐺
−1
+ 𝑏]

−1

𝑑. (28)

Doubling Iterative Algorithm. Ιn (22), setting

𝐺𝑘 = 𝐾𝑘𝐻 = 𝑌𝑘𝑋
−1

𝑘
, (29)

we take

𝑌𝑘+1𝑋
−1

𝑘+1
= (𝐶 + 𝐷𝑌𝑘𝑋

−1

𝑘
) [𝐴 + 𝐵𝑌𝑘𝑋

−1

𝑘
]

−1

= (𝐶𝑋𝑘 + 𝐷𝑌𝑘) [𝐴𝑋𝑘 + 𝐵𝑌𝑘]
−1

(30)

or

[

𝑋𝑘+1

𝑌𝑘+1

] = Φ[

𝑋𝑘

𝑌𝑘

] , (31)

where

Φ = [

𝐴 𝐵

𝐶 𝐷
] = [

(𝑄 + 𝑆
−1
) 𝐹
−𝑇
𝑆 𝐹

𝑄𝐹
−𝑇
𝑆 𝐹

] = [

𝑑
−1

𝑑
−1
𝑏

𝑐𝑑
−1
𝑐𝑑
−1
𝑏 + 𝑎

]

(32)

is a matrix of dimension 2𝑛 × 2𝑛 and 𝐴, 𝐵, 𝐶,𝐷 as in (23).
We are able to use zero initial condition 𝑃0 = 0, so 𝐺0 =

𝐾0𝐻 = 𝑌0𝑋
−1

0
= 0; that is,

[

𝑋0

𝑌0

] = [

𝐼

0
] , (33)

and hence

[

𝑋𝑘

𝑌𝑘

] = Φ
𝑘
[

𝐼

0
] . (34)

We define

Φ
2
𝑘

=
[

[

𝑑
−1

𝑘
𝑑
−1

𝑘
𝑏𝑘

𝑐𝑘𝑑
−1

𝑘
𝑐𝑘𝑑
−1

𝑘
𝑏𝑘 + 𝑎𝑘

]

]

(35)

with initial condition

Φ
2
0

=
[

[

𝑑
−1

0
𝑑
−1

0
𝑏0

𝑐0𝑑
−1

0
𝑐0𝑑
−1

0
𝑏0 + 𝑎0

]

]

= Φ = [

𝑑
−1

𝑑
−1
𝑏

𝑐𝑑
−1
𝑐𝑑
−1
𝑏 + 𝑎

] .

(36)

Then,

[

𝑋 (2
𝑘
)

𝑌 (2
𝑘
)

] = Φ
2
𝑘

[

𝐼

0
] , (37)
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and, using the doubling principle [1]Φ2
𝑘+1

= Φ
2
𝑘

Φ
2
𝑘

, we have

[

[

𝑑
−1

𝑘+1
𝑑
−1

𝑘+1
𝑏𝑘+1

𝑐𝑘+1𝑑
−1

𝑘+1
𝑐𝑘+1𝑑
−1

𝑘+1
𝑏𝑘+1 + 𝑎𝑘+1

]

]

=
[

[

𝑑
−1

𝑘
𝑑
−1

𝑘
𝑏𝑘

𝑐𝑘𝑑
−1

𝑘
𝑐𝑘𝑑
−1

𝑘
𝑏𝑘 + 𝑎𝑘

]

]

[

[

𝑑
−1

𝑘
𝑑
−1

𝑘
𝑏𝑘

𝑐𝑘𝑑
−1

𝑘
𝑐𝑘𝑑
−1

𝑘
𝑏𝑘 + 𝑎𝑘

]

]

.

(38)

Then we are able to derive, after some algebra, the follow-
ing nonlinear iterative equations:

𝑎𝑘+1 = 𝑎𝑘 (𝐼 − 𝑐𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑏𝑘) 𝑎𝑘,

𝑏𝑘+1 = 𝑏𝑘 + 𝑑𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑏𝑘𝑎𝑘,

𝑐𝑘+1 = 𝑐𝑘 + 𝑎𝑘𝑐𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑑𝑘,

𝑑𝑘+1 = 𝑑𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑑𝑘,

(39)

with initial conditions

𝑎1 = 𝐷 − 𝐶𝐴
−1
𝐵 = 𝐹 − 𝑄[𝑄 + 𝑆

−1
]

−1

𝐹,

𝑏1 = 𝐴
−1
𝐵 = 𝑆
−1
𝐹
𝑇
[𝑄 + 𝑆

−1
]

−1

𝐹,

𝑐1 = 𝐶𝐴
−1
= 𝑄[𝑄 + 𝑆

−1
]

−1

,

𝑑1 = 𝐴
−1
= 𝑆
−1
𝐹
𝑇
[𝑄 + 𝑆

−1
]

−1

.

(40)

Then, since

[

𝑋(2
𝑘
)

𝑌 (2
𝑘
)

] = Φ
2
𝑘

[

𝐼

0
] =
[

[

𝑑
−1

𝑘

𝑐𝑘𝑑
−1

𝑘

]

]

, (41)

it is clear that 𝑐𝑘 = 𝑌2𝑘𝑋
−1

2𝑘
= 𝐺2𝑘 tends to a steady state value

𝐺.

2.2.2. Algebraic Algorithm for𝐺Computation. In this section,
we present an algebraic algorithm for 𝐺 computation. As in
(29), setting

𝐺𝑘 = 𝐾𝑘𝐻 = 𝑌𝑘𝑋
−1

𝑘
(42)

and using the parameters 𝐴, 𝐵, 𝐶,𝐷 by (23), we derive

Φ = [

𝐴 𝐵

𝐶 𝐷
] = [

(𝑄 + 𝑆
−1
) 𝐹
−𝑇
𝑆 𝐹

𝑄𝐹
−𝑇
𝑆 𝐹

] , (43)

which is a matrix of dimension 2𝑛 × 2𝑛. Since

detΦ = det (𝐴) det (𝐷 − 𝐶𝐴−1𝐵)

= det ((𝑄 + 𝑆−1) 𝐹−𝑇𝑆)

× det (𝐹 − 𝑄𝐹−𝑇𝑆[(𝑄 + 𝑆−1) 𝐹−𝑇𝑆]
−1

𝐹)

= det (𝑄 + 𝑆−1) det (𝐹−1) det (𝑆)

× det (𝐹 − 𝑄𝐹−𝑇𝑆𝑆−1𝐹𝑇[𝑄 + 𝑆−1]
−1

𝐹)

= det (𝑆) det (𝐹 − 𝑄[𝑄 + 𝑆−1]
−1

𝐹)

× det (𝐹−1) det (𝑄 + 𝑆−1)

= det (𝑆) det (𝐼 − 𝑄[𝑄 + 𝑆−1]
−1

)

× det (𝐹) det (𝐹−1) det (𝑄 + 𝑆−1)

= det (𝑆) det ((𝑄 + 𝑆−1) − 𝑄)

= det (𝑆) det (𝑆−1) = 1,

(44)

it is evident thatΦ is a nonsingular matrix and its eigenvalues
occur in reciprocal pairs.

Thus, (43) can be written

Φ = [

𝐴 𝐵

𝐶 𝐷
] = [

(𝑄 + 𝑆
−1
) 𝐹
−𝑇
𝑆 𝐹

𝑄𝐹
−𝑇
𝑆 𝐹

] = 𝑊𝐿𝑊
−1
, (45)

where

𝐿 = [

Λ 0

0 Λ
−1] (46)

is a diagonal matrix containing the eigenvalues of Φ, with Λ
diagonalmatrix with all the eigenvalues ofΦ lying outside the
unit circle, and

𝑊 = [

𝑊11 𝑊12

𝑊21 𝑊22

] (47)

is thematrix containing the corresponding eigenvectors ofΦ,
with

𝑉 = 𝑊
−1
= [

𝑉11 𝑉12

𝑉21 𝑉22

] . (48)

We are able to use zero initial condition 𝑃0 = 0, so 𝐺0 =
𝐾0𝐻 = 𝑌0𝑋

−1

0
= 0; that is,

[

𝑋0

𝑌0

] = [

𝐼

0
] , (49)

and hence

[

𝑋𝑘

𝑌𝑘

] = Φ
𝑘
[

𝐼

0
] . (50)
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Then, from (50) and (45)–(48), we are able to write

[

𝑋𝑘

𝑌𝑘

] = Φ
𝑘
[

𝐼

0
] = [𝑊𝐿𝑊

−1
]

𝑘

[

𝐼

0
]

= [

𝑊11 𝑊12

𝑊21 𝑊22

] [

Λ
𝑘
0

0 Λ
−𝑘] [

𝑉11 𝑉12

𝑉21 𝑉22

] [

𝐼

0
] ;

(51)

that is,

[

𝑋𝑘

𝑌𝑘

] = [

𝑊11Λ
𝑘
𝑉11 +𝑊12Λ

−𝑘
𝑉21

𝑊21Λ
𝑘
𝑉11 +𝑊22Λ

−𝑘
𝑉21

] . (52)

Substituting in (42) thematrices𝑋𝑘,𝑌𝑘 from (52), we have
that

𝐺𝑘 = 𝑌𝑘𝑋
−1

𝑘
= (𝑊21Λ

𝑘
𝑉11 +𝑊22Λ

−𝑘
𝑉21)

× [𝑊11Λ
𝑘
𝑉11 +𝑊12Λ

−𝑘
𝑉21]

−1

.

(53)

Furthermore, the diagonal matrix Λ−1 contains all the
eigenvalues of Φ lying inside the unit circle, which follows
that lim𝑘→∞Λ

−𝑘
= 0. Then, 𝐺𝑘 tends to a steady state value

𝐺 with 𝐺 = lim𝑘→∞𝐺𝑘, and from (53) arises

𝐺 = 𝑊21𝑊
−1

11
. (54)

2.2.3. Steady State Kalman Filter Gain Computation. All
algorithms presented in Sections 2.2.1 and 2.2.2 compute the
steady state value 𝐺. Taking into account the assumptions of
Section 2.1, we are able to conclude that, under the condition
rank(𝐻) = 𝑛, the steady state gain is

𝐾̃ = 𝐺[𝐻
𝑇
𝐻]

−1

𝐻
𝑇
. (55)

2.3. Direct Steady State Kalman Filter Gain Computation. In
this section, we present algorithms for the direct computation
of the steady state Kalman filter 𝐾̃. The proposed algorithms
compute directly the steady state Kalman filter gain, that is,
without using 𝐺 = 𝐾̃𝐻. All these algorithms hold under the
assumption that 𝑛 = 𝑚. Note that, since rank(𝐻) = 𝑛,𝐻 and
𝑆 are nonsingular matrices.

2.3.1. Iterative Algorithms for 𝐾̃ Computation. In this section,
we present two iterative per-step algorithms and an iterative
doubling algorithm for 𝐾̃ computation.

Per-Step Iterative Algorithm 1. Using (11), (22), and (13), we are
able to derive the following nonlinear iterative equation with
respect to the Kalman filter gain 𝐾𝑘:

𝐾𝑘+1 = 𝐺𝑘+1𝐻
−1

= (𝑄𝐹
−𝑇
𝑆 + 𝐹𝐺𝑘) [𝑆

−1
𝐹
−𝑇
𝑆 + 𝑄𝐹

−𝑇
𝑆 + 𝐹𝐺𝑘]

−1

𝐻
−1

= (𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻 + 𝐹𝐺𝑘)

× [𝐻
−1
𝑅𝐻
−𝑇
𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻

+𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻 + 𝐹𝐺𝑘]

−1

𝐻
−1

= (𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻 + 𝐹𝐾𝑘𝐻)

× [𝑅𝐻
−𝑇
𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻

+𝐻𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻 +𝐻𝐹𝐾𝑘𝐻]

−1

= (𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝐹𝐾𝑘)

× 𝐻 [𝑅𝐻
−𝑇
𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻

+𝐻𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻 +𝐻𝐹𝐾𝑘𝐻]

−1

= (𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝐹𝐾𝑘)

× [𝑅𝐻
−𝑇
𝐹
−𝑇
𝐻
𝑇
𝑅
−1

+𝐻𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝐻𝐹𝐾𝑘]

−1

= (𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝐹𝐾𝑘)

× [𝐻𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝑅𝐻

−𝑇
𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝐻𝐹𝐾𝑘]

−1

.

(56)

The nonsingularity of 𝑆 and (13) allow us to write the
equality in (56) as

𝐾𝑘+1 = (𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝐹𝐾𝑘)

× [𝐻𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝐻𝑆
−1
𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝐻𝐹𝐾𝑘]

−1

= (𝐶 + 𝐷𝐾𝑘) [𝐴 + 𝐵𝐾𝑘]
−1
,

(57)

where

𝐴 = 𝐻𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
+ 𝐻𝑆
−1
𝐹
−𝑇
𝐻
𝑇
𝑅
−1

= 𝐻(𝑄 + 𝑆
−1
) 𝐹
−𝑇
𝐻
𝑇
𝑅
−1
,

𝐵 = 𝐻𝐹,

𝐶 = 𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
,

𝐷 = 𝐹.

(58)
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The initial condition is 𝐾0 = 𝑃0𝐻
𝑇
[𝐻𝑃0𝐻

𝑇
+ 𝑅]
−1.

It is known [1] that the prediction error covariance tends
to the steady state prediction error covariance and that the
convergence is independent of the initial uncertainty, that is,
independent of the value of the initial condition 𝑃0. Thus, we
are able to assume zero initial condition 𝑃0 = 0 and so we are
to use the initial condition𝐾0 = 0.

It is clear that𝐾𝑘 tends to a steady state value 𝐾̃ satisfying

𝐾̃ = (𝐶 + 𝐷𝐾̃) [𝐴 + 𝐵𝐾̃]

−1

. (59)

Per-Step Iterative Algorithm 2. Using (57), we are able to derive
the following nonlinear iterative equation with respect to the
Kalman filter gain 𝐾𝑘:

𝐾𝑘+1 = (𝐶 + 𝐷𝐾𝑘) [𝐴 + 𝐵𝐾𝑘]
−1

= (𝐶𝐴
−1
𝐴 + (𝐷 + 𝐶𝐴

−1
𝐵 − 𝐶𝐴

−1
𝐵)𝐾𝑘) [𝐴 + 𝐵𝐾𝑘]

−1

= (𝐶𝐴
−1
(𝐴 + 𝐵𝐾𝑘) + (𝐷 − 𝐶𝐴

−1
𝐵)𝐾𝑘) [𝐴 + 𝐵𝐾𝑘]

−1

= 𝐶𝐴
−1
+ (𝐷 − 𝐶𝐴

−1
𝐵)𝐾𝑘[𝐴 + 𝐵𝐾𝑘]

−1

= 𝐶𝐴
−1
+ (𝐷 − 𝐶𝐴

−1
𝐵) [𝐴𝐾

−1

𝑘
+ 𝐵]

−1

= 𝐶𝐴
−1
+ (𝐷 − 𝐶𝐴

−1
𝐵) [𝐾

−1

𝑘
+ 𝐴
−1
𝐵]

−1

𝐴
−1

= 𝑐 + 𝑎[𝐾
−1

𝑘
+ 𝑏]

−1

𝑑,

(60)

where 𝐴, 𝐵, 𝐶,𝐷 are given by (58) and

𝑎 = 𝐷 − 𝐶𝐴
−1
𝐵,

𝑏 = 𝐴
−1
𝐵,

𝑐 = 𝐶𝐴
−1
,

𝑑 = 𝐴
−1
.

(61)

The algorithm uses the initial condition 𝐾0 =

𝑃0𝐻
𝑇
[𝐻𝑃0𝐻

𝑇
+ 𝑅]
−1. It is known [1] that the prediction

error covariance tends to the steady state prediction error
covariance and that the convergence is independent of the
initial uncertainty, that is, independent of the value of the
initial condition 𝑃0. Thus, we are able to assume zero initial
condition 𝑃0 = 0. In this case, in order to avoid 𝐾−1

0
, we are

to use the initial condition𝐾1 = 𝑐.
It is clear that𝐾𝑘 tends to a steady state value 𝐾̃ satisfying

𝐾̃ = 𝑐 + 𝑎[𝐾̃
−1
+ 𝑏]

−1

𝑑. (62)

Doubling Iterative Algorithm. Ιn (57), setting

𝐾𝑘 = 𝑌𝑘𝑋
−1

𝑘
, (63)

we take

𝑌𝑘+1𝑋
−1

𝑘+1
= (𝐶 + 𝐷𝑌𝑘𝑋

−1

𝑘
) [𝐴 + 𝐵𝑌𝑘𝑋

−1

𝑘
]

−1

= (𝐶𝑋𝑘 + 𝐷𝑌𝑘) [𝐴𝑋𝑘 + 𝐵𝑌𝑘]
−1

(64)

or

[

𝑋𝑘+1

𝑌𝑘+1

] = Φ[

𝑋𝑘

𝑌𝑘

] , (65)

where

Φ = [

𝐴 𝐵

𝐶 𝐷
] = [

𝑑
−1

𝑑
−1
𝑏

𝑐𝑑
−1
𝑐𝑑
−1
𝑏 + 𝑎

] (66)

is a matrix of dimension 2𝑛 × 2𝑛 and 𝐴, 𝐵, 𝐶,𝐷 as in (58).
Working as in the doubling iterative algorithm of

Section 2.2.1 and using zero initial condition 𝑃0 = 0, so
𝐾0 = 𝑌0𝑋

−1

0
= 0; we are able to derive the following nonlinear

iterative equations:

𝑎𝑘+1 = 𝑎𝑘 (𝐼 − 𝑐𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑏𝑘) 𝑎𝑘,

𝑏𝑘+1 = 𝑏𝑘 + 𝑑𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑏𝑘𝑎𝑘,

𝑐𝑘+1 = 𝑐𝑘 + 𝑎𝑘𝑐𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑑𝑘,

𝑑𝑘+1 = 𝑑𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑑𝑘,

(67)

with initial conditions

𝑎1 = 𝑎,

𝑏1 = 𝑏,

𝑐1 = 𝑐,

𝑑1 = 𝑑.

(68)

It is clear that 𝑐𝑘 = 𝑌2𝑘𝑋
−1

2𝑘
= 𝐾2𝑘 tends to a steady state value

𝐾̃.

2.3.2. Algebraic Algorithm for 𝐾̃Computation. In this section,
we present an algebraic algorithm for 𝐾̃ computation. Work-
ing as in the algebraic algorithmof Section 2.2.2 and using the
parameters 𝐴, 𝐵, 𝐶,𝐷 by (58), we derive

Φ = [

𝐴 𝐵

𝐶 𝐷
] = [

𝑊11 𝑊12

𝑊21 𝑊22

] [

Λ 0

0 Λ
−1] [

𝑊11 𝑊12

𝑊21 𝑊22

]

−1

,

(69)

which is a matrix of dimension 2𝑛 × 2𝑛.
Then, the steady state Kalman filter is

𝐾̃ = 𝑊21𝑊
−1

11
. (70)

2.4. Advantages of the Proposed Algorithms. All algorithms
for the computation of the steady state Kalman filter gain
𝐾̃, presented in Section 2, are summarized in Table 1. It is
clear that the direct computation of the Kalman filter gain
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Table 1: Algorithms for the computation of the steady state Kalman filter gain 𝐾̃.

Computation of 𝐾̃ through 𝐺 = 𝐾̃𝐻 Direct computation of 𝐾̃
System parameters 𝐹,𝐻,𝑄, 𝑅 System parameters 𝐹,𝐻,𝑄, 𝑅
Restriction𝑚 ≥ 𝑛 Restriction𝑚 = 𝑛
Algorithms parameters Algorithms parameters
𝐴 = (𝑄 + (𝐻

𝑇
𝑅
−1
𝐻)
−1
)𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻 𝐴 = 𝐻(𝑄 + (𝐻

𝑇
𝑅
−1
𝐻)
−1
)𝐹
−𝑇
𝐻
𝑇
𝑅
−1

𝐵 = 𝐹 𝐵 = 𝐻𝐹

𝐶 = 𝑄𝐹
−𝑇
𝐻
𝑇
𝑅
−1
𝐻 𝐶 = 𝑄𝐹

−𝑇
𝐻
𝑇
𝑅
−1

𝐷 = 𝐹 𝐷 = 𝐹

𝑎 = 𝐷 − 𝐶𝐴
−1
𝐵 𝑎 = 𝐷 − 𝐶𝐴

−1
𝐵

𝑏 = 𝐴
−1
𝐵 𝑏 = 𝐴

−1
𝐵

𝑐 = 𝐶𝐴
−1

𝑐 = 𝐶𝐴
−1

𝑑 = 𝐴
−1

𝑑 = 𝐴
−1

Per-step iterative algorithm 1 Per-step iterative algorithm 1
𝐺𝑘+1 = (𝐶 + 𝐷𝐺𝑘)[𝐴 + 𝐵𝐺𝑘]

−1
𝐾𝑘+1 = (𝐶 + 𝐷𝐾𝑘)[𝐴 + 𝐵𝐾𝑘]

−1

𝐺0 = 0 𝐾0 = 0

𝐺
𝑘
→ 𝐺 𝐾

𝑘
→ 𝐾̃

𝐾̃ = 𝐺[𝐻
𝑇
𝐻]
−1
𝐻
𝑇

Per-step iterative algorithm 2 Per-step iterative algorithm 2
𝐺𝑘+1 = 𝑐 + 𝑎[𝐺

−1

𝑘
+ 𝑏]
−1
𝑑 𝐾𝑘+1 = 𝑐 + 𝑎[𝐾

−1

𝑘
+ 𝑏]
−1
𝑑

𝐺1 = 𝑐 𝐾1 = 𝑐

𝐺𝑘 → 𝐺 𝐾𝑘 → 𝐾̃

𝐾̃ = 𝐺[𝐻
𝑇
𝐻]
−1
𝐻
𝑇

Doubling iterative algorithm Doubling iterative algorithm
𝑎𝑘+1 = 𝑎𝑘 (𝐼 − 𝑐𝑘[𝐼 + 𝑏𝑘𝑐𝑘]

−1
𝑏𝑘) 𝑎𝑘 𝑎𝑘+1 = 𝑎𝑘 (𝐼 − 𝑐𝑘[𝐼 + 𝑏𝑘𝑐𝑘]

−1
𝑏𝑘) 𝑎𝑘

𝑏
𝑘+1
= 𝑏
𝑘
+ 𝑑
𝑘
[𝐼 + 𝑏

𝑘
𝑐
𝑘
]
−1
𝑏
𝑘
𝑎
𝑘

𝑏
𝑘+1
= 𝑏
𝑘
+ 𝑑
𝑘
[𝐼 + 𝑏

𝑘
𝑐
𝑘
]
−1
𝑏
𝑘
𝑎
𝑘

𝑐𝑘+1 = 𝑐𝑘 + 𝑎𝑘𝑐𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑑𝑘 𝑐𝑘+1 = 𝑐𝑘 + 𝑎𝑘𝑐𝑘[𝐼 + 𝑏𝑘𝑐𝑘]

−1
𝑑𝑘

𝑑𝑘+1 = 𝑑𝑘[𝐼 + 𝑏𝑘𝑐𝑘]
−1
𝑑𝑘 𝑑𝑘+1 = 𝑑𝑘[𝐼 + 𝑏𝑘𝑐𝑘]

−1
𝑑𝑘

𝑎1 = 𝑎, 𝑏1 = 𝑏, 𝑐1 = 𝑐, 𝑑1 = 𝑑 𝑎1 = 𝑎, 𝑏1 = 𝑏, 𝑐1 = 𝑐, 𝑑1 = 𝑑

𝑐𝑘 → 𝐺 𝑐𝑘 → 𝐾̃

𝐾̃ = 𝐺[𝐻
𝑇
𝐻]
−1
𝐻
𝑇

Algebraic algorithm Algebraic algorithm

Φ = [

𝐴 𝐵

𝐶 𝐷

] Φ = [

𝐴 𝐵

𝐶 𝐷

]

= [

𝑊11 𝑊12

𝑊
21
𝑊
22

][

Λ 0

0 Λ
−1
][

𝑊11 𝑊12

𝑊
21
𝑊
22

]

−1

= [

𝑊11 𝑊12

𝑊
21
𝑊
22

][

Λ 0

0 Λ
−1
][

𝑊11 𝑊12

𝑊
21
𝑊
22

]

−1

𝐺 = 𝑊21𝑊
−1

11
𝐾̃ = 𝑊21𝑊

−1

11

𝐾̃ = 𝐺[𝐻
𝑇
𝐻]
−1
𝐻
𝑇

is feasible only if the following restriction holds: 𝑛 = 𝑚.
The advantage of the presented algorithms is the autonomous
computation of the steady state Kalman filter gain. Especially,
the steady state Kalman filter gain is important, whenwewant
to compute the parameters of the steady state Kalman filter

𝑥𝑘+1/𝑘+1 = (𝐼 − 𝐾̃𝐻)𝐹𝑥𝑘/𝑘 + 𝐾̃𝑧𝑘+1

= (𝐼 − 𝐺)𝐹𝑥𝑘/𝑘 + 𝐾̃𝑧𝑘+1.

(71)

It is obvious from (71) that the parameters of the steady state
Kalman filter are related to the steady state Kalman filter gain.

In particular, the steady state prediction error covariance
can be computed via the steady state gain and is given by

𝑃̃𝑝 = [𝐼 − 𝐾̃𝐻]

−1

𝐾̃𝑅𝐻[𝐻
𝑇
𝐻]

−1

. (72)

Indeed, from (2), arises 𝐾̃ = 𝑃̃𝑝𝐻
𝑇
[𝐻𝑃̃𝑝𝐻

𝑇
+𝑅]
−1, which

leads to

𝐾̃ (𝐻𝑃̃𝑝𝐻
𝑇
+ 𝑅) = 𝑃̃𝑝𝐻

𝑇
󳨐⇒ 𝐾̃𝐻𝑃̃𝑝𝐻

𝑇
+ 𝐾̃𝑅 = 𝑃̃𝑝𝐻

𝑇

󳨐⇒ 𝑃̃𝑝𝐻
𝑇
− 𝐾̃𝐻𝑃̃𝑝𝐻

𝑇
= 𝐾̃𝑅
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󳨐⇒ (𝐼 − 𝐾̃𝐻) 𝑃̃𝑝𝐻
𝑇
= 𝐾̃𝑅

󳨐⇒ 𝑃̃𝑝𝐻
𝑇
= [𝐼 − 𝐾̃𝐻]

−1

𝐾̃𝑅

󳨐⇒ 𝑃̃𝑝𝐻
𝑇
𝐻 = [𝐼 − 𝐾̃𝐻]

−1

𝐾̃𝑅𝐻.

(73)

Since rank(𝐻) = 𝑛, the matrix𝐻𝑇𝐻 is nonsingular [21]; thus
from the last equation arises immediately the formula of the
steady state prediction error covariance in (72).

Also, by (3), the steady state estimation error covariance
can be computed via the steady state prediction error covari-
ance

𝑃̃𝑒 = [𝐼 − 𝐾̃𝐻] 𝑃̃𝑝. (74)

3. Examples

In this section, two examples verify the results of Section 2.

Example 1. A model of dimensions 𝑛 = 1 and 𝑚 = 2 is
assumed with parameters:

𝐹 = 0.8,

𝐻 = [

1

2
] ,

𝑄 = 5,

𝑅 = [

0.1 0

0 0.4
] .

(75)

In this example, we have rank(𝐻) = 𝑛 = 1 with𝑚 > 𝑛.
Using all algorithms presented in Section 2.2, we com-

puted

𝐺 = 0.9902. (76)

Then, using (55), we computed the steady state gain

𝐾̃ = [0.1980 0.3961] . (77)

Example 2. A model of dimensions 𝑚 = 𝑛 = 2 is assumed
with parameters:

𝐹 = [

−0.9 0.7

−0.3 0.1
] ,

𝐻 = [

1 3

2 2
] ,

𝑄 = [

1 0

0 3
] ,

𝑅 = [

0.1 0

0 0.4
] .

(78)

In this example, we have rank(𝐻) = 2.
Using all algorithms presented in Section 2.2, we com-

puted

𝐺 = [

0.8382 0.0317

0.0647 0.9841
] . (79)

Then, using (55), we computed the steady state gain

𝐾̃ = [

−0.4033 0.6207

0.4597 −0.1975
] . (80)

We also computed the same steady state gain, using all
algorithms presented in Section 2.3, since𝑚 = 𝑛 = 2.

4. Conclusions

The Kalman filter gain arises in Kalman filter equations
in linear estimation and is associated with linear systems.
The gain is a matrix through which the estimation and the
prediction of the state as well as the corresponding estimation
and prediction error covariance matrices are computed. For
time invariant and asymptotically stable systems, there exist
steady state values of the estimation and prediction error
covariance matrices. There exists also a steady state value of
the Kalman filter gain.

The steady state Kalman filter gain is usually derived via
the steady state prediction error covariance by first solving the
corresponding Riccati equation. In view of the importance of
the Riccati equation, there exists considerable literature on its
algebraic or iterative solutions, including the Chandrasekhar
algorithms, which are the only iterative algorithms that
provide the steady state Kalman filter gain together with the
prediction error covariance.

Iterative per-step and doubling algorithms as well as
an algebraic algorithm for the steady state Kalman filter
computation were presented. These algorithms hold under
conditions concerning the system parameters.The advantage
of these algorithms is the autonomous computation of the
steady state Kalman filter gain. This is important if we want
to compute only the steady state Kalman filter gain or to
compute the parameters of the steady state Kalman filter,
which are related to the steady state Kalman filter gain.
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