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A new class of second order (K, F) pseudoconvex function is introduced with example. A pair of Wolfe type second order
nondifferentiable symmetric dual programs over arbitrary cones with square root term is formulated. The duality results are
established under second order (K, F) pseudoconvexity assumption. Also a Wolfe type second order minimax mixed integer
programming problem is formulated and the symmetric duality results are established under second order (K, F) pseudoconvexity
assumption.

1. Introduction

A mathematical programming with two or more objective
functions is called multiobjective programming. Often the
several objectives are conflicting in nature. Pareto [1] studied
multiobjective problems by reducing them to a single objec-
tive one. However, the problems were first explicitly defined
and studied by Kuhn and Tucker [2]. They also proposed the
definition of proper efficiency which was later modified by
Geoffrion [3].

In mathematical programming, a pair of primal and
dual programs is called symmetric if the dual of the dual
is the primal problem. The duality in linear programming
is symmetric. It is not so in nonlinear programming in
general. Dorn [4], Dantzig et al. [5], and Mond [6] studied
symmetric duality in nonlinear programming assuming the
kernel function 𝑓(𝑥, 𝑦) to be convex in 𝑥 and concave in
𝑦. Subsequently, Mond and Weir [7] presented a distinct
pair of symmetric dual nonlinear programs which admits the
relaxation of the convexity/concavity assumption to pseudo-
convexity/pseudoconcavity. Mond [6] initiated second order
symmetric duality of Wolfe type in nonlinear programming
and proved the duality theorems under second order con-
vexity. Mangasarian [8] discussed second order duality in

nonlinear programming under inclusion condition. Mond
[6, page 93] and Mangasarian [8, page 609] also indicated
possible computational advantages of the second order dual
over the first order dual. This motivated several authors [3,
6, 9–13] in this field. Yang et al. [13] studied second order
multiobjective symmetric dual programs and established
the duality relations under F-convexity assumptions. Also
Yang et al. [12] formulated a pair of Wolfe type second
order nondifferentiable symmetric dual programs containing
support function and presented the duality results under F
convexity.

Recently, Gulati et al. [14] studied Wolfe and Mond-
Weir type second order symmetric duality over arbitrary
cones and proved the duality results under generalized
convexity assumption. Gulati and Geeta [15] studied Mond-
Weir type second order symmetric duality in multiobjective
programming over cones and established duality results
under pseudoconvexity/K-F convexity assumption. Gulati
and Verma [16] formulated a pair of Wolfe type nondif-
ferentiable multiobjective symmetric duality and established
the duality results under invexity assumption. Gupta and
Kailey [17] formulated a pair of Wolfe type second order
nondifferentiable multiobjective symmetric dual programs
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in which the objective function contains support func-
tion and proved the duality results under second order
F-convexity assumption. Gupta and Kailey [18] presented
second order multiobjective symmetric duality involving
cone-convex functions. Saini and Gulati [19] presented a pair
ofWolfe type nondifferentiable second order symmetric dual
programs over arbitrary cones under second order (K, F)-
convexity assumption.

In this paper, motivated by Saini and Gulati [19], a new
class of second order (K, F) pseudoconvex/second order
(K, F) strongly pseudoconvex function is introduced with
example. A pair ofWolfe type second order nondifferentiable
symmetric dual programs over arbitrary cone containing
square root term is formulated. The duality results are
established under second order (K, F) pseudoconvexity
assumption.

2. Notation and Preliminaries

The following convention for vectors in 𝑅𝑛 will be used:

𝑥 < 𝑦 ⇐⇒ 𝑥
𝑖
< 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑥 ≦ 𝑦 ⇐⇒ 𝑥
𝑖
≦ 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑥 ≤ 𝑦 ⇐⇒ 𝑥
𝑖
≤ 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, but 𝑥 ̸= 𝑦.

(1)

Definition 1. A set 𝐶 of 𝑅𝑛 is called a cone if, for each 𝑥 ∈ 𝐶
and 𝜆 ∈ 𝑅, 𝜆 ≥ 0, we have 𝜆𝑥 ∈ 𝐶. Moreover, if 𝐶 is convex,
then it is convex cone.

Definition 2. The positive polar cone 𝐶∗ of 𝐶 is defined as

𝐶∗ = {𝑧 ∈ 𝑅𝑛 | 𝑥𝑇𝑧 ≥ 0, ∀𝑥 ∈ 𝐶} . (2)

Let 𝐶
1
⊂ 𝑅𝑛, 𝐶

2
⊂ 𝑅𝑚, and 𝐾 ⊂ 𝑅𝑘 be closed convex

cones with nonempty interiors having polars 𝐶∗
1
, 𝐶∗
2
, and

𝐾∗, respectively. Let 𝑋 ⊆ 𝑅𝑛 and 𝑌 ⊆ 𝑅𝑚 be open and
𝑋 × 𝑌 ⊆ 𝑅𝑛 × 𝑅𝑚. Let 𝐶

1
× 𝐶
2
⊆ 𝑋 × 𝑌.

A general multiobjective nonlinear programming prob-
lem can be expressed in the following form.

Primal (P).

Minimize 𝑓 (𝑥) = {𝑓
1
(𝑥) , 𝑓

2
(𝑥) , . . . , 𝑓

𝑘
(𝑥)}

Subject to − 𝑔 (𝑥) ∈ 𝑄, 𝑥 ∈ 𝑋,

where 𝑋 ⊆ 𝑅𝑛 is open,

(3)

𝑓 : 𝑅𝑛 → 𝑅𝑘, 𝑔 : 𝑅𝑛 → 𝑅𝑙, 𝑄 is a closed convex cone with
nonempty interior in 𝑅𝑚.

Definition 3. A feasible point 𝑥 is weakly efficient solution of
(P) if there exist no other 𝑥 ∈ 𝑋 such that 𝑓(𝑥) − 𝑓(𝑥) < 0.

Definition 4. A feasible point 𝑥 is efficient solution of (P) if
there exist no other 𝑥 ∈ 𝑋 such that 𝑓(𝑥) − 𝑓(𝑥) ≤ 0.

Definition 5. A function 𝐹 : 𝑋 × 𝑋 × 𝑅𝑛 → 𝑅 is sublinear in
its third argument if, for all (𝑥, 𝑢) ∈ 𝑋 × 𝑋,

(1) 𝐹(𝑥, 𝑢; 𝑎
1
+ 𝑎
2
) ≤ 𝐹(𝑥, 𝑢; 𝑎

1
) + 𝐹(𝑥, 𝑢; 𝑎

2
), for all

𝑎
1
, 𝑎
2
∈ 𝑅𝑛,

(2) 𝐹(𝑥, 𝑢; 𝛼𝑎) = 𝛼𝐹(𝑥, 𝑢; 𝑎), for all 𝛼 ∈ 𝑅
+
.

Definition 6. Let 𝑓 : 𝑅𝑛 → 𝑅𝑘 be thrice differentiable
function. 𝑓 is said to be second order F-pseudoconvex at
𝑢 ∈ 𝑋, if (𝑥, 𝑝) ∈ 𝑋 × 𝑅𝑛,

𝐹
𝑥,𝑢

(∇
𝑢
𝑓 (𝑢) + ∇

𝑢𝑢
𝑓 (𝑢) 𝑝) ≥ 0

󳨐⇒ 𝑓 (𝑥) − 𝑓 (𝑢) +
1

2
𝑝𝑇∇
𝑢
𝑓 (𝑢) 𝑝 ≥ 0.

(4)

Now, we are in position to give definition of second order (K,
F)-pseudoconvex function and second order strongly (K, F)
pseudoconvex function.

Definition 7. The thrice differentiable function 𝑓 = (𝑓
1
, 𝑓
2
,

. . . , 𝑓
𝑘
) : 𝑅𝑛 → 𝑅𝑘 is said to be second order (K, F)

pseudoconvex at 𝑢 ∈ 𝑋, if (𝑥, 𝑝) ∈ 𝑋 × 𝑅𝑛,

− (𝐹
𝑥,𝑢

(∇
𝑢
𝑓
1
(𝑢) + ∇

𝑢𝑢
𝑓
1
(𝑢) 𝑝
1
) , . . . ,

𝐹
𝑥,𝑢

(∇
𝑢
𝑓
𝑘
(𝑢) + ∇

𝑢𝑢
𝑓
𝑘
(𝑢) 𝑝
1
)) ∉ int𝐾

󳨐⇒ −(𝑓
1
(𝑥) − 𝑓

1
(𝑢) +

1

2
𝑝𝑇
1
∇
𝑢
𝑓
1
(𝑢) 𝑝
1
, . . . , 𝑓

𝑘
(𝑥)

− 𝑓
𝑘
(𝑢) +

1

2
𝑝𝑇
𝑘
∇
𝑢
𝑓
𝑘
(𝑢) 𝑝
𝑘
) ∉ int𝐾.

(5)

Definition 8. The thrice differentiable function 𝑓 : 𝑅𝑛 → 𝑅𝑘

is said to be second order strongly (K, F) pseudoconvex at
𝑢 ∈ 𝑋, if (𝑥, 𝑝) ∈ 𝑋 × 𝑅𝑛,

− (𝐹
𝑥,𝑢

(∇
𝑢
𝑓
1
(𝑢) + ∇

𝑢𝑢
𝑓
1
(𝑢) 𝑝
1
) , . . . ,

𝐹
𝑥,𝑢

(∇
𝑢
𝑓
𝑘
(𝑢) + ∇

𝑢𝑢
𝑓
𝑘
(𝑢) 𝑝
1
)) ∉ int𝐾,

󳨐⇒ (𝑓
1
(𝑥) − 𝑓

1
(𝑢) +

1

2
𝑝𝑇
1
∇
𝑢
𝑓
1
(𝑢) 𝑝
1
, . . . , 𝑓

𝑘
(𝑥)

−𝑓
𝑘
(𝑢) +

1

2
𝑝𝑇
𝑘
∇
𝑢
𝑓
𝑘
(𝑢) 𝑝
𝑘
) ∈ int𝐾.

(6)

Definition 9. 𝑓 is second order (K, F) pseudoconcave, if −𝑓
is second order (K, F) pseudoconvex, and 𝑓 is second order
strongly (K, F) pseudoconcave, if −𝑓 is second order strongly
(K, F) pseudoconvex function.
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Example 10. Let

𝐾 = {(𝑥, 𝑦) | −4𝑥 ≤ 𝑦 ≤ −
𝑥

2
, 𝑥 > 0} ,

𝑓 (𝑥) = (𝑓
1
(𝑥) , 𝑓

2
(𝑥)) = (−𝑥2 + 𝑥, 𝑒−𝑥) , 𝑝 = 1,

𝐹
𝑥,𝑢

(𝑎) = 𝑎 (𝑥3 + 𝑢) ,

(∇
𝑢
𝑓
1
(𝑢) , ∇

𝑢
𝑓
2
(𝑢))

= (−2𝑢 + 1, −𝑒−𝑢) ,

(∇
𝑢𝑢
𝑓
1
(𝑢) , ∇

𝑢𝑢
𝑓
2
(𝑢)) = (−2, 𝑒−𝑢) ,

(𝑎
1
, 𝑎
2
) = (∇

𝑢
𝑓
1
(𝑢) + ∇

𝑢𝑢
𝑓
1
(𝑢) 𝑝, ∇

𝑢
𝑓
2
(𝑢) + ∇

𝑢𝑢
𝑓
2
(𝑢) 𝑝)

= (−2𝑢 − 1, 0) ;

(𝐹
𝑥,𝑢

(𝑎
1
) , 𝐹
𝑥,𝑢

(𝑎
2
)) = (−2𝑢 − 1, 0) (𝑥

3 + 𝑢) ,

(
𝑓
1
(𝑥) − 𝑓

1
(𝑢) +

1

2
𝑝𝑇∇
𝑢𝑢
𝑓
1
(𝑢) 𝑝,

𝑓
2
(𝑥) − 𝑓

2
(𝑢) +

1

2
𝑝𝑇∇
𝑢𝑢
𝑓
2
(𝑢) 𝑝

)

= (−𝑥2 + 𝑥 + 𝑢2 − 𝑢 − 1, 𝑒−𝑥 −
1

2
𝑒−𝑢) .

(7)

Now at

(𝐹
𝑥,𝑢

(𝑎
1
) , 𝐹
𝑥,𝑢

(𝑎
2
)) ≥ 0 󳨐⇒ 𝑥 ≤ 0. (8)

So at

(
𝑓
1
(𝑥) − 𝑓

1
(𝑢) +

1

2
𝑝𝑇∇
𝑢𝑢
𝑓
1
(𝑢) 𝑝,

𝑓
2
(𝑥) − 𝑓

2
(𝑢) +

1

2
𝑝𝑇∇
𝑢𝑢
𝑓
2
(𝑢) 𝑝

) ̸≥ 0. (9)

So 𝑓 is not second order F convex function.
Now at
𝑢 = 0, 𝑥 = 1, − (𝐹

𝑥,𝑢
(𝑎
1
) , 𝐹
𝑥,𝑢

(𝑎
2
)) = (1, 0) ∉ int𝐾,

(𝑓
1
(𝑥) − 𝑓

1
(𝑢) +

1

2
𝑝𝑇∇
𝑢𝑢
𝑓
1
(𝑢) 𝑝, 𝑓

2
(𝑥)

−𝑓
2
(𝑢) +

1

2
𝑝𝑇∇
𝑢𝑢
𝑓
2
(𝑢) 𝑝)

= (−1, 𝑒−1 −
1

2
) ∉ int𝐾.

(10)

So 𝑓 is not second order strongly (K, F) pseudoconvex. But

− (𝑓
1
(𝑥) − 𝑓

1
(𝑢) +

1

2
𝑝𝑇∇
𝑢𝑢
𝑓
1
(𝑢) 𝑝, 𝑓

2
(𝑥)

− 𝑓
2
(𝑢) +

1

2
𝑝𝑇∇
𝑢𝑢
𝑓
2
(𝑢) 𝑝)

= (1, −𝑒−1 +
1

2
) ∉ int𝐾.

(11)

So 𝑓 is second order (K, F) pseudoconvex.

Now we can define second order (K, F) pseudoconvexity
for a multiobjective function:

𝑓 = (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑘
) : 𝑅𝑛 × 𝑅𝑚 󳨀→ 𝑅𝑘. (12)

Definition 11. A thrice differentiable function 𝑓 = (𝑓
1
, 𝑓
2
,

. . . , 𝑓
𝑘
) : 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑘 is said to be second order (K, F)-

pseudoconvex at 𝑢 ∈ 𝑋, for fixed V, if there exists sublinear
function 𝐹 : 𝑋 × 𝑋 × 𝑅𝑛 → 𝑅, 𝑞 ∈ 𝑅𝑛, 𝑥 ∈ 𝑋, V ∈ 𝑌 such
that

− (𝐹
𝑥,𝑢

(∇
𝑢
𝑓
1
(𝑢, V) + ∇

𝑢𝑢
𝑓
1
(𝑢, V) 𝑞

1
) , . . . ,

𝐹
𝑥,𝑢

(∇
𝑢
𝑓
𝑘
(𝑢, V) + ∇

𝑢𝑢
𝑓
𝑘
(𝑢, V) 𝑞

𝑘
)) ∉ int𝐾

󳨐⇒ −(𝑓
1
(𝑥, V) − 𝑓

1
(𝑢, V) +

1

2
𝑞𝑇
1
∇
𝑢
𝑓
1
(𝑢, V) 𝑞

1
, . . . ,

𝑓
𝑘
(𝑥, V) − 𝑓

𝑘
(𝑢, V) +

1

2
𝑞𝑇
𝑘
∇
𝑢
𝑓
𝑘
(𝑢, V) 𝑞

𝑘
) ∉ int𝐾.

(13)

Definition 12. A thrice differentiable function 𝑓 =

(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑘
) : 𝑅𝑛×𝑅𝑚 → 𝑅𝑘 is said to be second order (K,

G)-pseudoconvex at𝑦 ∈ 𝑌, for fixed V, if there exists sublinear
function 𝐺 : 𝑌 × 𝑌 × 𝑅𝑚 → 𝑅, 𝑝 ∈ 𝑅𝑚, 𝑥 ∈ 𝑋, V ∈ 𝑌 such
that

− (𝐺V,𝑦 (∇𝑦𝑓1 (𝑥, 𝑦) + ∇
𝑦𝑦
𝑓
1
(𝑥, 𝑦) 𝑝

1
) , . . . ,

𝐺V,𝑦 (∇𝑦𝑓𝑘 (𝑥, 𝑦) + ∇
𝑦𝑦
𝑓
𝑘
(𝑥, 𝑦) 𝑝

𝑘
)) ∉ int𝐾,

󳨐⇒ −(𝑓
1
(𝑥, V) − 𝑓

1
(𝑥, 𝑦) +

1

2
𝑝𝑇
1
∇
𝑦
𝑓
1
(𝑥, 𝑦) 𝑝

1
, . . . ,

𝑓
𝑘
(𝑥, V) − 𝑓

𝑘
(𝑥, 𝑦) +

1

2
𝑝𝑇
𝑘
∇
𝑦
𝑓
𝑘
(𝑥, 𝑦) 𝑝

𝑘
)

∉ int𝐾.

(14)

Lemma 13 (generalized Schwartz inequality). Let 𝐵 be a
positive semidefinite matrix of order 𝑛. Then, for all 𝑥, 𝑤 ∈

𝑅𝑛, 𝑥𝑇𝐵𝑤 ≤ (𝑥𝑇𝐵𝑥)1/2(𝑤𝑇𝐵𝑤)1/2.
The equality holds if 𝐵𝑥 = 𝜆𝐵𝑤 for some 𝜆 ≥ 0.

3. Wolfe Type Second Order Multiobjective
Nondifferentiable Dual Programs

We consider the following pair of second order Wolfe
type nondifferentiable multiobjective programming prob-
lems with k-objective.
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Primal (SWP). Consider

𝐿 (𝑥, 𝑦, 𝜆, 𝑤, 𝑝)

= Minimize {𝑓
𝑖
(𝑥, 𝑦) + (𝑥𝑇𝐵

𝑖
𝑥)
1/2

− 𝑦𝑇 [∇
𝑦
𝑓
𝑖
(𝑥, 𝑦) + ∇

𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝]

−
1

2
𝑝𝑇
𝑖
[∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
] , 𝑖 = 1, 2, . . . , 𝑘}

Subject to −
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑦
𝑓
𝑖
(𝑥, 𝑦) − 𝐷

𝑖
𝑤
𝑖
+ ∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
]

∈ 𝐶∗
2
,

(15)

𝑤𝑇
𝑖
𝐷
𝑖
𝑤
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑘, (16)

𝑥 ∈ 𝐶
1
, 𝑤

𝑖
∈ 𝑅𝑚, (17)

𝜆 ∈ int𝐾∗,
𝑘

∑
𝑖=1

𝜆
𝑖
= 1. (18)

Dual (SWD). Consider

𝑀(𝑢, V, 𝜆, 𝑧, 𝑞)

= Maximize {𝑓
𝑖
(𝑢, 𝑢) − (V𝑇𝐷

𝑖
V)
1/2

− 𝑢𝑇 [∇
𝑢
𝑓
𝑖
(𝑢, V) + ∇

𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]

−
1

2
𝑞𝑇
𝑖
[∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
] , 𝑖 = 1, 2, . . . , 𝑘}

Subject to
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑢
𝑓
𝑖
(𝑢, V) + 𝐵

𝑖
𝑧
𝑖
+ ∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]

∈ 𝐶∗
1
,

(19)

𝑧𝑇
𝑖
𝐵
𝑖
𝑧
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑘, (20)

V ∈ 𝐶
2
, 𝑧

𝑖
∈ 𝑅𝑛, (21)

𝜆 ∈ int𝐾∗,
𝑘

∑
𝑖=1

𝜆
𝑖
= 1, (22)

where

(1) 𝑓 = (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑘
) : 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑘 is thrice differ-

entiable function,
(2) 𝐶
1
and 𝐶

2
are closed convex cones in 𝑅𝑛 and 𝑅𝑚 with

nonempty interiors, respectively,
(3) 𝐶∗
1
and 𝐶∗

2
are positive polar cones of 𝐶

1
and 𝐶

2
,

respectively,
(4) 𝐾 is a closed convex cone in 𝑅𝑘 with int 𝐾 ̸= 𝜙 and

𝑅𝑘
+
⊂ 𝐾,

(5) 𝑞
𝑖
, 𝑧
𝑖
(𝑖 = 1, 2, . . . , 𝑘) are vectors in 𝑅𝑛, and 𝑝

𝑖
, 𝑤
𝑖
(𝑖 =

1, 2, . . . , 𝑘) are vectors in 𝑅𝑚,
(6) 𝐵
𝑖
and 𝐷

𝑖
(𝑖 = 1, 2, . . . , 𝑘) are positive semidefinite

matrices of order 𝑛 and𝑚, respectively.
Now we establish the following theorem.

Theorem 14 (weak duality theorem). Let (𝑥, 𝑦, 𝜆, 𝑝) be a
feasible solution for the primal (WP) and let (𝑢, V, 𝜆, 𝑞) be
a feasible solution for the dual (WD). Suppose there exist
sublinear functional𝐹 : 𝑋×𝑋×𝑅𝑛 → 𝑅 and𝐺 : 𝑌×𝑌×𝑅𝑚 →
𝑅 satisfying

(1) 𝐹
𝑥,𝑢
(𝑎) − 𝑢𝑇𝑎 ≥ 0, for all (𝑥, 𝑢) ∈ 𝐶

1
× 𝐶
1
, 𝑎 ∈ 𝐶∗

1
,

(2) 𝐺V,𝑦(𝑏) − 𝑦𝑇𝑏 ≥ 0, for all (V, 𝑦) ∈ 𝐶
2
× 𝐶
2
, 𝑏 ∈ 𝐶∗

2
.

Furthermore assume that, for each 𝑖, 𝑓
𝑖
(⋅, V)+ (⋅)𝑇𝐵

𝑖
𝑧
𝑖
is second

order (K, F)-pseudoconvex at 𝑢 for fixed V and 𝑓
𝑖
(𝑥, ⋅) +

(⋅)𝑇𝐷
𝑖
𝑤
𝑖
is second order pseudoconcave at 𝑦 for fixed 𝑥:

Inf (WP) − Sup (WD) ∈ int𝐾. (23)
Proof. Since (𝑢, V, 𝜆, 𝑞) is feasible solution for (WD), from
dual constraint (5) we have

𝑎 =
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑢
𝑓
𝑖
(𝑢, V) + 𝐵

𝑖
𝑧
𝑖
+ ∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
] ∈ 𝐶∗
1
. (24)

So
𝑢 ∈ 𝐶

1
󳨐⇒ 𝑢𝑇𝑎

= 𝑢𝑇(
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑢
𝑓
𝑖
(𝑢, V) + 𝐵

𝑖
𝑧
𝑖
+ ∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]) ≥ 0.

(25)

Again hypothesis (1) implies 𝐹
𝑥,𝑢
(𝑎) ≥ 0. Consider

󳨐⇒ 𝐹
𝑥,𝑢

(
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑢
𝑓
𝑖
(𝑢, V) + 𝐵

𝑖
𝑧
𝑖
+ ∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]) ≥ 0.

(26)

Since 𝐹 is sublinear with respect to third argument,

󳨐⇒
𝑘

∑
𝑖=1

𝜆
𝑖
𝐹
𝑥,𝑢

([∇
𝑢
𝑓
𝑖
(𝑢, V) + 𝐵

𝑖
𝑧
𝑖
+ ∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]) ≥ 0.

(27)

Since 𝜆 ∈ int𝐾, the above inequality can be written as

− (𝐹
𝑥,𝑢

([∇
𝑢
𝑓
1
(𝑢, V) + 𝐵

1
𝑧
1
+ ∇
𝑢𝑢
𝑓
1
(𝑢, V) 𝑞

1
]) , . . . ,

𝐹
𝑥,𝑢

([∇
𝑢
𝑓
𝑘
(𝑢, V) + 𝐵

𝑘
𝑧
𝑘
+ ∇
𝑢𝑢
𝑓
𝑘
(𝑢, V) 𝑞

𝑘
])) ∉ int𝐾.

(28)

So second order (K, F)-pseudoconvexity of 𝑓
𝑖
(⋅, V) + (⋅)𝑇𝐵

𝑖
𝑧
𝑖

at 𝑢 for fixed V implies that

−(

𝑓
1
(𝑥, V) + (𝑥)𝑇𝐵

1
𝑧
1
− 𝑓
1
(𝑢, V) − (𝑢)𝑇𝐵

1
𝑧
1

+
1

2
𝑞𝑇
1
∇
𝑢𝑢
𝑓
1
(𝑢, V) 𝑞

1
, ..., 𝑓
𝑘
(𝑥, V) + (𝑥)𝑇𝐵

𝑘
𝑧
𝑘

−𝑓
𝑘
(𝑢, V) − (𝑢)𝑇𝐵

𝑘
𝑧
𝑘
+
1

2
𝑞𝑇
𝑘
∇
𝑢𝑢
𝑓
𝑘
(𝑢, V) 𝑞

𝑘

) ∉ int𝐾.

(29)
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This implies that, for 𝜆 ∈ int𝐾,

−
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓
𝑖
(𝑥, V) + (𝑥)

𝑇𝐵
𝑖
𝑧
𝑖
− 𝑓
𝑖
(𝑢, V)

− (𝑢)
𝑇𝐵
𝑖
𝑧
𝑖
−
1

2
𝑞𝑇
𝑖
∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
] ̸≥ 0

󳨐⇒
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓
𝑖
(𝑥, V) + (𝑥)

𝑇𝐵
𝑖
𝑧
𝑖
− 𝑓
𝑖
(𝑢, V)

− (𝑢)
𝑇𝐵
𝑖
𝑧
𝑖
−
1

2
𝑞𝑇
𝑖
∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
] ≥ 0.

(30)

Similarly (𝑢, V, 𝜆, 𝑞) is feasible solution for (WD), so from
primal constraint (1) we have

𝑏 = −
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑦
𝑓
𝑖
(𝑥, 𝑦) − 𝐷

𝑖
𝑤
𝑖
+ ∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
] ∈ 𝐶∗
2
. (31)

So

𝑦 ∈ 𝐶
2
󳨐⇒ 𝑦𝑇𝑏

= −𝑦𝑇(
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑦
𝑓
𝑖
(𝑥, 𝑦)

− 𝐷
𝑖
𝑤
𝑖
+ ∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
]) ≥ 0.

(32)

Again hypothesis (2) implies 𝐺V,𝑦(𝑏) ≥ 0. Consider

󳨐⇒ 𝐺V,𝑦(−
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑦
𝑓
𝑖
(𝑥, 𝑦) − 𝐷

𝑖
𝑤
𝑖
+ ∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
])

≥ 0.

(33)

Since 𝐺 is sublinear with respect to third argument,

󳨐⇒
𝑘

∑
𝑖=1

𝜆
𝑖
𝐺V,𝑦 (− [∇𝑦𝑓𝑖 (𝑥, 𝑦) − 𝐷

𝑖
𝑤
𝑖
+ ∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
])

≥ 0.

(34)

Since 𝜆 ∈ int𝐾, the above inequality can be written as

󳨐⇒ −(
𝐺V,𝑦 (− [∇𝑦𝑓1 (𝑥, 𝑦) − 𝐷1𝑤1 + ∇𝑦𝑦𝑓1 (𝑥, 𝑦) 𝑝1]) , . . .

. . . , 𝐺V,𝑦 (− [∇𝑦𝑓𝑘 (𝑥, 𝑦) − 𝐷𝑘𝑤𝑘 + ∇𝑦𝑦𝑓𝑘 (𝑥, 𝑦) 𝑝𝑘])
) ∉ int𝐾.

(35)

So second order (K, F)-pseudoconcavity of 𝑓
𝑖
(𝑥, ⋅) − (⋅)𝑇𝐷

𝑖
𝑤
𝑖

at 𝑦 for fixed 𝑥 implies that

− (− [𝑓
1
(𝑥, V) − (V)𝑇𝐷

1
𝑤
1
− 𝑓
1
(𝑥, 𝑦) + (𝑦)

𝑇

𝐷
1
𝑤
1

+
1

2
𝑝𝑇
1
∇
𝑦𝑦
𝑓
1
(𝑥, 𝑦) 𝑝

1
] , . . . ,

− [𝑓
𝑘
(𝑥, V) − (V)𝑇𝐷

𝑘
𝑧
𝑘
− 𝑓
𝑘
(𝑥, 𝑦) + (𝑦)

𝑇

𝐷
𝑘
𝑤
𝑘

+
1

2
𝑝𝑇
𝑘
∇
𝑦𝑦
𝑓
𝑘
(𝑥, 𝑦) 𝑝

𝑘
])

∉ int𝐾.

(36)

This implies that, for 𝜆 ∈ int𝐾,

−
𝑘

∑
𝑖=1

𝜆
𝑖
[− [𝑓

𝑘
(𝑥, V) − (V)𝑇𝐷

𝑘
𝑤
𝑘
− 𝑓
𝑘
(𝑥, 𝑦)

+ (𝑦)
𝑇

𝐷
𝑘
𝑤
𝑘
+
1

2
𝑝𝑇
𝑘
∇
𝑦𝑦
𝑓
𝑘
(𝑥, 𝑦) 𝑝

𝑘
]] ̸≥ 0

󳨐⇒
𝑘

∑
𝑖=1

𝜆
𝑖
[ − 𝑓
𝑖
(𝑥, V) + (V)𝑇𝐷

𝑖
𝑤
𝑖
+ 𝑓
𝑖
(𝑥, 𝑦)

− (𝑦)
𝑇

𝐷
𝑖
𝑤
𝑖
−
1

2
𝑝𝑇
𝑖
∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
] ≥ 0.

(37)

Adding (30) and (37), we get

󳨐⇒
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓
𝑖
(𝑥, 𝑦) + (𝑥)

𝑇𝐵
𝑖
𝑧
𝑖
− (𝑦)
𝑇

𝐷
𝑖
𝑤
𝑖

−
1

2
𝑝𝑇
𝑖
∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
]

−
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓
𝑖
(𝑢, V) − (V)𝑇𝐷

𝑖
𝑤
𝑖
+ 𝑢𝑇𝐵

𝑖
𝑧
𝑖

−
1

2
𝑞𝑇
𝑖
∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
] ≥ 0.

(38)

Now from Schwartz inequality (Lemma 13), (17), and (21), we
have

𝑥𝑇𝐵
𝑖
𝑧
𝑖
≤ (𝑥𝑇𝐵

𝑖
𝑥)
1/2

(𝑧𝑇
𝑖
𝐵
𝑖
𝑧
𝑖
)
1/2

≤ (𝑥𝑇𝐵
𝑖
𝑥)
1/2

,

𝑖 = 1, 2, . . . , 𝑘,

V𝑇𝐷
𝑖
𝑤
𝑖
≤ (V𝑇𝐷

𝑖
V)
1/2

(𝑤𝑇
𝑖
𝐷
𝑖
𝑤
𝑖
)
1/2

≤ (V𝑇𝐷
𝑖
V)
1/2

,

𝑖 = 1, 2, . . . , 𝑘.

(39)

Also from primal constraint (15), we have

𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑦
𝑓
𝑖
(𝑥, 𝑦) − 𝐷

𝑖
𝑤
𝑖
+ ∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
] ∈ 𝐶∗
2
. (40)
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For𝑦 ∈ 𝐶
1
,𝑦𝑇(∑𝑘

𝑖=1
𝜆
𝑖
[∇
𝑦
𝑓
𝑖
(𝑥, 𝑦)−𝐷

𝑖
𝑤
𝑖
+∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦)𝑝

𝑖
]) ≥ 0

−
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑦𝑇𝐷

𝑖
𝑤
𝑖
]

≥ −𝑦𝑇(
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑦
𝑓
𝑖
(𝑥, 𝑦) + ∇

𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
]) .

(41)

Similarly from dual constraint (19), we have

󳨐⇒ −
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑢𝑇𝐵
𝑖
𝑧
𝑖
]

≥ −𝑢𝑇(
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑢
𝑓
𝑖
(𝑢, V) + ∇

𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]) .

(42)

Using (39), (41), and (42) in (38), we obtain that

𝑘

∑
𝑖=1

𝜆
𝑖
{𝑓
𝑖
(𝑥, 𝑦) + (𝑥𝑇𝐵

𝑖
𝑥)
1/2

− 𝑦𝑇 [∇
𝑦
𝑓
𝑖
(𝑥, 𝑦) + ∇

𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝]

−
1

2
𝑝𝑇
𝑖
[∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
]}

−
𝑘

∑
𝑖=1

𝜆
𝑖
{𝑓
𝑖
(𝑢, 𝑢) − (V𝑇𝐷

𝑖
V)
1/2

− 𝑢𝑇 [∇
𝑢
𝑓
𝑖
(𝑢, V) + ∇

𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]

−
1

2
𝑞𝑇
𝑖
[∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]} ≥ 0

󳨐⇒ Inf (WP) − Sup (WD) ∈ int𝐾.

(43)

Theorem 15 (strong duality). Let (𝑥, 𝑦, 𝜆, 𝑤, 𝑝) be weakly
efficient solution of (WP) such that

(i) ∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) is nonsingular,

(ii) the matrix ∑
𝑘

𝑖=1
𝜆
𝑖
[∇
𝑦
(∇
𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦)𝑝)] is positive defi-

nite,
(iii) the set {∇

𝑦
𝑓
1
− 𝐶
1
𝑤
1
, . . . , ∇

𝑦
𝑓
𝑘
− 𝐶
𝑘
𝑤
𝑘
} is linearly

independent,

(iv) ∑𝑘
𝑖=1

𝜆
𝑖
(∇
𝑦
(∇
𝑦𝑦
𝑓
𝑖
𝑝))𝑝 ∉ span{∇

𝑦
𝑓
1
−𝐶
1
𝑤
1
, . . . , ∇

𝑦
𝑓
𝑘
−

𝐶
𝑘
𝑤
1
} \ {0}.

Then there exist 𝑧
𝑖
∈ 𝑅𝑛 such that (𝑥, 𝑦, 𝜆, 𝑧, 𝑞 = 0) is feasible

for (WD) and two objective values of (WP) and (WD) are
equal. Also, if the hypotheses of Theorem 14 are satisfied for all
feasible solution of (WP) and (WD), then (𝑥, 𝑦, 𝜆, 𝑧, 𝑞 = 0) is
an efficient solution of (WD).

Proof. Since (𝑥, 𝑦, 𝜆, 𝑤, 𝑝) is weakly efficient solution of
(WD), by the Fritz-John necessary optimality condition on

convex cone domain given in Bazaraa and Goode [20], there
exist 𝛼 ∈ K∗, 𝛽 ∈ C

2
, 𝛾, 𝜏
𝑖
∈ R
+
such that the following

conditions are satisfied at (𝑥, 𝑦, 𝜆, 𝑤, 𝑝):

(𝑥 − 𝑥)
𝑇

× (
𝑘

∑
𝑖=1

𝛼
𝑖
[∇
𝑥
𝑓
𝑖
+ 𝐵
𝑖
𝑧
𝑖
] +
𝑘

∑
𝑖=1

𝜆
𝑖
(∇
𝑦𝑥
𝑓
𝑖
)
𝑇

(𝛽 − 𝛾𝑦)

+
𝑘

∑
𝑖=1

𝜆
𝑖
(∇
𝑥
(∇
𝑦𝑦
𝑓
𝑖
𝑝
𝑖
))
𝑇

[𝛽 − 𝛾𝑦 − 𝛼
𝑖
𝑝
𝑖
])

≥ 0, ∀𝑥 ∈ 𝐶
1
,

(44)

𝑘

∑
𝑖=1

(𝛼
𝑖
− 𝛾𝜆
𝑖
) (∇
𝑦
𝑓
𝑖
− 𝐶
𝑖
𝑤
𝑖
)

+
𝑘

∑
𝑖=1

𝜆
𝑖
(∇
𝑦𝑦
𝑓
𝑖
)
𝑇

[𝛽 − 𝛾 (𝑦 + 𝑝)]

+
𝑘

∑
𝑖=1

𝜆
𝑖
(∇
𝑦
(∇
𝑦𝑦
𝑓
𝑖
𝑝
𝑖
))
𝑇

(𝛽 − 𝛾𝑦 −
1

2
𝛾𝑝
𝑖
) = 0,

(45)

𝑘

∑
𝑖=1

𝜆
𝑖
(∇
𝑦𝑦
𝑓
𝑖
)
𝑇

(𝛽 − 𝛾𝑦 − 𝛾𝑝
𝑖
) = 0, (46)

𝑘

∑
𝑖=1

𝜆
𝑖
(∇
𝑦
𝑓
𝑖
− 𝐶
𝑖
𝑤
𝑖
+ ∇
𝑦𝑦
𝑓
𝑖
𝑝
𝑖
)
𝑇

𝛽 = 0, (47)

𝑥𝑇𝐵
𝑖
𝑧
𝑖
= (𝑥𝑇𝐵

𝑖
𝑥)
1/2

, 𝑖 = 1, 2, . . . , 𝑘, (48)

𝜆 = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑘
) ∈ int𝐾, (49)

𝛼
𝑖
𝐶
𝑖
𝑦 + (𝛽 − 𝜆𝑦) 𝜆

𝑖
𝐶
𝑖
= 2𝜏
𝑖
𝐶
𝑖
𝑤
𝑖
, (50)

𝜏
𝑖
(𝑤
𝑖

𝑇𝐶
𝑖
𝑤
𝑖
− 1) = 0, (51)

𝑧
𝑖

𝑇𝐵
𝑖
𝑧
𝑖
≤ 1, (52)

(𝛼, 𝛽, 𝛾, 𝜏) ≥ 0, (53)

(𝛼, 𝛽, 𝛾, 𝜏) ̸= 0. (54)

Since ∇
𝑦𝑦
𝑓
𝑖
is nonsingular, (46) implies that 𝛽 = 𝛾(𝑦 + 𝑝

𝑖
)

𝛽 = 𝛾 (𝑦 + 𝑝
𝑖
) . (55)

We claim that 𝛾 > 0. Indeed if 𝛾 = 0, then (55) implies 𝛽 = 0,
which contradicts (54).

Hence

𝛾 > 0. (56)

Since 𝛾 > 0, using (55) in (45), we get

𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑦
(∇
𝑦𝑦
𝑓
𝑖
𝑝)]
𝑇

𝑝
𝑖
=
−2

𝛾

𝑘

∑
𝑖=1

(𝛼
𝑖
− 𝛾𝜆
𝑖
) [∇
𝑦
𝑓
𝑖
− 𝐶
𝑖
𝑤
𝑖
] ,

(57)
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which by hypothesis (ii) and (iv) yields

𝑝
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑘. (58)

From (55) and (58), we obtain

𝛽 = 𝛾𝑦. (59)

Using (58) and (59) and hypothesis (iii) in (45), we get

𝛼 = 𝛾𝜆. (60)

Again using (58), (59), and (60) in (44), we get

(𝑥 − 𝑥)
𝑇

𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑥
𝑓
𝑖
+ 𝐵
𝑖
𝑧
𝑖
] ≥ 0, ∀𝑥 ∈ 𝐶

1
. (61)

Let 𝑥 ∈ 𝐶
1
. Then 𝑥 + 𝑥 ∈ 𝐶

1
and so (61) implies

(𝑥)
𝑇

𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑥
𝑓
𝑖
+ 𝐵
𝑖
𝑧
𝑖
] ≥ 0, ∀𝑥 ∈ 𝐶

1

󳨐⇒
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑥
𝑓
𝑖
+ 𝐵
𝑖
𝑧
𝑖
] ∈ 𝐶∗
1
.

(62)

Also from (56), (59), and 𝛽 ∈ 𝐶
2
, we obtain

𝑦 ∈ 𝐶
2
. (63)

Thus, from (52), (62), and (63), we obtain that (𝑥, 𝑦, 𝑧, 𝜆, 𝑞 =
0) satisfies the dual constraints (19), (20), (21), and (22).

Thus (𝑥, 𝑦, 𝑧, 𝜆, 𝑞 = 0) is feasible for (WD).
Let (2𝜏

𝑖
/𝛼
𝑖
) = 𝑡; then 𝑡 ≥ 0. From (50) and (59), we get

𝐶
𝑖
𝑦 = 𝑡𝐶

𝑖
𝑤
𝑖
. (64)

This is a condition of Schwartz inequality:

𝑦𝐶
𝑖
𝑤
𝑖
= (𝑦𝑇𝐶

𝑖
𝑤
𝑖
)
1/2

(𝑤𝑇
𝑖
𝐶
𝑖
𝑤
𝑖
) . (65)

In case 𝜏
𝑖
> 0, from (51) we get 𝑤𝑇

𝑖
𝐶
𝑖
𝑤 = 1. So (65) implies

𝑦𝐶
𝑖
𝑤
𝑖
= (𝑦𝑇𝐶

𝑖
𝑤
𝑖
)1/2.

In case 𝜏
𝑖
= 0, we get 𝑡 = 0. So 𝐶

𝑖
𝑦 = 0. Hence 𝑦𝐶

𝑖
𝑤
𝑖
=

(𝑦𝑇𝐶
𝑖
𝑤
𝑖
)1/2. Thus in either case

𝑦𝐶
𝑖
𝑤
𝑖
= (𝑦𝑇𝐶

𝑖
𝑤
𝑖
)
1/2

. (66)

So using (48) and (66), we obtained that the two objective
values are equal; that is,

𝐿 (𝑥, 𝑦, 𝑤, 𝜆, 𝑝 = 0) = 𝑀(𝑥, 𝑦, 𝑧, 𝜆, 𝑞 = 0) . (67)

Now we claim that (𝑥, 𝑦, 𝑧, 𝜆, 𝑞 = 0) is an efficient solution of
(WD). If this would not be the case, then there would exist a
feasible solution (𝑢, V, 𝑧, 𝜆, 𝑞 = 0) such that

𝑀(𝑥, 𝑦, 𝑧, 𝜆, 𝑞 = 0) ≤ 𝑀(𝑢, V, 𝑧, 𝜆, 𝑞 = 0)

󳨐⇒ 𝐿 (𝑥, 𝑦, 𝑧, 𝜆, 𝑞 = 0) ≤ 𝑀(𝑢, V, 𝑧, 𝜆, 𝑞 = 0) .
(68)

This is a contradiction to weak duality Theorem 14.
Hence (𝑥, 𝑦, 𝑧, 𝜆, 𝑞 = 0) is efficient solution.

Theorem 16 (converse duality theorem). Let (𝑥, 𝑦, 𝜆, 𝑤, 𝑝) be
a weakly efficient solution of (WP) such that

(i) ∇
𝑢𝑢
𝑓
𝑖
(𝑢, V) is nonsingular,

(ii) the matrix ∑
𝑘

𝑖=1
𝜆
𝑖
[∇
𝑢
(∇
𝑢𝑢
𝑓
𝑖
(𝑢, V)𝑞)] is positive defi-

nite,

(iii) the set {∇
𝑢
𝑓
1
+ 𝐵
1
𝑧
1
, . . . , ∇

𝑢
𝑓
𝑘
+ 𝐵
𝑘
𝑧
𝑘
} is linearly

independent,

(iv) ∑𝑘
𝑖=1

𝜆
𝑖
(∇
𝑢
(∇
𝑢𝑢
𝑓
𝑖
𝑞))𝑞 ∉ span{∇

𝑢
𝑓
1
+ 𝐵
1
𝑧
1
, . . . , ∇

𝑢
𝑓
𝑘
+

𝐵
𝑘
𝑧
𝑘
} \ {0}.

Then there exist 𝑤
𝑖
∈ 𝑅𝑚 such that (𝑢, V, 𝜆, 𝑤, 𝑝 = 0) is

feasible for (WD) and two objective values of (WP) and (WD)
are equal. Also, if the hypotheses of Theorem 14 are satisfied for
all feasible solution of (WP) and (WD), then (𝑢, V, 𝜆, 𝑤, 𝑝 = 0)
is an efficient solution of (WD).

Proof. The proof follows on lines of Theorem 15.

4. Wolfe Type Minimax Mixed
Integer Programming

Let 𝑈 and 𝑉 be two arbitrary sets of integers in 𝑅𝑛1 (0 ≤
𝑛
1
≤ 𝑛) and 𝑅𝑚1 (0 ≤ 𝑚

1
≤ 𝑚), respectively. Throughout

this section, we constrained some of the components of
the vector variables 𝑥 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑚 to belong to
arbitrary sets of integers𝑈 and𝑉, respectively.Then we write
(𝑥, 𝑦) = (𝑥1, 𝑥2, 𝑦1, 𝑦2), where 𝑥1 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) and 𝑦1 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
). 𝑥2 and 𝑦2 are the vectors of the remaining

components of 𝑥 and 𝑦, respectively.

Definition 17. Let 𝑠1, 𝑠2, . . . , 𝑠𝑟 be elements of an arbitrary
vector space. A vector function 𝜃 (𝑠1, 𝑠2, . . . , 𝑠𝑟) will be called
additively separable with respect to 𝑠1, if there exist vector
function 𝜃

1
(𝑠1) (independent of 𝑠2, . . . , 𝑠𝑟 ) and 𝜃

2
(𝑠2, . . . , 𝑠𝑟)

(independent of 𝑠1) such that 𝜃 (𝑠1, 𝑠2, . . . , 𝑠𝑟) = 𝜃
1
(𝑠1) +

𝜃
2
(𝑠2, . . . , 𝑠𝑟).
We consider the following pair of Wolfe type nondiffer-

entiable minimax mixed integer symmetric primal and dual
programs:

Primal (WIP). Consider

max
𝑥
1

min
𝑥
2

,𝑦,𝑤,𝑝

{𝑓
𝑖
(𝑥, 𝑦) + ((𝑥2)

𝑇

𝐵
𝑖
𝑥)
1/2

− (𝑦2)
𝑇

[∇
𝑦
2𝑓
𝑖
(𝑥, 𝑦) + ∇

𝑦
2

𝑦
2𝑓
𝑖
(𝑥, 𝑦) 𝑝]

−
1

2
𝑝𝑇
𝑖
[∇
𝑦
2

𝑦
2𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
] , 𝑖 = 1, 2, . . . , 𝑘}

Subject to −
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑦
2𝑓
𝑖
(𝑥, 𝑦) − 𝐷

𝑖
𝑤
𝑖
+ ∇
𝑦
2

𝑦
2𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
]

∈ 𝐶∗
2
,
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𝑤𝑇
𝑖
𝐷
𝑖
𝑤
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑘,

𝑥2 ∈ 𝐶
1
, 𝑥1 ∈ 𝑈, 𝑦1 ∈ 𝑉, 𝑤

𝑖
∈ 𝑅𝑚,

𝜆 ∈ int𝐾∗,
𝑘

∑
𝑖=1

𝜆
𝑖
= 1.

(69)

Dual (WID). Consider

min
V1

max
𝑢,V2,𝑧

{𝑓
𝑖
(𝑢, V) − ((V2)

𝑇

𝐷
𝑖
V)
1/2

+ (𝑢2)
𝑇

[∇
𝑢
2𝑓
𝑖
(𝑢, V) + ∇

𝑢
2

𝑢
2𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]

−
1

2
𝑞𝑇
𝑖
[∇
𝑢
2

𝑢
2𝑓
𝑖
(𝑢, V) 𝑞

𝑖
] , 𝑖 = 1, 2, . . . , 𝑘}

Subject to
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑢
2𝑓
𝑖
(𝑢, V) + 𝐵

𝑖
𝑧
𝑖
+ ∇
𝑢
2

𝑢
2𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]

∈ 𝐶∗
1
,

𝑧𝑇
𝑖
𝐵
𝑖
𝑧
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑘,

V2 ∈ 𝐶
2
, 𝑢1 ∈ 𝑈, V1 ∈ 𝑉, 𝑧

𝑖
∈ 𝑅𝑛,

𝜆 ∈ int𝐾∗,
𝑘

∑
𝑖=1

𝜆
𝑖
= 1,

(70)

where

(1) 𝑓 = (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑘
) : 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑘 is thrice differ-

entiable function,
(2) 𝐶
1
and𝐶

2
are closed convex cones in𝑅𝑛−𝑛1 and𝑅𝑚−𝑚1

with nonempty interiors, respectively,
(3) 𝐶∗
1
and 𝐶∗

2
are positive polar cones of 𝐶

1
and 𝐶

2
,

respectively,
(4) 𝐾 is a closed convex cone in 𝑅𝑘 with int𝐾 ̸= 𝜙 and

𝑅𝑘
+
⊂ 𝐾,

(5) 𝑞
𝑖
, 𝑧
𝑖
(𝑖 = 1, 2, . . . , 𝑘) are vectors in 𝑅𝑛, and 𝑝

𝑖
, 𝑤
𝑖
(𝑖 =

1, 2, . . . , 𝑘) are vectors in 𝑅𝑚,
(6) 𝐵
𝑖
and 𝐷

𝑖
(𝑖 = 1, 2, . . . , 𝑘) are positive semidefinite

matrices of order 𝑛 − 𝑛
1
and𝑚 − 𝑚

1
, respectively.

Theorem 18 (symmetric duality). Let (𝑥, 𝑦, 𝜆, 𝑤, 𝑝) be a
weakly efficient solution of (WIP). Also

(i) 𝑓(𝑥, 𝑦) is additively separable with respect to 𝑥1 or 𝑦1;
that is, 𝑓

𝑖
(𝑥1, 𝑥2, 𝑦) = 𝑓

𝑖1
(𝑥1) + 𝑓

𝑖2
(𝑥2, 𝑦),

(ii) 𝑓(𝑥, 𝑦) is thrice differentiable in 𝑥2 and 𝑦2,
(iii) ∇

𝑦
2

𝑦
2𝑓(𝑥, 𝑦) is nonsingular,

(iv) the vector 𝑝𝑇∇
𝑦
2(∇
𝑦
2

𝑦
2𝑓(𝑥, 𝑦)𝑝) = 0 ⇒ 𝑝 = 0.

Furthermore, for any feasible solution (𝑥, 𝑦, 𝜆, 𝑤, 𝑝)

in (WIP) and for any feasible solution (𝑢, V, 𝜆, 𝑧, 𝑞) in
(WID), suppose there exist functional 𝐹󸀠 : 𝑋󸀠 × 𝑋󸀠 ×
𝑅𝑛−𝑛1 → 𝑅 and 𝐺󸀠 : 𝑌󸀠 × 𝑌󸀠 × 𝑅𝑚−𝑚1 → 𝑅 such that

(v) (𝑓
12
(𝑢2, V) + (𝑢2)𝑇𝐵

1
𝑧
1
, . . . , 𝑓

𝑘2
(𝑢2, V) + (𝑢2)𝑇𝐵

𝑘
𝑧
𝑘
) is

second order (𝐾, 𝐹󸀠) pseudoconvex at 𝑢2 with respect
to 𝑞 ∈ 𝑅𝑛−𝑛1 for each (𝑢1, V) and (𝑓

12
(𝑥, 𝑦2) −

(𝑦2)𝑇𝐷
1
𝑤
1
, . . ., 𝑓

12
(𝑥, 𝑦2) − (𝑦2)𝑇𝐷

1
𝑤
1
) is second

order (𝐾, 𝐺󸀠) pseudoconcave at 𝑦2 with respect to 𝑝 ∈

𝑅𝑚−𝑚1 for each (𝑥, 𝑦1),

(vi) 𝐹󸀠
𝑥
2

,𝑢
2
(𝑎) − (𝑢2)𝑇𝑎 ≥ 0, for all 𝑎 ∈ 𝐶∗

1
, and 𝐺󸀠V2 ,𝑦2(𝑏) −

(𝑦2)𝑇𝑏 ≥ 0, for all 𝑏 ∈ 𝐶∗
2
.

Then there exist 𝑧 ∈ 𝑅𝑛−𝑛1 such that (𝑥, 𝑦, 𝜆, 𝑧, 𝑞 = 0) is
efficient solution for dual and optimal values (WIP) and (WID)
are equal.

Proof. Let

𝑠 = max
𝑥
1

min
𝑥
2

,𝑦,𝑤

{𝑓
𝑖
(𝑥, 𝑦) + ((𝑥2)

𝑇

𝐵
𝑖
𝑥2)
1/2

− (𝑦2)
𝑇

× [∇
𝑦
2𝑓
𝑖
(𝑥, 𝑦) + ∇

𝑦
2

𝑦
2𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
]

−
1

2
𝑝
𝑖

𝑇∇
𝑦
2

𝑦
2𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
,

𝑖 = 1, 2, . . . , 𝑘; (𝑥, 𝑦, 𝑤, 𝑝) ∈ 𝑆} ,

𝑡 = min
V1

max
𝑢,V2 ,𝑧

{𝑓
𝑖
(𝑢, V) − ((V2)

𝑇

𝐶
𝑖
V2)
1/2

+ (𝑢2)
𝑇

[∇
𝑢
2𝑓
𝑖
(𝑢, V) + ∇

𝑢
2

𝑢
2𝑓
𝑖
(𝑢, V) 𝑞

𝑖
]

−
1

2
𝑞𝑇
𝑖
∇
𝑢
2

𝑢
2𝑓
𝑖
(𝑢, V) 𝑞

𝑖
,

𝑖 = 1, 2, . . . , 𝑘; (𝑢, V, 𝑧, 𝑞) ∈ 𝑇} ,

(71)

where 𝑆 and 𝑇 are a feasible region of primal (WIP) and dual
(WID), respectively.

Since 𝑓
𝑖
(𝑥, 𝑦) is additively separable with respect to 𝑥1

or 𝑦1 (say with respect to 𝑥1) from definition, it follows that
𝑓
𝑖
(𝑥, 𝑦) = 𝑓

𝑖1
(𝑥1) + 𝑓

𝑖2
(𝑥2, 𝑦).

Therefore

∇
𝑦
2𝑓
𝑖
(𝑥, 𝑦) = ∇

𝑦
2𝑓
𝑖2
(𝑥2, 𝑦) , ∇

𝑦
2

𝑦
2𝑓
𝑖
(𝑥, 𝑦)

= ∇
𝑦
2

𝑦
2𝑓
𝑖2
(𝑥2, 𝑦) .

(72)
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So the primal (WIP) can be written as

𝑠 = max
𝑥
1

min
𝑥
2

,𝑦,𝑤

{𝑓
𝑖1
(𝑥1) + 𝑓

𝑖2
(𝑥2, 𝑦)

+ ((𝑥2)
𝑇

𝐵
𝑖
𝑥2)
1/2

− (𝑦2)
𝑇

× [∇
𝑦
2𝑓
𝑖2
(𝑥, 𝑦) + ∇

𝑦
2

𝑦
2𝑓
𝑖2
(𝑥, 𝑦) 𝑝

𝑖
]

−
1

2
𝑝𝑇
𝑖
∇
𝑦
2

𝑦
2𝑓
𝑖2
(𝑥2, 𝑦) 𝑝

𝑖
,

𝑖 = 1, 2, . . . , 𝑘; (𝑥, 𝑦, 𝑤, 𝑝) ∈ 𝑆}

(73)

or

𝑠 = max
𝑥
1

min
𝑦
1

{𝑓
𝑖1
(𝑥1) + 𝜑

𝑖
(𝑦1) ; 𝑥1 ∈ 𝑈, 𝑦1 ∈ 𝑉} ,

(74)

where (WIP
0
):

𝜑
𝑖
(𝑦1)

= min
𝑥
2

,𝑦
2

,𝑤

{𝑓
𝑖2
(𝑥2, 𝑦) + ((𝑥2)

𝑇

𝐵
𝑖
𝑥2)
1/2

− (𝑦2)
𝑇

× [∇
𝑦
2𝑓
𝑖2
(𝑥, 𝑦) + ∇

𝑦
2

𝑦
2𝑓
𝑖2
(𝑥, 𝑦) 𝑝

𝑖
]

−
1

2
𝑝𝑇
𝑖
∇
𝑦
2

𝑦
2𝑓
𝑖2
(𝑥2, 𝑦) 𝑝

𝑖
}

Subject to −
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑦
2𝑓
𝑖2
(𝑥2, 𝑦) − 𝐶

𝑖
𝑤
𝑖

+∇
𝑦
2

𝑦
2𝑓
𝑖2
(𝑥2, 𝑦) 𝑝

𝑖
] ∈ 𝐶∗
2
,

(𝑤
𝑖
)
𝑇

𝐶
𝑖
𝑤
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑘,

𝜆 ∈ int𝐾∗,
𝑘

∑
𝑖=1

𝜆
𝑖
= 1,

𝑥2 ∈ 𝐶
1
, 𝑤

𝑖
∈ 𝑅𝑚−𝑚1 , 𝑝

𝑖
∈ 𝑅𝑚−𝑚1 .

(75)

Similarly the dual (WID) can be written as

𝑡 = min
V1

max
𝑢
1

{𝑓
𝑖1
(𝑢1) + 𝜃 (V1) , 𝑢1 ∈ 𝑈, V1 ∈ 𝑉} , (76)

where (WID
0
):

𝜃
𝑖
(V1) = max

𝑢
2

,V2 ,𝑧,𝑞
{𝑓
𝑖2
(𝑢2, V)

− ((V2)
𝑇

𝐶
𝑖
V2)
1/2

− (𝑢2)
𝑇

× [∇
𝑢
2𝑓
𝑖2
(𝑢, V) + ∇

𝑢
2

𝑢
2𝑓
𝑖2
(𝑢, V) 𝑞

𝑖
]

−
1

2
𝑞
𝑖

𝑇∇
𝑢
2

𝑢
2𝑓
𝑖2
(𝑢2, V) 𝑞

𝑖
}

Subject to
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑢
2𝑓
𝑖2
(𝑢2, V) + 𝐵

𝑖
𝑧
𝑖

+ ∇
𝑢
2

𝑢
2𝑓
𝑖2
(𝑢2, V) 𝑞

𝑖
] ∈ 𝐶∗
1
,

(𝑧
𝑖
)
𝑇

𝐵
𝑖
𝑧
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑘,

𝜆 ∈ int𝐾∗,
𝑘

∑
𝑖=1

𝜆
𝑖
= 1,

V2 ∈ 𝐶
2
, 𝑧

𝑖
∈ 𝑅𝑛−𝑛1 , 𝑞

𝑖
∈ 𝑅𝑛−𝑛1 .

(77)

For any given 𝑦1 and V1, programs (WIP
0
) and (WID

0
)

are a pair of Wolfe type second order nondifferentiable
multiobjective symmetric dual programs studied in Section 3
and hence in view of hypothesis (ii)–(vi), Theorems 14 and 15
become applicable. Therefore 𝑦1 = 𝑦1 = V1, and we obtain
𝑞 = 0, 𝜑(𝑦1) = 𝜃(𝑦1). So the two optimal values are equal
and (𝑥, 𝑦, 𝜆, 𝑧, 𝑞 = 0) is an efficient solution for the dual.

5. Special Cases

(i) If𝐵
𝑖
= 𝐷
𝑖
= 0, 𝑘 = 1, then the problems (SWP) and (SWD)

can be reduced to the problem proposed by Gulati et al. [14]
as follows.

Primal (WP).

Minimize 𝑓 (𝑥, 𝑦) − 𝑦𝑇 [∇
𝑦
𝑓 (𝑥, 𝑦) + ∇

𝑦𝑦
𝑓 (𝑥, 𝑦) 𝑝]

−
1

2
𝑝𝑇 [∇
𝑦𝑦
𝑓 (𝑥, 𝑦) 𝑝]

Subject to − [∇
𝑦
𝑓
𝑖
(𝑥, 𝑦) + ∇

𝑦𝑦
𝑓
𝑖
(𝑥, 𝑦) 𝑝

𝑖
] ∈ 𝐶∗
2
,

𝑥 ∈ 𝐶
1
.

(78)

Dual (WD).

Maximize 𝑓 (𝑢, 𝑢) + 𝑢𝑇 [∇
𝑢
𝑓 (𝑢, V) + ∇

𝑢𝑢
𝑓 (𝑢, V) 𝑞]

−
1

2
𝑞𝑇 [∇
𝑢𝑢
𝑓 (𝑢, V) 𝑞]

Subject to ∇
𝑢
𝑓 (𝑢, V) + ∇

𝑢𝑢
𝑓 (𝑢, V) 𝑞 ∈ 𝐶∗

1
,

V ∈ 𝐶
2
.

(79)
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(ii) If 𝑘 = 1, 𝐶
1
= 𝑅𝑛
+
, 𝐶
2
= 𝑅𝑚
+
, (𝑥𝑇𝐵𝑥)1/2 = 𝑠(𝑥 | 𝐶󸀠),

and (𝑦𝑇𝐷𝑦)1/2 = 𝑠(𝑦 | 𝐷󸀠), where 𝐶󸀠 = {𝐵𝑥 | 𝑥𝑇𝐵𝑥 ≤ 1},
𝐷󸀠 = {𝐷𝑦 | 𝑦𝑇𝐷𝑦 ≤ 1}, then the problems (SWP) and (SWD)
can be reduced to the problem proposed by Yang et al. [12].
Primal (WP).

Minimize 𝑓 (𝑥, 𝑦) + 𝑠 (𝑥 | 𝐶󸀠)

− 𝑦𝑇 [∇
𝑦
𝑓 (𝑥, 𝑦) + ∇

𝑦𝑦
𝑓 (𝑥, 𝑦) 𝑝]

−
1

2
𝑝𝑇 [∇
𝑦𝑦
𝑓 (𝑥, 𝑦) 𝑝]

Subject to ∇
𝑦
𝑓 (𝑥, 𝑦) − 𝑧 + ∇

𝑦𝑦
𝑓 (𝑥, 𝑦) 𝑝 ≤ 0,

𝑥 ≥ 0, 𝑧 ∈ 𝐷󸀠.

(80)

Dual (WD).

Maximize 𝑓 (𝑢, 𝑢) − 𝑠 (V | 𝐷󸀠)

− 𝑢𝑇 [∇
𝑢
𝑓 (𝑢, V) + ∇

𝑢𝑢
𝑓 (𝑢, V) 𝑞]

−
1

2
𝑞𝑇 [∇
𝑢𝑢
𝑓 (𝑢, V) 𝑞]

Subject to ∇
𝑢
𝑓 (𝑢, V) + ∇

𝑢𝑢
𝑓 (𝑢, V) 𝑞 ≥ 0,

V ≥ 0, 𝑤 ∈ 𝐶󸀠.

(81)
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