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The modified (𝐺
󸀠

/𝐺)-expansion method is applied for finding new solutions of the generalized mKdV equation. By taking an
appropriate transformation, the generalizedmKdV equation is solved in different cases and hyperbolic, trigonometric, and rational
function solutions are obtained.

1. Introduction

The evolutions of the physical, engineering, and other
systems always behave nonlinearly; hence many nonlinear
evolution equations have been introduced to interpret the
phenomena.Many kinds ofmathematicalmethods have been
established to investigate the solutions of those nonlinear
evolution equations both numerically and asymptotically,
while the exact solutions are of particular interests. In recent
decades, with the rapid progress of computation methods,
many effective calculating approaches have been developed,
for example, the tanh-coth expansion [1, 2], 𝐹-expansion
[3, 4], Painlevé expansion [5], Jacobi elliptic functionmethod
[6], Hirota bilinear transformation [7], Backlund/Darboux
transformation [8, 9], variational method [10], the homoge-
neous balance method [11], exp-function expansion [12], and
so on. However, a unified approach to obtain the complete
solutions of the nonlinear evolution equations has not been
revealed.

Within recent years, a new method called (𝐺󸀠/𝐺)-expan-
sion [13] has been proposed for finding the traveling wave
solutions of the nonlinear evolution equations. Many equa-
tions have been investigated and many solutions have
been found using the method, including KdV equation,
Hirota-Satsuma equation [13], coupled Boussinesq equa-
tion [14], generalized Bretherton equation [15], the mKdV
equation [16], the Burgers-KdV equation, the Benjamin-
Bona-Mahony equation [17], the Whitham-Broer-Kaup-like

equation [18], the Kolmogorov-Petrovskii-Piskunov equation
[19], KdV-Burgers equation [20], and Drinfeld-Sokolov-
Satsuma-Hirota equation [21].

ThemKdV equation, amodified version of the Korteweg-
de Vries (KdV) equation, has been investigated extensively
since Zabusky showed how this equation depict the oscilla-
tions of a lattice of particles connected by nonlinear springs
as the Fermi-Pasta-Ulam (FPU) model [22–25]. Afterwards,
this equation has been used to describe the evolution of inter-
nal waves at the interface of two layers of equal depth [26].
Generally, the KdV theory describes the weak nonlinearity
and weak dispersion while, in the study of nonlinear optics,
the complex mKdV equation has even been used to describe
the propagation of optical pulses in nematic optical fibers
when we go beyond the usual weakly nonlinear limit of Kerr
medium [27]. In some cases, the exponential order may be
not a positive integer, but just a real number. After this kind
of generalized mKdV equation [28] has been introduced,
interests of investigating the solutions of it [29] have been
inspired; then the standard expansion methods cannot be
applied, and some kinds of transformation are needed.

In this paper, we modify the standard (𝐺󸀠/𝐺)-expansion
method and use it to solve the generalized mKdV equation.
In next section, we briefly introduce the modified (𝐺󸀠/𝐺)-
expansionmethodwhile in Section 3, we apply it to find some
types of new solutions ofmKdV equation, and the last section
gives the summary and conclusion.
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2. An Introduction to the
Modified (𝐺󸀠/𝐺)-Expansion Method

Recently, a new approach called (𝐺󸀠/𝐺)-expansion has been
proposed dealing with the problems of finding solutions of
nonlinear evolution equations [13] and some modifications
to this method have been developed. Here we briefly outline
the main steps of the modified (𝐺󸀠/𝐺)-expansion method in
the following.

Step 1. We consider a given

𝑃 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥
𝑡, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑥

, . . .) = 0, (1)

where 𝑃 is a polynomial for its arguments and 𝑢 = 𝑢(𝑥, 𝑡)

is the unknown function. Introducing the new variable 𝜉

and supposing that 𝑢(𝜉) = 𝑢(𝑥, 𝑡) and 𝜉 = 𝑥 − V𝑡, hence,
the partial differential equation (PDE) (1) is reduced to an
ordinary differential equation (ODE) for 𝑢 = 𝑢(𝜉) as

𝑃 (𝑢, −V𝑢󸀠, 𝑢󸀠, V2𝑢󸀠󸀠, −V𝑢󸀠󸀠, 𝑢󸀠󸀠, . . .) = 0. (2)

Step 2. For ODE (2) above, the solution could be expressed
by a polynomial in 𝐺

󸀠
/𝐺 as

𝑢 (𝜉) =

𝑚

∑

𝑖=−𝑚

𝑎
𝑖
(
𝐺
󸀠

𝐺

)

𝑖

, (3)

where 𝐺 = 𝐺(𝜉) is the solution of a second order linear ODE

𝐺
󸀠󸀠

(𝜉) + 𝜆𝐺
󸀠

(𝜉) + 𝜇𝐺 (𝜉) = 0 (4)

with constants 𝜆, 𝜇 to be determined later. Positive integer
𝑚 is an index yet undetermined which should be calculated
by the balance between the highest order derivatives and the
nonlinear terms from ODE (2). By solving (4), it is apparent
that the form of 𝐺󸀠/𝐺 in three different cases read as follows.

(1)When 𝜆
2
− 4𝜇 > 0,

𝐺
󸀠

𝐺

=

√𝜆
2
− 4𝜇

2

× ((𝐶
1
sinh

√𝜆
2
− 4𝜇

2

𝜉

+𝐶
2
cosh

√𝜆
2
− 4𝜇

2

𝜉)

× (𝐶
1
cosh

√𝜆
2
− 4𝜇

2

𝜉

+𝐶
2
sinh

√𝜆
2
− 4𝜇

2

𝜉)

−1

) −
𝜆

2

.

(5)

(2)When 𝜆
2
− 4𝜇 < 0,

𝐺
󸀠

𝐺

=

√4𝜇 − 𝜆
2

2

× ((−𝐶
1
sin

√4𝜇 − 𝜆
2

2

𝜉

+𝐶
2
cos

√4𝜇 − 𝜆
2

2

𝜉)

× (𝐶
1
cos

√4𝜇 − 𝜆
2

2

𝜉

+𝐶
2
sin

√4𝜇 − 𝜆
2

2

𝜉)

−1

) −
𝜆

2

.

(6)

(3)When 𝜆
2
− 4𝜇 = 0,

𝐺
󸀠

𝐺

=
𝐶
2

𝐶
1
+ 𝐶
2
𝜉

−
𝜆

2

, (7)

where 𝐶
1
and 𝐶

2
in above three solutions (5), (6), and (7) of

(4) are integrate constants.

Step 3. Substituting solution (3) into ODE (2) using (4),
we have a set of differential equations. Collecting all terms
together according to the same order of 𝐺󸀠/𝐺, the left-hand
side of ODE (2) becomes a long expression in the form of
polynomial of 𝐺󸀠/𝐺. Making all coefficients of each order of
𝐺
󸀠
/𝐺 equal to zero, the solution sets of the parameters 𝜆, 𝜇,

𝑎
𝑖
, and V will be got after solving the algebra equations.

Step 4. Based on the last step, we now have the solutions of
the coefficient algebra equations and after substituting the
parameters 𝑎

𝑖
, V, and so forth into solution (3), we could reach

different types of travelling wave solutions of the PDE (1).

3. Application to the Generalized
mKdV Equation

Now, we consider the generalized mKdV equation with the
form [28]

𝑢
𝑡
+ 𝛼𝑢
𝛾
𝑢
𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

= 0, (8)

while parameters 𝛼 and 𝛽 are real constants. Denoting the
travelling wave solution as

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , (9)

with 𝜉 = 𝑥 − V𝑡, then the PDE (8) becomes an ODE. After
integrating with single variable 𝜉 and setting the integrate
constant to zero, we have

−V𝑢 +
𝛼

1 + 𝛾

𝑢
1+𝛾

+ 𝛽𝑢
󸀠󸀠
= 0. (10)
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It can be easily seen that the standard (𝐺
󸀠
/𝐺)-expansion

cannot be applied directly to this situation because of the
arbitrary power index 𝛾, which results in the noninteger
power index of 𝐺

󸀠
/𝐺. So it is necessary to introduce a

transformation to deal with it via assuming that

𝑢 (𝜉) = 𝑤
1/𝛾

(𝜉) ; (11)

then (10) becomes

𝛽𝛾 (1 + 𝛾)𝑤𝑤
󸀠󸀠
+ 𝛽 (1 − 𝛾

2
)𝑤
󸀠2

− V𝛾2 (1 + 𝛾)𝑤
2
+ 𝛼𝛾
2
𝑤
3
= 0.

(12)

The balancing between the highest order nonlinear term
and the highest order derivative term leads to the balance
parameter 𝑚 = 2; hence the solution (3) could be expressed
as

𝑤 (𝜉) = 𝑎
0
+ 𝑎
1
𝜙 (𝜉) + 𝑎

2
𝜙
2

(𝜉) +

𝑎
−1

𝜙 (𝜉)

+

𝑎
−2

𝜙
2
(𝜉)

, (13)

with 𝜙(𝜉) = 𝐺
󸀠
(𝜉)/𝐺(𝜉) and 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑎
−1
, and 𝑎

−2
being

constants to be determined later.
Substituting (13) into (12), making use of (4), a polyno-

mial of 𝜙(𝜉) is obtained; a set of nonlinear algebra equations
about undetermined constants 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑎
−1
, 𝑎
−2
, 𝜆, 𝜇, and V

are reached through setting the coefficients of each order of 𝜙
to zero. These equations are expressed as follows.

(1) 𝜙
0-order:

− V (𝑎2
0
− 2𝑎
1
𝑎
−1

− 2𝑎
2
𝑎
−2
) 𝛾
3

+ {[4 (𝑎
1
𝑎
−1

+ 4𝑎
2
𝑎
−2
) 𝜆
2

+ (17𝑎
1
𝑎
−2

+ 17𝜇𝑎
2
𝑎
−1

+ 𝑎
0
𝑎
−1

+ 𝜇𝑎
0
𝑎
1
) 𝜆

+ (2𝑎
0
𝑎
2
− 𝑎
2

1
) 𝜇
2
+ 8 (𝑎

1
𝑎
−1

+ 4𝑎
2
𝑎
−2
) 𝜇

−𝑎
2

−1
+ 2𝑎
0
𝑎
−2
] 𝛽

+ (𝛼𝑎
3

0
− V𝑎2
0
+ 6𝛼 (𝑎

1
𝑎
−1

+ 𝑎
2
𝑎
−2
) 𝑎
0

+ (3𝛼𝑎
2

1
− 2V𝑎
2
) 𝑎
−2

+ (3𝛼𝑎
2
𝑎
2

−1
− 2V𝑎
1
𝑎
−1
)} 𝛾
2

+ [2 (𝑎
1
𝑎
−1

+ 4𝑎
2
𝑎
−2
) 𝜆
2

+ (𝜇𝑎
0
𝑎
1
+ 𝑎
0
𝑎
−1

+ 9𝜇𝑎
2
𝑎
−1

+ 9𝑎
1
𝑎
−2
) 𝜆

+2𝑎
0
𝑎
2
𝜇
2
+ 4 (𝑎

1
𝑎
−1

+ 4𝑎
2
𝑎
−2
) 𝜇 + 2𝑎

0
𝑎
−2
] 𝛽𝛾

+ [−2 (𝑎
1
𝑎
−1

+ 4𝑎
2
𝑎
−2
) 𝜆
2

− 8 (𝜇𝑎
2
𝑎
−1

+ 𝑎
1
𝑎
−2
) 𝜆 + 𝜇

2
𝑎
2

1

−4 (𝑎
1
𝑎
−1

+ 4𝑎
2
𝑎
−2
) 𝜇 + 𝑎

2

−1
] 𝛽 = 0.

(14)

(2) 𝜙
1-order:

− 2V (𝑎
0
𝑎
1
+ 𝑎
2
𝑎
−1
) 𝛾
3

+ {𝛽 (𝑎
0
𝑎
1
+ 9𝑎
2
𝑎
−1
) 𝜆
2

+ [𝛽𝜇 (6𝑎
0
𝑎
1
− 𝑎
2

1
) + 8𝛽 (𝑎

1
𝑎
−1

+ 4𝑎
2
𝑎
−2
)] 𝜆

− 2𝛽𝜇
2
𝑎
1
𝑎
2
+ 2𝛽 (𝑎

0
𝑎
1
+ 9𝑎
2
𝑎
−1
) 𝜇

+ 3 (𝑎
2

1
𝑎
−1

+ 𝑎
2

0
𝑎
1
+ 2𝑎
1
𝑎
2
𝑎
−1

+ 2𝑎
0
𝑎
2
𝑎
−1
) 𝛼

−2V𝑎
0
𝑎
1
− 2V𝑎
2
𝑎
−1

+ 8𝛽𝑎
1
𝑎
−2
} 𝛾
2

+ 𝛽 (𝛾𝑎
0
𝑎
1
+ 5𝛾𝑎

2
𝑎
−1

− 4𝑎
2
𝑎
−1
) 𝜆
2

+ 𝛽 {[(2 + 𝛾) 𝑎
2

1
+ 6𝛾𝑎

0
𝑎
2
] 𝜇

+4 (𝛾 − 1) (𝑎
1
𝑎
−1

+ 4𝑎
2
𝑎
−2
) } 𝜆

+ 𝛽 [2 (𝛾 + 2) 𝑎
1
𝑎
2
𝜇
2

+ 2 (𝛾𝑎
0
𝑎
1
+ 5𝛾𝑎

2
𝑎
−1

− 4𝑎
2
𝑎
−1
) 𝜇

+4 (𝛾 − 1) 𝑎
1
𝑎
−1
] = 0.

(15)

(3) 𝜙
2-order:

𝛽 (1 + 𝛾) (𝑎
2

1
+ 4𝑎
0
𝑎
2
) 𝜆
2

+ 𝛽 [− (𝛾 + 1) (𝛾 − 8) 𝑎
1
𝑎
2
𝜇 + 3𝛾 (1 + 𝛾) 𝑎

0
𝑎
1

+ (𝛾 + 1) (19𝛾 − 8) 𝑎
2
𝑎
−1
] 𝜆

− 2𝛽 (𝛾 + 1) (𝛾 − 2) 𝑎
2

2
𝜇
2

+ 2𝛽 (𝛾 + 1) (𝑎
2

1
+ 4𝛾𝑎

0
𝑎
2
) 𝜇

− V𝛾3 (2𝑎
0
𝑎
2
+ 𝑎
2

1
)

+ 𝛾
2
[4𝛽 (𝑎

1
𝑎
−1

+ 4𝑎
2
𝑎
−2
)

− V (𝑎2
1
+ 2𝑎
0
𝑎
2
)

+ 3𝛼 (𝑎
0
𝑎
2

1
+ 𝑎
2

0
𝑎
2

+𝑎
2

2
𝑎
−2

+ 2𝑎
1
𝑎
2
𝑎
−1
)] = 0.

(16)

(4) 𝜙
3-order:

𝛽𝑎
1
𝑎
2
(𝛾 + 4) (𝛾 + 1) 𝜆

2
+ 𝛽 (𝛾 + 1)

× [(𝛾 + 2) 𝑎
2

1
+ 2 (𝛾 + 4) 𝜇𝑎

2

2
+ 10𝛾𝑎

0
𝑎
2
] 𝜆

− 2V𝛾3𝑎
1
𝑎
2

+ [2𝛽 (𝑎
0
𝑎
1
+ 5𝑎
2
𝑎
−1
) + 2𝑎

1
𝑎
2
(𝛽𝜇 − V)

+𝛼 (𝑎
3

1
+ 3𝑎
2

2
𝑎
−1

+ 6𝑎
0
𝑎
1
𝑎
2
)] 𝛾
2



4 ISRN Applied Mathematics

+ 2𝛽 [(3𝛾 − 2) 𝑎
2
𝑎
−1

+ (5𝛾 + 4) 𝑎
1
𝑎
2
𝜇 + 𝛾𝑎

0
𝑎
1
] = 0.

(17)

(5) 𝜙
4-order:

4 (1 + 𝛾) 𝛽𝑎
2

2
𝜆
2
+ (𝛾 + 1) (5𝛾 + 8) 𝛽𝑎

1
𝑎
2
𝜆

− V𝛾3𝑎2
2
+ [3𝛼𝑎

2
(𝑎
2

1
+ 𝑎
0
𝑎
2
)

+𝛽 (𝑎
2

1
+ 6𝑎
0
𝑎
2
) − V𝑎2

2
] 𝛾
2

+ 2𝛽𝛾 (𝑎
2

1
+ 3𝑎
0
𝑎
2
+ 4𝑎
2

2
𝜇) 𝛾

+ 8𝛽 (𝑎
2

2
𝜇 + 𝑎
2

1
) = 0.

(18)

(6) 𝜙
5-order:

𝛾
2
(4𝛽𝑎
1
+ 2𝛽𝑎

2
𝜆 + 3𝛼𝑎

1
𝑎
2
) 𝑎
2

+ 2𝛾𝛽 (5𝜆𝑎
2
+ 4𝑎
1
) + 4𝛽 (2𝜆𝑎

2
+ 𝑎
1
) 𝑎
2
= 0.

(19)

(7) 𝜙
6-order:

𝛼𝛾
2
𝑎
3

2
+ 2𝛽𝛾 (𝛾 + 1) (𝛾 + 2) 𝑎

2

2
= 0. (20)

Equations for the coefficients of 𝜙−𝑖 (𝑖 ∈ [1, 6]) are similar to
the above equations and hence not shown here.

It is straight forward to give the solution sets of the
algebraic equations in different cases as follows.

Case i. All the coefficients in (13) are equal to 0, and 𝜆, 𝜇, and
V are arbitrary.

Case ii. All the coefficients in (13) are equal to 0 except for
𝑎
0
= (1 + 𝛾)V/𝛼, and 𝜆, 𝜇, V are arbitrary.

Case iii. All the coefficients in (13) equal to 0 except for 𝑎
2
=

−2𝛽(𝛾
2
+ 3𝛾 + 2)/𝛼𝛾

2.

Case iv. Consider

𝑎
0
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

,

𝑎
−2

= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

2

𝛼𝛾
2

,

𝑎
1
= 𝑎
2
= 𝑎
−1

= 0,

𝜆 = 0, V = −

4𝛽𝜇

𝛾
2

.

(21)

Case v. Consider

𝑎
1
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

𝛼𝛾
2

,

𝑎
2
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

,

𝑎
0
= 𝑎
−1

= 𝑎
−2

= 0,

𝜇 = 0, V =

𝛽𝜆
2

𝛾
2

.

(22)

Case vi. Consider

𝑎
0
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

,

𝑎
1
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

𝛼𝛾
2

,

𝑎
2
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

,

𝑎
−1

= 𝑎
−2

= 0, V =

𝛽 (𝜆
2
− 4𝜇)

𝛾
2

.

(23)

Case vii. Consider

𝑎
0
= −

𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

2

2𝛼𝛾
2

,

𝑎
1
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

𝛼𝛾
2

,

𝑎
2
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

,

𝑎
−1

= 𝑎
−2

= 0,

𝜇 =
𝜆
2

4

, V = 0.

(24)

Case viii. Consider

𝑎
0
= −

4𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

,

𝑎
2
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

,

𝑎
−2

= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

2

𝛼𝛾
2

,

𝑎
1
= 𝑎
−1

= 0,

𝜆 = 0, V = −

16𝛽𝜇

𝛾
2

.

(25)

Case ix. Consider

𝑎
0
= −

𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

2

2𝛼𝛾
2

,

𝑎
−1

= −

𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

3

2𝛼𝛾
2

,
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𝑎
−2

= −

𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

4

8𝛼𝛾
2

,

𝑎
1
= 𝑎
2
= 0,

𝜇 =
𝜆
2

4

, V = 0.

(26)

Case x. Consider

𝑎
0
= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

,

𝑎
−1

= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆𝜇

𝛼𝛾
2

,

𝑎
−2

= −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

2

𝛼𝛾
2

,

𝑎
1
= 𝑎
2
= 0, V =

𝛽 (𝜆
2
− 4𝜇)

𝛾
2

.

(27)

Cases i to iii are trivial and of no interest, hence not
discussed here. We focus our attention to cases from iv to x.
Using solutions (21) to (27), solution (13) can be expressed in
different forms corresponding to different cases listed above.

For Case iv, there are two solution types with 𝜉 = 𝑥 +

4𝛽𝜇𝑡/𝛾
2.

(iv-1) When 𝜇 < 0, we obtain the hyperbolic function
solution:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

+

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

⋅ ( ((𝐶
2

1
+ 𝐶
2

2
) cosh2√−𝜇𝜉

+2𝐶
1
𝐶
2
sinh√−𝜇𝜉 cosh√−𝜇𝜉 − 𝐶

2

2
)

× ((𝐶
2

1
+ 𝐶
2

2
) cosh2√−𝜇𝜉

+2𝐶
1
𝐶
2
sinh√−𝜇𝜉 cosh√−𝜇𝜉 − 𝐶

2

1
)

−1

) ,

(28)

where 𝐶
1
and 𝐶

2
are integration constants. Recalling (11) we

get

𝑢 (𝜉)

= [−

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

+

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

⋅ ( ((𝐶
2

1
+ 𝐶
2

2
) cosh2√−𝜇𝜉

+2𝐶
1
𝐶
2
sinh√−𝜇𝜉 cosh√−𝜇𝜉 − 𝐶

2

2
)

× ((𝐶
2

1
+ 𝐶
2

2
) cosh2√−𝜇𝜉

+2𝐶
1
𝐶
2
sinh√−𝜇𝜉 cosh√−𝜇𝜉 − 𝐶

2

1
)

−1

) ]

1/𝛾

.

(29)

For simplicity, we only show expression for 𝑤 rather than 𝑢

in the following cases.
(iv-2) When 𝜇 > 0, we have the trigonometric function

solution:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

+

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

⋅ ( ((𝐶
2

1
− 𝐶
2

2
) cos2√𝜇𝜉

+2𝐶
1
𝐶
2
sin√𝜇𝜉 cos√𝜇𝜉 + 𝐶

2

2
)

× ((𝐶
2

1
− 𝐶
2

2
) cos2√𝜇𝜉

+2𝐶
1
𝐶
2
sin√𝜇𝜉 cos√𝜇𝜉 − 𝐶

2

1
)

−1

) .

(30)

For Case v, there are also two types of solution with 𝜉 =

𝑥 − 𝛽𝜆
2
𝑡/𝛾
2.

(v-1) When 𝜆 ̸= 0:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

𝛼𝛾
2

× (
𝜆

2

𝐶
1
sinh (𝜆/2) 𝜉 + 𝐶

2
cosh (𝜆/2) 𝜉

𝐶
1
cosh (𝜆/2) 𝜉 + 𝐶

2
sinh (𝜆/2) 𝜉

−
𝜆

2

)

−

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

× (
𝜆

2

𝐶
1
sinh (𝜆/2) 𝜉 + 𝐶

2
cosh (𝜆/2) 𝜉

𝐶
1
cosh (𝜆/2) 𝜉 + 𝐶

2
sinh (𝜆/2) 𝜉

−
𝜆

2

)

2

.

(31)

(v-2) When 𝜆 = 0:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

𝐶
2

2

(𝐶
1
+ 𝐶
2
𝜉)
2
. (32)

For Case vi, there are three types of solution with 𝜉 = 𝑥 −

𝛽(𝜆
2
− 4𝜇)𝑡/𝛾

2.
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(vi-1) When 𝜆
2
− 4𝜇 > 0:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

−

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

𝛼𝛾
2

× (

√𝜆
2
− 4𝜇

2

⋅ ((𝐶
1
sinh

√𝜆
2
− 4𝜇

2

𝜉

+𝐶
2
cosh

√𝜆
2
− 4𝜇

2

𝜉)

× (𝐶
1
cosh

√𝜆
2
− 4𝜇

2

𝜉

+𝐶
2
sinh

√𝜆
2
− 4𝜇

2

𝜉)

−1

)

−
𝜆

2

)

−

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

⋅ (

√𝜆
2
− 4𝜇

2

× ((𝐶
1
sinh

√𝜆
2
− 4𝜇

2

𝜉

+𝐶
2
cosh

√𝜆
2
− 4𝜇

2

𝜉)

× (𝐶
1
cosh

√𝜆
2
− 4𝜇

2

𝜉

+𝐶
2
sinh

√𝜆
2
− 4𝜇

2

𝜉)

−1

)

−
𝜆

2

)

2

.

(33)

(vi-2) When 𝜆
2
− 4𝜇 < 0:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

−

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

𝛼𝛾
2

× (

√4𝜇 − 𝜆
2

2

⋅ ((−𝐶
1
sin

√4𝜇 − 𝜆
2

2

𝜉

+𝐶
2
cos

√4𝜇 − 𝜆
2

2

𝜉)

× (𝐶
1
cos

√4𝜇 − 𝜆
2

2

𝜉

+𝐶
2
sin

√4𝜇 − 𝜆
2

2

𝜉)

−1

)

−
𝜆

2

)

−

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

⋅ (

√4𝜇 − 𝜆
2

2

× ((−𝐶
1
sin

√4𝜇 − 𝜆
2

2

𝜉

+𝐶
2
cos

√4𝜇 − 𝜆
2

2

𝜉)

× (𝐶
1
cos

√4𝜇 − 𝜆
2

2

𝜉

+𝐶
2
sin

√4𝜇 − 𝜆
2

2

𝜉)

−1

)

−
𝜆

2

)

2

.

(34)
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(vi-3) When 𝜆
2
− 4𝜇 = 0:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

−

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

𝛼𝛾
2

(
𝐶
2

𝐶
1
+ 𝐶
2
𝜉

−
𝜆

2

)

−

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

(
𝐶
2

𝐶
1
+ 𝐶
2
𝜉

−
𝜆

2

)

2

.

(35)

For Case vii, we only have one type of solution:

𝑤 (𝜉) = −

𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

2

2𝛼𝛾
2

−

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

𝛼𝛾
2

(
𝐶
2

𝐶
1
+ 𝐶
2
𝜉

−
𝜆

2

)

−

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

(
𝐶
2

𝐶
1
+ 𝐶
2
𝜉

−
𝜆

2

)

2

,

(36)

where 𝜉 = 𝑥.
For Case viii, there are three types of solution with 𝜉 =

𝑥 + 16𝛽𝜇𝑡/𝛾
2.

(viii-1) When 𝜇 < 0:

𝑤 (𝜉)

= −

4𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

+

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

⋅ ( ((𝐶
2

1
+ 𝐶
2

2
) cosh2√−𝜇𝜉

+2𝐶
1
𝐶
2
sinh√−𝜇𝜉 cosh√−𝜇𝜉 − 𝐶

2

1
)

× ((𝐶
2

1
+ 𝐶
2

2
) cosh2√−𝜇𝜉

+2𝐶
1
𝐶
2
sinh√−𝜇𝜉 cosh√−𝜇𝜉 − 𝐶

2

2
)

−1

)

+

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

⋅ ( ((𝐶
2

1
+ 𝐶
2

2
) cosh2√−𝜇𝜉

+2𝐶
1
𝐶
2
sinh√−𝜇𝜉 cosh√−𝜇𝜉 − 𝐶

2

2
)

× ((𝐶
2

1
+ 𝐶
2

2
) cosh2√−𝜇𝜉

+2𝐶
1
𝐶
2
sinh√−𝜇𝜉 cosh√−𝜇𝜉 − 𝐶

2

1
)

−1

) .

(37)

(viii-2) When 𝜇 > 0:

𝑤 (𝜉) = −

4𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

+

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

⋅ ( ((𝐶
2

1
− 𝐶
2

2
) cos2√𝜇𝜉

+2𝐶
1
𝐶
2
sin√𝜇𝜉 cos√𝜇𝜉 − 𝐶

2

1
)

× ((𝐶
2

1
− 𝐶
2

2
) cos2√𝜇𝜉

+2𝐶
1
𝐶
2
sin√𝜇𝜉 cos√𝜇𝜉 + 𝐶

2

2
)

−1

)

+

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

⋅ ( ((𝐶
2

1
− 𝐶
2

2
) cos2√𝜇𝜉

+2𝐶
1
𝐶
2
sin√𝜇𝜉 cos√𝜇𝜉 + 𝐶

2

2
)

× ((𝐶
2

1
− 𝐶
2

2
) cos2√𝜇𝜉

+2𝐶
1
𝐶
2
sin√𝜇𝜉 cos√𝜇𝜉 − 𝐶

2

1
)

−1

) .

(38)

(viii-3) When 𝜇 = 0:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2)

𝛼𝛾
2

(
𝐶
2

𝐶
1
+ 𝐶
2
𝜉

−
𝜆

2

)

2

. (39)

For Case ix, only one type of solution exits; it is

𝑤 (𝜉) = −

𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

2

2𝛼𝛾
2

+

𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

3

𝛼𝛾
2

𝐶
1
+ 𝐶
2
𝜉

𝜆 (𝐶
1
+ 𝐶
2
𝜉) − 2𝐶

2

−

𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆

4

2𝛼𝛾
2

(𝐶
1
+ 𝐶
2
𝜉)
2

[𝜆 (𝐶
1
+ 𝐶
2
𝜉) − 2𝐶

2
]
2
,

(40)

where 𝜉 = 𝑥.
For Case x, there are three types of solution with 𝜉 = 𝑥 −

𝛽(𝜆
2
− 4𝜇)𝑡/𝛾

2.
(x-1) When 𝜆

2
− 4𝜇 > 0:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

−

4𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆𝜇

𝛼𝛾
2
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× ((𝐶
1
cosh

√𝜆
2
− 4𝜇

2

𝜉 + 𝐶
2
sinh

√𝜆
2
− 4𝜇

2

𝜉)

× ((√𝜆
2
− 4𝜇𝐶

1
− 𝜆𝐶
2
)

× sinh
√𝜆
2
− 4𝜇

2

𝜉

+ (√𝜆
2
− 4𝜇𝐶

2
− 𝜆𝐶
1
)

× cosh
√𝜆
2
− 4𝜇

2

𝜉)

−1

)

−

8𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

2

𝛼𝛾
2

⋅ ((𝐶
1
cosh

√𝜆
2
− 4𝜇

2

𝜉 + 𝐶
2
sinh

√𝜆
2
− 4𝜇

2

𝜉)

2

× (
[
[

[

(√𝜆
2
− 4𝜇𝐶

1
− 𝜆𝐶
2
) sinh

√𝜆
2
− 4𝜇

2

𝜉

+ (√𝜆
2
− 4𝜇𝐶

2
− 𝜆𝐶
1
)

× cosh
√𝜆
2
− 4𝜇

2

𝜉
]
]

]

2

)

−1

).

(41)

(x-2) When 𝜆
2
− 4𝜇 < 0:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

−

4𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆𝜇

𝛼𝛾
2

× ((𝐶
1
cos

√4𝜇 − 𝜆
2

2

𝜉 + 𝐶
2
sin

√4𝜇 − 𝜆
2

2

𝜉)

× (−(√4𝜇 − 𝜆
2
𝐶
1
+ 𝜆𝐶
2
) sin

√4𝜇 − 𝜆
2

2

𝜉

+ (√4𝜇 − 𝜆
2
𝐶
2
− 𝜆𝐶
1
)

× cos
√4𝜇 − 𝜆

2

2

𝜉)

−1

)

−

8𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

2

𝛼𝛾
2

⋅ ((𝐶
1
cos

√4𝜇 − 𝜆
2

2

𝜉 + 𝐶
2
sin

√4𝜇 − 𝜆
2

2

𝜉)

2

× (
[
[

[

−(√4𝜇 − 𝜆
2
𝐶
1
− 𝜆𝐶
2
) sin

√4𝜇 − 𝜆
2

2

𝜉

+ (√4𝜇 − 𝜆
2
𝐶
2
− 𝜆𝐶
1
)

× cos
√4𝜇 − 𝜆

2

2

𝜉
]
]

]

2

)

−1

).

(42)

(x-3) When 𝜆
2
− 4𝜇 = 0:

𝑤 (𝜉) = −

2𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

𝛼𝛾
2

+

4𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜆𝜇

𝛼𝛾
2

𝐶
1
+ 𝐶
2
𝜉

𝜆 (𝐶
1
+ 𝐶
2
𝜉) − 2𝐶

2

−

8𝛽 (𝛾
2
+ 3𝛾 + 2) 𝜇

2

𝛼𝛾
2

(𝐶
1
+ 𝐶
2
𝜉)
2

[𝜆 (𝐶
1
+ 𝐶
2
𝜉) − 2𝐶

2
]
2
.

(43)

As an example, we consider solutions of Case (iv-1) when
𝐶
1
= 0 and 𝜇 = −1; then the solution reduces to the soliton

form as

𝑢 (𝜉) =

12𝛽

𝛼

sech2 (𝑥 − 4𝛽𝑡) (44)

for 𝛾 = 1 as the standard KdV case and

𝑢 (𝜉) = √
6𝛽

𝛼

sech (𝑥 − 𝛽𝑡) (45)

for the standard mKdV case when 𝛾 = 2. We show the
diagrams of Case (iv-1) in Figure 1 to illustrate the behaviors
of the solutions for different power index 𝛾. We choose
coefficients of the generalized mKdV equation as 𝛼 = 6 and
𝛽 = 1; the constants of the solutions 𝐶

1
and 𝐶

2
equal 0.5

and 2, respectively, while the coefficient 𝜇 in the equation
equals−0.2. It is found that (i) this kind of solution is a type of
soliton solution; the amplitude decreases with the increase of
power index 𝛾; (ii) it gives that the width of the wave packet
broadened when increasing 𝛾; (iii) in addition, we find that
the velocity of the wave slowed down when 𝛾 is bigger.

4. Summary and Conclusion

In this paper, we use the modified (𝐺
󸀠
/𝐺)-expansion method

to construct some types of solutions of the mKdV equation
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Figure 1: Figures of solutions of Case (iv-1). The solution 𝑢(𝜉) evolutes with spatial coordinate 𝑥 and time 𝑡. The subscript of 𝑢 indicates the
four kinds of different power index 𝛾 of the generalized mKdV equation.

through the introduction of a proper transformation. Some
new solutions are given, including the hyperbolic, trigono-
metric, and rational function solutions. It is shown that using
the modified (𝐺

󸀠
/𝐺)-expansion method we can deal with

the nonlinear evolution equations effectively and directly and
abundant solutions could be obtained.
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