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We consider a nonsmooth multiobjective programming problem where the functions involved are nondifferentiable. The class of
univex functions is generalized to a far wider class of (𝜑, 𝛼, 𝜌, 𝜎)-𝑑

𝐼
-V-type I univex functions. Then, through various nontrivial

examples, we illustrate that the class introduced is new and extends several known classes existing in the literature. Based upon
these generalized functions, Karush-Kuhn-Tucker type sufficient optimality conditions are established. Further, we derive weak,
strong, converse, and strict converse duality theorems for Mond-Weir type multiobjective dual program.

1. Introduction

Generalizations of convexity related to optimality conditions
and duality for nonlinear single objective or multiobjective
optimization problems have been of much interest in the
recent past and thus explored the extent of optimality condi-
tions and duality applicability in mathematical programming
problems. Consequently, various generalizations of convex
functions have been introduced in the literature (see Hanson
[1], Vial [2], Hanson andMond [3], Jeyakumar andMond [4],
Hanson et al. [5], Liang et al. [6], and Gulati et al. [7]).

Nonsmooth optimization provides analytical tools for
studying optimization problems involving functions that are
not differentiable in the usual sense. Several nonlinear anal-
ysis problems arise from areas of optimization theory, game
theory, differential equations, mathematical physics, convex
analysis, and nonlinear functional analysis. For a nondiffer-
entiable multiobjective programming problem, there exists a
generalization of invexity to locally Lipschitz functions with
gradients replaced by the Clarke generalized subgradient.
Instead of Clarke generalized subgradient, Ye [8] used the
concept of directional derivative to define the class of 𝑑 invex

functions. Also, he derived necessary and sufficient opti-
mality conditions taking functions 𝑓

󸀠(𝑥
𝑜
; 𝑦) and 𝑔󸀠

𝐽
(𝑥
𝑜
; 𝑦)

to be convex. However, Antczak [9] considered the direc-
tional derivatives of objective and constraint functions to be
preinvex and derived duality results for Wolfe type, Mond-
Weir type, and mixed type dual programs. Mishra and Noor
[10] extended the class of functions to 𝑑-𝑉-type I functions
and obtained sufficient optimality and duality results for
Mond-Weir type multiobjective dual program. Nahak and
Mohapatra [11] obtained duality results for multiobjective
programming problem under (𝑑-𝜌-𝜂-𝜃) invexity assump-
tions. Slimani and Radjef [12] introduced a far wider class
of nondifferentiable functions called 𝑑

𝐼
-V-type I functions

in which each component is directionally differentiable in its
own direction instead of the same direction and established
sufficient optimality and duality results.

On the other hand, Bector et al. [13] generalized the
notion of convexity to univex functions. Rueda et al. [14]
obtained optimality and duality results for several mathemat-
ical programs by combining the concepts of type I and univex
functions. Mishra [15] obtained optimality results and saddle
point results for multiobjective programs under generalized
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type I univex functions. Generalizing the functions, Mishra
et al. [16] obtained duality results for a nondifferentiable
multiobjective programming problem under generalized 𝑑-
univexity. As an extension, Ahmad [17] introduced a new
class of 𝑑

𝐼
-V-type I univex functions which was generalized

to a class of (𝑑
𝐼
-𝜌-𝜎)-V-type I univex functions byKharbanda

et al. [18].
In this paper, we introduce a new generalized class of

(𝜑, 𝛼, 𝜌, 𝜎)-𝑑
𝐼
-V-type I univex functions which generalizes

the class of functions introduced by Kharbanda et al. [18],
Ahmad [17], Slimani and Radjef [12], Mishra and Noor [10],
Mishra et al. [16], Antczak [9], Suneja and Srivastava [19], and
Ye [8]. Further, we establish weak, strong, converse, and strict
converse duality results for Mond-Weir type multiobjective
dual program.

2. Preliminaries and Definitions

The following convention of vectors in 𝑅𝑛 will be followed
throughout this paper: 𝑥 ≧ 𝑦 ⇔ 𝑥

𝑖
≧ 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑛;

𝑥 ≥ 𝑦 ⇔ 𝑥 ≧ 𝑦, 𝑥 ̸= 𝑦; 𝑥 > 𝑦 ⇔ 𝑥
𝑖
> 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. Let

𝐷 be a nonempty subset of 𝑅𝑛, 𝜂 : 𝐷 × 𝐷 → 𝑅𝑛, and let 𝑥
𝑜

be an arbitrary point of 𝐷 and ℎ : 𝐷 → 𝑅, 𝑓 : 𝐷 → 𝑅𝑚,
𝜙 : 𝑅 → 𝑅, 𝑏 : 𝐷 × 𝐷 → 𝑅

+
. Also, we denote 𝑅𝑚

≥
= {𝑦 : 𝑦 ∈

𝑅𝑚 and 𝑦 ≥ 0}, 𝑅𝑘
≧(>)

= {𝑦 : 𝑦 ∈ 𝑅𝑘 and 𝑦 ≧ 0 (𝑦 > 0)} and
𝑖 = 1,𝑚 = {1, 2, . . . , 𝑚}, 𝑗 = 1, 𝑘 = {1, 2, . . . , 𝑘}.

Definition 1 (Weir and Mond [20] and Weir and Jeyakumar
[21]). The function ℎ is called preinvex on𝐷 if, for all 𝑥, 𝑥

𝑜
∈

𝐷, there exists a vector function 𝜂 such that ∀𝜆 ∈ [0, 1], 𝑥
𝑜
+

𝜆𝜂(𝑥, 𝑥
𝑜
) ∈ 𝐷, one has
𝜆ℎ (𝑥) + (1 − 𝜆) ℎ (𝑥

𝑜
) ≧ ℎ (𝑥

𝑜
+ 𝜆𝜂 (𝑥, 𝑥

𝑜
)) . (1)

Definition 2 (Mititelu [22]). The set𝐷 is said to be invex at 𝑥
𝑜

with respect to 𝜂, if, for each 𝑥 ∈ 𝐷,
𝑥
𝑜
+ 𝜆𝜂 (𝑥, 𝑥

𝑜
) ∈ 𝐷, ∀𝜆 ∈ [0, 1] . (2)

𝐷 is said to be an invex set with respect to 𝜂, if 𝐷 is invex at
each 𝑥

𝑜
∈ 𝐷 with respect to same 𝜂.

Definition 3 (Antczak [9]). Let 𝐷 ⊆ 𝑅𝑛 be an invex set. An
𝑚-dimensional vector-valued function 𝜓 : 𝐷 → 𝑅𝑚 is said
to be preinvex with respect to 𝜂, if each of its components is
preinvex on 𝐷 with respect to the same function 𝜂.

Definition 4 (Clarke [23]). The function ℎ is said to be locally
Lipschitz at 𝑥

𝑜
∈ 𝐷, if there exist a neighbourhood V(𝑥

𝑜
) of

𝑥
𝑜
and a constant 𝑘 > 0 such that

󵄨󵄨󵄨󵄨ℎ (𝑦) − ℎ (𝑥)
󵄨󵄨󵄨󵄨 ≦ 𝑘

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ V (𝑥

𝑜
) , (3)

where ‖ ⋅ ‖ denotes the Euclidean norm. Also, one says that ℎ
is locally Lipschitz on𝐷 if it is locally Lipschitz at every point
of 𝐷.

Definition 5 (Bector et al. [13]). A differentiable function ℎ is
said to be univex at 𝑥

𝑜
with respect to 𝜙, 𝜂, 𝑏 if, ∀𝑥 ∈ 𝐷, one

has

𝑏 (𝑥, 𝑥
𝑜
) 𝜙 (ℎ (𝑥) − ℎ (𝑥

𝑜
)) ≧ [∇ℎ(𝑥

𝑜
)]
𝑇
𝜂 (𝑥, 𝑥

𝑜
) . (4)

Definition 6 (Mishra et al. [16]). Let 𝐷 ⊆ 𝑅
𝑛 be a nonempty

open set. The function 𝑓 is called 𝑑-univex at 𝑥
𝑜

∈ 𝐷 with
respect to 𝜙, 𝜂, 𝑏 if it is directionally differentiable at 𝑥

𝑜
such

that, for any 𝑥 ∈ 𝐷,

𝑏 (𝑥, 𝑥
𝑜
) 𝜙 (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
)) ≧ 𝑓

󸀠

𝑖
(𝑥
𝑜
; 𝜂 (𝑥, 𝑥

𝑜
)) ,

∀𝑖 = 1,𝑚,

(5)

where 𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂(𝑥, 𝑥

𝑜
)) denotes the directional derivative of 𝑓

𝑖

at 𝑥
𝑜
in the direction 𝜂(𝑥, 𝑥

𝑜
):

𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂 (𝑥, 𝑥

𝑜
))

= lim
𝜆→0

+

𝑓
𝑖
(𝑥
𝑜
+ 𝜆𝜂 (𝑥, 𝑥

𝑜
)) − 𝑓

𝑖
(𝑥
𝑜
)

𝜆
.

(6)

If the above inequalities are satisfied at any point 𝑥
𝑜
∈ 𝐷, then

𝑓 is said to be 𝑑-univex on 𝐷 with respect to 𝜂.

Definition 7 (Slimani and Radjef [12]). The function ℎ is
said to be semidirectionally differentiable at 𝑥

𝑜
∈ 𝐷 in the

direction 𝜂(𝑥, 𝑥
𝑜
) if its directional derivative ℎ󸀠(𝑥

𝑜
; 𝜂(𝑥, 𝑥

𝑜
))

exists finite for all 𝑥 ∈ 𝐷.

Definition 8 (Slimani and Radjef [12]). Let 𝐷 ⊆ 𝑅𝑛 be a
nonempty open set. The function 𝑓 is called 𝑑

𝐼
-invex at 𝑥

𝑜
∈

𝐷 with respect to (𝜂
𝑖
)
𝑖=1,𝑚

, if, for any 𝑥 ∈ 𝐷,

𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
) ≧ 𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)) , ∀𝑖 = 1,𝑚, (7)

where 𝑓
𝑖
is semidirectionally differentiable at 𝑥

𝑜
in direction

𝜂
𝑖
: 𝐷 × 𝐷 → 𝑅𝑛, for 𝑖 = 1,𝑚.

We consider the following nonlinear multiobjective pro-
gramming problem:

(MP) Minimize 𝑓 (𝑥) = (𝑓
1 (𝑥) , 𝑓2 (𝑥) , . . . , 𝑓𝑚 (𝑥))

subject to 𝑔 (𝑥) ≦ 0,

(8)

where 𝑥 ∈ 𝐷 and the functions 𝑓 : 𝐷 → 𝑅𝑚, 𝑔 : 𝐷 → 𝑅𝑘,
and 𝐷 is a nonempty open subset of 𝑅𝑛. Let 𝑋 = {𝑥 ∈ 𝐷 :

𝑔(𝑥) ≦ 0} be the set of feasible solutions of (MP). For 𝑥
𝑜
∈ 𝐷,

if we denote

𝐽 (𝑥
𝑜
) = {𝑗 ∈ {1, 2, . . . , 𝑘} : 𝑔

𝑗
(𝑥
𝑜
) = 0} ,

𝐽 (𝑥
𝑜
) = {𝑗 ∈ {1, 2, . . . , 𝑘} : 𝑔

𝑗
(𝑥
𝑜
) < 0} ,

𝐽 (𝑥
𝑜
) = {𝑗 ∈ {1, 2, . . . , 𝑘} : 𝑔

𝑗
(𝑥
𝑜
) > 0} ,

(9)

then

𝐽 (𝑥
𝑜
) ∪ 𝐽 (𝑥

𝑜
) ∪ 𝐽 (𝑥

𝑜
) = {1, 2, . . . , 𝑘} . (10)
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Now we define a new class of(𝜑, 𝛼, 𝜌, 𝜎)-𝑑
𝐼
-V-type I

univex functions where 𝜑 : 𝐷 × 𝐷 × 𝑅 → 𝑅 is a functional
which for any 𝑥, 𝑥

𝑜
∈ 𝐷 satisfies the following properties:

(i) 𝜑(𝑥, 𝑥
𝑜
; 𝑎
1
+ 𝑎
2
) ≦ 𝜑(𝑥, 𝑥

𝑜
; 𝑎
1
) + 𝜑(𝑥, 𝑥

𝑜
; 𝑎
2
), for all

𝑎
1
, 𝑎
2
∈ 𝑅, (subadditive in third argument);

(ii) 𝜑(𝑥, 𝑥
𝑜
; 𝛼𝑎) = 𝛼𝜑(𝑥, 𝑥

𝑜
; 𝑎), for all 𝛼 ∈ 𝑅, 𝛼 ≧ 0

and for all 𝑎 ∈ 𝑅, (positive homogeneous in third
argument);

(iii) 𝜑(𝑥, 𝑥
𝑜
; 𝑎) > 0, for all 𝑎 > 0.

Let the functions 𝑓 : 𝐷 → 𝑅𝑚 and 𝑔 : 𝐷 → 𝑅𝑘 where
𝑓
𝑖
and 𝑔

𝑗
are semidirectionally differentiable functions in the

directions 𝜂
𝑖
: 𝑋 × 𝐷 → 𝑅𝑛 and 𝜃

𝑗
: 𝑋 × 𝐷 → 𝑅𝑛 for

𝑖 = 1,𝑚 and 𝑗 = 1, 𝑘. Also, let 𝛼, 𝛼̃ be the vectors in 𝑅𝑚+𝑘

whose components are the functions 𝛼1
𝑖
, 𝛼2
𝑗
: 𝑋 × 𝐷 → 𝑅

+
\

{0}, 𝛼̃1
𝑖
, 𝛼̃2
𝑗

: 𝑋 × 𝐷 → 𝑅
+

\ {0}, respectively, for 𝑖 = 1,𝑚,
𝑗 = 1, 𝑘, while 𝜌 ∈ 𝑅𝑚+𝑘 and 𝜌 ∈ 𝑅2 whose components are
in𝑅 and𝜎 : 𝑋×𝐷 → 𝑅𝑛; 𝑏

𝑜
and 𝑏
1
are nonnegative functions

defined on 𝑋 × 𝐷, 𝜙
𝑜
: 𝑅 → 𝑅, and 𝜙

1
: 𝑅 → 𝑅.

Definition 9. (𝑓, 𝑔) is said to be (𝜑, 𝛼, 𝜌, 𝜎)-𝑑
𝐼
-V-type I

univex at 𝑥
𝑜
∈ 𝐷 with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

if for
all 𝑥 ∈ 𝑋

𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
))

≧ 𝜑 (𝑥, 𝑥
𝑜
; 𝛼
1

𝑖
(𝑥, 𝑥
𝑜
) 𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)))

+ 𝜌
1

𝑖

󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
, ∀𝑖 = 1,𝑚,

− 𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
(𝑔
𝑗
(𝑥
𝑜
))

≧ 𝜑 (𝑥, 𝑥
𝑜
; 𝛼
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)))

+ 𝜌
2

𝑗

󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
, ∀𝑗 = 1, 𝑘.

(11)

If the inequalities in 𝑓 are strict (whenever 𝑥 ̸= 𝑥
𝑜
), then

(𝑓, 𝑔) is said to be semistrictly (𝜑, 𝛼, 𝜌, 𝜎)-𝑑
𝐼
-V-type I univex

at 𝑥
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

.

Remark 10. (i) If in the above definition, 𝜑(𝑥, 𝑥
𝑜
; 𝛼1
𝑖
(𝑥, 𝑥
𝑜
)

𝑓󸀠
𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))) = 𝛼1

𝑖
(𝑥, 𝑥
𝑜
)𝑓󸀠
𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)), 𝜑(𝑥, 𝑥

𝑜
; 𝛼2
𝑗
(𝑥,

𝑥
𝑜
)𝑔󸀠
𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
))) = 𝛼2

𝑗
(𝑥, 𝑥
𝑜
)𝑔󸀠
𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)), for all 𝑖 =

1,𝑚 and 𝑗 = 1, 𝑘, then we obtain the definition of (𝑑
𝐼
-

𝜌-𝜎)-V-type I univex function given by Kharbanda et al.
[18]. Also, if in addition, we take 𝜌1

𝑖
, 𝜌2
𝑗

= 0, then the
above definition reduces to definition of 𝑑

𝐼
-V-type I univex

function introduced by Ahmad [17].
(ii) If 𝜑 is same as in (i) and 𝜌1

𝑖
, 𝜌2
𝑗

= 0, 𝛼1
𝑖
(𝑥, 𝑥
𝑜
) =

𝛼2
𝑗
(𝑥, 𝑥
𝑜
) = 1, for all 𝑖 = 1,𝑚 and 𝑗 = 1, 𝑘 and 𝑏

𝑜
(𝑥, 𝑥
𝑜
) =

𝑏
1
(𝑥, 𝑥
𝑜
) = 1, 𝜙

𝑜
(𝑡) = 𝑡, and 𝜙

1
(𝑡) = 𝑡, then the

above definition becomes definition of 𝑑
𝐼
-V-type I function

introduced by Slimani and Radjef [12].
(iii) If 𝑓 and 𝑔 are differentiable functions and 𝜑(𝑥, 𝑥

𝑜
;

𝛼1
𝑖
(𝑥, 𝑥
𝑜
)𝑓󸀠
𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))) = 𝛼1

𝑖
(𝑥, 𝑥
𝑜
)[∇𝑓
𝑖
(𝑥
𝑜
)]
𝑇
𝜂(𝑥, 𝑥

𝑜
),

𝜑(𝑥, 𝑥
𝑜
; 𝛼2
𝑗
(𝑥, 𝑥
𝑜
)𝑔󸀠
𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
))) = 𝛼2

𝑗
(𝑥, 𝑥
𝑜
) [∇𝑔

𝑗
(𝑥
𝑜
)]
𝑇

𝜂(𝑥, 𝑥
𝑜
), and 𝜌1

𝑖
, 𝜌2
𝑗
= 0, 𝑖 = 1,𝑚 and 𝑗 = 1, 𝑘 and 𝑏

𝑜
(𝑥, 𝑥
𝑜
) =

𝑏
1
(𝑥, 𝑥
𝑜
) = 1, 𝜙

𝑜
(𝑡) = 𝑡, 𝜙

1
(𝑡) = 𝑡, then above definition

reduces to V-type I functions given by Hanson et al. [5].
Also, if, in addition, we take 𝛼1

𝑖
(𝑥, 𝑥
𝑜
) = 𝛼2
𝑗
(𝑥, 𝑥
𝑜
) = 1, then

we get the definition of type I function defined by Hanson
and Mond [3].

(iv) If, in the above definition, 𝜑(𝑥, 𝑥
𝑜
; 𝛼1
𝑖
(𝑥, 𝑥
𝑜
)𝑓󸀠
𝑖
(𝑥
𝑜
; 𝜂
𝑖

(𝑥, 𝑥
𝑜
))) = 𝛼1

𝑖
(𝑥, 𝑥
𝑜
)𝑓󸀠
𝑖
(𝑥
𝑜
; 𝜂(𝑥, 𝑥

𝑜
)), 𝜑(𝑥, 𝑥

𝑜
; 𝛼2
𝑗
(𝑥, 𝑥
𝑜
)𝑔󸀠
𝑗
(𝑥
𝑜
;

𝜃
𝑗
(𝑥, 𝑥
𝑜
))) = 𝛼

2

𝑗
(𝑥, 𝑥
𝑜
)𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜂(𝑥, 𝑥

𝑜
)), and 𝜌

1

𝑖
, 𝜌
2

𝑗
= 0, 𝑖 =

1,𝑚, and 𝑗 = 1, 𝑘 and 𝑏
𝑜
(𝑥, 𝑥
𝑜
) = 𝑏
1
(𝑥, 𝑥
𝑜
) = 1, 𝜙

𝑜
(𝑡) = 𝑡, and

𝜙
1
(𝑡) = 𝑡, then we obtain the definition of 𝑑-type I function

introduced by Suneja and Srivastava [19].

Definition 11. (𝑓, 𝑔) is said to be quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-type I

univex at 𝑥
𝑜
∈ 𝐷 with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

, if for
some vectors 𝜇 ∈ 𝑅𝑚

≧
, 𝜆 ∈ 𝑅𝑘

≧
and for all 𝑥 ∈ 𝑋

𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
))) ≦ 0

󳨐⇒ 𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)))

≦ −𝜌
1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2
,

𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
(

𝑘

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
)) ≧ 0

󳨐⇒ 𝜑(𝑥, 𝑥
𝑜
;

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)))

≦ −𝜌
2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2
.

(12)

If the second (implied) inequality in 𝑓 is strict (𝑥 ̸= 𝑥
𝑜
),

then (𝑓, 𝑔) is said to be semistrictly quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-

type I univex at 𝑥
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

.

Definition 12. (𝑓, 𝑔) is said to be pseudo (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-

type I univex at 𝑥
𝑜
∈ 𝐷 with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

,
if for some vectors 𝜇 ∈ 𝑅𝑚

≧
, 𝜆 ∈ 𝑅𝑘

≧
and for all 𝑥 ∈ 𝑋

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)))

≧ −𝜌
1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2

󳨐⇒ 𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
)))

≧ 0,
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𝜑(𝑥, 𝑥
𝑜
;

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)))

≧ −𝜌
2󵄩󵄩󵄩󵄩𝜎 (𝑥, 𝑥

𝑜
)
󵄩󵄩󵄩󵄩
2

󳨐⇒ 𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
(

𝑘

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
)) ≦ 0.

(13)

If the second (implied) inequality in 𝑓 (resp.,𝑔) is
strict (𝑥 ̸= 𝑥

𝑜
), then (𝑓, 𝑔) is said to be semistrictly pseudo

(𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-type I univex in𝑓 (resp.,𝑔) and if the second

(implied) inequalities in 𝑓 and 𝑔 are both strict, then (𝑓, 𝑔) is
said to be strictly pseudo (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑

𝐼
-V-type I univex at 𝑥

𝑜

with respect to (𝜂
𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

.

Definition 13. (𝑓, 𝑔) is said to be quasi-pseudo (𝜑, 𝛼̃, 𝜌, 𝜎)-
𝑑
𝐼
-V-type I univex at 𝑥

𝑜
∈ 𝐷 with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and
(𝜃
𝑗
)
𝑗=1,𝑘

, if for some vectors 𝜇 ∈ 𝑅𝑚
≧
, 𝜆 ∈ 𝑅𝑘

≧
and for all 𝑥 ∈ 𝑋

𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
))) ≦ 0

󳨐⇒ 𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)))

≦ −𝜌
1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2
,

𝜑(𝑥, 𝑥
𝑜
;

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)))

≧ −𝜌
2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2

󳨐⇒ 𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
(

𝑘

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
)) ≦ 0.

(14)

If the second (implied) inequality in 𝑔 is strict (𝑥 ̸= 𝑥
𝑜
),

then (𝑓, 𝑔) is said to be quasistrictly pseudo (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-

type I univex at 𝑥
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

.

Definition 14. (𝑓, 𝑔) is said to be pseudo-quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-
𝑑
𝐼
-V-type I univex at 𝑥

𝑜
∈ 𝐷 with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and
(𝜃
𝑗
)
𝑗=1,𝑘

, if for some vectors 𝜇 ∈ 𝑅𝑚
≧
, 𝜆 ∈ 𝑅𝑘

≧
and for all 𝑥 ∈ 𝑋

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)))

≧ −𝜌
1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2

󳨐⇒ 𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
)))

≧ 0,

(15)

𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
(

𝑘

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
)) ≧ 0

󳨐⇒ 𝜑(𝑥, 𝑥
𝑜
;

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)))

≦ −𝜌
2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2
.

(16)

If the second (implied) inequality in 𝑓 is strict (𝑥 ̸= 𝑥
𝑜
),

then (𝑓, 𝑔) is said to be strictly pseudo-quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-

V-type I univex at 𝑥
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

.

3. Illustration

In this section, we give some nontrivial examples which
illustrate that the class of functions introduced in this paper
is nonempty.

Example 15. Let 𝑓 : 𝑅
2 → 𝑅 and 𝑔 : 𝑅2 → 𝑅 be defined by

𝑓 (𝑥
1
, 𝑥
2
) =

{{

{{

{

𝑥2
1
+ 𝑥2
2
+

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 + 4 if 𝑥

1
̸= 0, 𝑥
2

̸= 0

4 if 𝑥
1
= 0, 𝑥

2
= 0

8 + 𝑥2
1
+ 𝑥2
2

else,

𝑔 (𝑥
1
, 𝑥
2
) = {

−2 − 4𝑥2
1
− 6𝑥2
2

if 𝑥
1

̸= 0, 𝑥
2

̸= 0

0 else.

(17)

Let 𝜂(𝑥, 𝑦) = (1 + 𝑥2
1
, 2 + 𝑦2

2
), 𝜃(𝑥, 𝑦) = (0, 𝑥

2
), 𝜑(𝑥, 𝑦; 𝑎) =

(|𝑎|/2)(1 + 𝑥2
1
𝑦2
2
), 𝜎(𝑥, 𝑦) = (𝑥

1
+ 𝑦
1
, 1 + 𝑦

2
), and 𝛼1(𝑥, 𝑦) =

8, 𝛼2(𝑥, 𝑦) = 4 where 𝑥 = (𝑥
1
, 𝑥
2
), 𝑦 = (𝑦

1
, 𝑦
2
).

Also, let 𝑏
𝑜
(𝑥, 𝑦) = 1/2, 𝑏

1
(𝑥, 𝑦) = 4, 𝜙

𝑜
(𝑡) = 4𝑡, 𝜙

1
(𝑡) =

4𝑡, 𝜌1 = −4, and 𝜌2 = −2.
The set 𝑋 of feasible solutions of problem is nonempty.

Clearly, 𝑓 and 𝑔 are semidirectionally differentiable at 𝑥
𝑜

=

(0, 0) with 𝑓󸀠(𝑥
𝑜
; 𝜂(𝑥, 𝑥

𝑜
)) = 1 + 𝑥2

1
and 𝑔󸀠(𝑥

𝑜
; 𝜃(𝑥, 𝑥

𝑜
)) = 0.

It is easy to see that for all 𝑥 ∈ 𝑋

𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(𝑓 (𝑥) − 𝑓 (𝑥

𝑜
))

≧ 𝜑 (𝑥, 𝑥
𝑜
; 𝛼
1
(𝑥, 𝑥
𝑜
) 𝑓
󸀠
(𝑥
𝑜
; 𝜂 (𝑥, 𝑥

𝑜
)))

+ 𝜌
1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2
,

− 𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
(𝑔 (𝑥
𝑜
))

≧ 𝜑 (𝑥, 𝑥
𝑜
; 𝛼
2
(𝑥, 𝑥
𝑜
) 𝑔
󸀠
(𝑥
𝑜
; 𝜃 (𝑥, 𝑥

𝑜
)))

+ 𝜌
2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2
.

(18)

Therefore (𝑓, 𝑔) is (𝜑, 𝛼, 𝜌, 𝜎)-𝑑
𝐼
-V-type I function at 𝑥

𝑜
.

However, if we take 𝑥 = (1, 1), then

(i) 𝑏
𝑜 (𝑥, 𝑥) 𝜙𝑜 (𝑓 (𝑥) − 𝑓 (𝑥

𝑜
))

< 𝛼
1
(𝑥, 𝑥
𝑜
) 𝑓
󸀠
(𝑥
𝑜
; 𝜂 (𝑥, 𝑥

𝑜
)) + 𝜌

1󵄩󵄩󵄩󵄩𝜎 (𝑥, 𝑥
𝑜
)
󵄩󵄩󵄩󵄩
2
,

𝑏
𝑜 (𝑥, 𝑥) 𝜙𝑜 (𝑓 (𝑥) − 𝑓 (𝑥

𝑜
)) < 𝛼

1
(𝑥, 𝑥
𝑜
) 𝑓
󸀠
(𝑥
𝑜
; 𝜂 (𝑥, 𝑥

𝑜
)) .

(19)
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Thus (𝑓, 𝑔) is neither (𝑑
𝐼
-𝜌-𝜎)-V-type I univex function

given by Kharbanda et al. [18] nor 𝑑
𝐼
-V-type I univex

function at 𝑥
𝑜
as given by Ahmad [17].

Hence the above example clearly illustrates that the class
of (𝜑, 𝛼, 𝜌, 𝜎)-𝑑

𝐼
-V-type I univex functions is more general-

ized than the class of (𝑑
𝐼
-𝜌-𝜎)-V-type I univex functions and

the class of 𝑑
𝐼
-V-type I univex functions.

Next we show that (𝑓, 𝑔) is pseudo-quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-

V-type I univex function but not (𝜑, 𝛼, 𝜌, 𝜎)-𝑑
𝐼
-V-type I

univex function.

Example 16. Let 𝑓 : 𝑅2 → 𝑅3 and 𝑔 : 𝑅2 → 𝑅2 be defined
by

𝑓
1
(𝑥
1
, 𝑥
2
) =

{{

{{

{

4𝑥
2

1
− 2𝑥
2
+ 4𝑥2
2

if 𝑥
1

̸= 0, 𝑥
2

̸= 0

9 + 9𝑥2
2

if 𝑥
1
= 0, 𝑥

2
̸= 0

0 else,

𝑓
2
(𝑥
1
, 𝑥
2
) = {

2𝑥2
2
𝑥2
1
+ 6 + 𝑥

2
if 𝑥
1

̸= 0, 𝑥
2

̸= 0

0 else,

𝑓
3
(𝑥
1
, 𝑥
2
) =

{{

{{

{

1 + 6𝑥2
1

if 𝑥
1

̸= 0, 𝑥
2
= 0

2 + 3𝑥2
2

if 𝑥
1
= 0, 𝑥

2
̸= 0

0 else,

𝑔
1
(𝑥
1
, 𝑥
2
) = {

0 if 𝑥
1
= 0 or 𝑥

2
= 0

−1 + 𝑥2
1

else,

𝑔
2
(𝑥
1
, 𝑥
2
) =

{{

{{

{

2 − 𝑥2
1

if 𝑥
1

̸= 0, 𝑥
2
= 0

2 − 6𝑥2
2

if 𝑥
1
= 0, 𝑥

2
̸= 0

−1 else.

(20)

Let 𝜂
1
(𝑥, 𝑦) = (1 + 𝑥2

1
+ 𝑦2
1
, 1 + 𝑥2

2
), 𝜂
2
(𝑥, 𝑦) = (0, 𝑥

1
+ 𝑥
2
),

𝜂
3
(𝑥, 𝑦) = (4 + 𝑥4

1
, 2 + 𝑥2

2
+ 𝑦2
2
), 𝜃
1
(𝑥, 𝑦) = (1 + 𝑥

1
, 0),

𝜃
2
(𝑥, 𝑦) = (2 + 𝑥4

1
, 2 + 2𝑥2

2
), 𝜑(𝑥, 𝑦; 𝑎) = |𝑎|(𝑥2

1
+ 𝑦2
1
),

𝑏
𝑜
(𝑥, 𝑦) = 4, 𝑏

1
(𝑥, 𝑦) = 4, 𝜙

𝑜
(𝑡) = 𝑡/2, 𝜙

1
(𝑡) = 4𝑡, and

𝜎(𝑥, 𝑦) = (𝑥
1
+ 𝑦
1
, 𝑥
2
+ 𝑦
2
).

Also, let 𝛼1
1
(𝑥, 𝑦) = 2, 𝛼1

2
(𝑥, 𝑦) = 1, 𝛼1

3
(𝑥, 𝑦) = 1,

𝛼2
1
(𝑥, 𝑦) = 1, 𝛼2

2
(𝑥, 𝑦) = 3, 𝜌1 = 1, 𝜌2 = −4, 𝜌1

1
= 4, 𝜌1

2
= 1,

𝜌1
3

= −6, 𝜌2
1

= −4, 𝜌2
2

= −6, 𝜇
1

= 𝜇
2

= 1/2, 𝜇
3

= 0,
and 𝜆

1
= 1, 𝜆

2
= 0 where 𝑥 = (𝑥

1
, 𝑥
2
), 𝑦 = (𝑦

1
, 𝑦
2
),

𝛼̃1
𝑖
(𝑥, 𝑦) = 1/𝛼1

𝑖
(𝑥, 𝑦), and 𝛼̃2

𝑗
(𝑥, 𝑦) = 1/𝛼2

𝑗
(𝑥, 𝑦), 𝑖 = 1, 2, 3,

𝑗 = 1, 2.
The set 𝑋 of feasible solutions of problem is nonempty.

Clearly, 𝑓
1
, 𝑓
2
, 𝑓
3

and 𝑔
1
, 𝑔
2

are semidirectionally dif-
ferentiable at 𝑥

𝑜
= (0, 0) with 𝑓󸀠

1
(𝑥
𝑜
; 𝜂
1
(𝑥, 𝑥
𝑜
)) =

−2(1 + 𝑥2
2
), 𝑓󸀠
2
(𝑥
𝑜
; 𝜂
2
(𝑥, 𝑥
𝑜
)) = 0, 𝑓󸀠

3
(𝑥
𝑜
; 𝜂
3
(𝑥, 𝑥
𝑜
)) = 0,

𝑔󸀠
1
(𝑥
𝑜
; 𝜃
1
(𝑥, 𝑥
𝑜
)) = 0, and 𝑔󸀠

2
(𝑥
𝑜
; 𝜃
2
(𝑥, 𝑥
𝑜
)) = 0.

It is easy to see that for all 𝑥 ∈ 𝑋

𝜑(𝑥, 𝑥
𝑜
;

3

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))) + 𝜌

1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2

= 𝑥
2

2
𝑥
2

1
+ 𝑥
2

2
+ 2𝑥
2

1
≧ 0

󳨐⇒ 𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(

3

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
)))

≧ 0,

𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
(

2

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
)) = 0 ≧ 0

󳨐⇒ 𝜑(𝑥, 𝑥
𝑜
;

2

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)))

+ 𝜌
2󵄩󵄩󵄩󵄩𝜎 (𝑥, 𝑥

𝑜
)
󵄩󵄩󵄩󵄩
2
= −4 (𝑥

2

1
+ 𝑥
2

2
) ≦ 0.

(21)

Therefore (𝑓, 𝑔) is pseudo-quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-type I uni-

vex function at 𝑥
𝑜
.

However, for the above defined problem, if we take

(i) 𝑥 = (1, 1),

𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(𝑓
1 (𝑥) − 𝑓

1
(𝑥
𝑜
))

< 𝜑 (𝑥, 𝑥
𝑜
; 𝛼
1

1
(𝑥, 𝑥
𝑜
) 𝑓
󸀠

1
(𝑥
𝑜
; 𝜂
1
(𝑥, 𝑥
𝑜
)))

+ 𝜌
1

1

󵄩󵄩󵄩󵄩𝜎 (𝑥, 𝑥
𝑜
)
󵄩󵄩󵄩󵄩
2
;

(22)

(ii) 𝑥 = (1, 0),

𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(𝑓
2 (𝑥) − 𝑓

2
(𝑥
𝑜
))

< 𝜑 (𝑥, 𝑥
𝑜
; 𝛼
1

2
(𝑥, 𝑥
𝑜
) 𝑓
󸀠

2
(𝑥
𝑜
; 𝜂
2
(𝑥, 𝑥
𝑜
)))

+ 𝜌
1

2

󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
.

(23)

So (𝑓, 𝑔) is not (𝜑, 𝛼, 𝜌, 𝜎)-𝑑
𝐼
-V-type I univex function at 𝑥

𝑜
.

4. Sufficient Optimality Conditions

In this section, we discuss some sufficient optimality con-
ditions for a point to be an efficient solution of (MP)
under newly defined class of (𝜑, 𝛼, 𝜌, 𝜎)-𝑑

𝐼
-V-type I univex

functions.

Theorem 17. Suppose there exist a feasible solution 𝑥
𝑜
of (MP)

and vector functions 𝜂
𝑖
: 𝑋×𝐷 → 𝑅𝑛, 𝑖 = 1,𝑚, 𝜃

𝑗
: 𝑋×𝐷 →

𝑅𝑛, 𝑗 ∈ 𝐽(𝑥
𝑜
), and scalars 𝜇

𝑖
> 0, 𝑖 = 1,𝑚, and 𝜆

𝑗
≧ 0, 𝑗 ∈

𝐽(𝑥
𝑜
) such that

(i) ∑
𝑚

𝑖=1
𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))+∑

𝑗∈𝐽(𝑥
𝑜
)
𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)) ≧

0, ∀𝑥 ∈ 𝑋,
(ii) for any 𝑢 ∈ 𝑅, 𝑢 < 0 ⇒ 𝜙

𝑜
(𝑢) < 0 and 𝑢 ≧ 0 ⇒

𝜙
1
(𝑢) ≧ 0, 𝑏

𝑜
(𝑥, 𝑥
𝑜
) > 0, 𝑏

1
(𝑥, 𝑥
𝑜
) ≧ 0,

(iii) (𝑓, 𝑔
𝐽(𝑥
𝑜
)
) is pseudo-quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑

𝐼
-V-type I uni-

vex at 𝑥
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗∈𝐽(𝑥

𝑜
)
, and

(iv) 𝜌1 + 𝜌2 ≧ 0,

then 𝑥
𝑜
is an efficient solution of (MP).
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Proof. Suppose that 𝑥
𝑜
is not an efficient solution of (MP).

Then there exists an 𝑥 ∈ 𝑋 of (MP) such that 𝑓(𝑥) ≤ 𝑓(𝑥
𝑜
).

As 𝜇
𝑖
> 0, 𝛼̃1

𝑖
(𝑥, 𝑥
𝑜
) > 0, 𝑖 = 1,𝑚, therefore

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
)) < 0. (24)

Also 𝑔
𝑗
(𝑥
𝑜
) = 0, 𝜆

𝑗
≧ 0, 𝛼̃2

𝑗
(𝑥, 𝑥
𝑜
) > 0, 𝑗 ∈ 𝐽(𝑥

𝑜
) imply

∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
) = 0. (25)

Since hypothesis (ii) holds, therefore inequality (24) and
equality (25) become

𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
))) < 0,

𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
( ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
)) ≧ 0.

(26)

Using hypothesis (iii), we obtain

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))) < −𝜌

1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
,

𝜑(𝑥, 𝑥
𝑜
; ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
))) ≦ −𝜌

2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
.

(27)

The above inequalities along with subadditivity of 𝜑 yield

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))

+ ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)))

< − (𝜌
1
+ 𝜌
2
)
󵄩󵄩󵄩󵄩𝜎 (𝑥, 𝑥

𝑜
)
󵄩󵄩󵄩󵄩
2
≦ 0 (using hypothesis (iv)).

(28)

But as hypothesis (i) holds and 𝜑(𝑥, 𝑥
𝑜
; 0) = 0 and

𝜑(𝑥, 𝑥
𝑜
; 𝑎) > 0 for 𝑎 > 0, therefore

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))

+ ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
))) ≧ 0.

(29)

Thus we get a contradiction and hence the proof.

Theorem 18. Suppose there exist a feasible solution 𝑥
𝑜
of (MP)

and vector functions 𝜂
𝑖
: 𝑋 × 𝐷 → 𝑅𝑛, 𝑖 = 1,𝑚, and 𝜃

𝑗
:

𝑋 × 𝐷 → 𝑅𝑛, 𝑗 ∈ 𝐽(𝑥
𝑜
), and scalars 𝜇

𝑖
≧ 0, 𝑖 = 1,𝑚, and

𝜆
𝑗
≧ 0, 𝑗 ∈ 𝐽(𝑥

𝑜
) satisfying

(i) ∑
𝑚

𝑖=1
𝜇
𝑖
𝑓󸀠
𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))+∑

𝑗∈𝐽(𝑥
𝑜
)
𝜆
𝑗
𝑔󸀠
𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)) ≧

0, for all 𝑥 ∈ 𝑋,
(ii) for any 𝑢 ∈ 𝑅, 𝑢 ≦ 0 ⇒ 𝜙

𝑜
(𝑢) ≦ 0 and 𝑢 ≧ 0 ⇒

𝜙
1
(𝑢) ≧ 0, 𝑏

𝑜
(𝑥, 𝑥
𝑜
) ≧ 0, 𝑏

1
(𝑥, 𝑥
𝑜
) ≧ 0,

(iii) (𝑓, 𝑔
𝐽(𝑥
𝑜
)
) is strictly pseudo (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑

𝐼
-V-type I

univex at𝑥
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗∈𝐽(𝑥

𝑜
)
, and

(iv) 𝜌1 + 𝜌2 ≧ 0,

then 𝑥
𝑜
is an efficient solution of (MP).

Proof. Suppose that 𝑥
𝑜
is not an efficient solution of (MP).

Then there exists 𝑥 ∈ 𝑋 of (MP) such that 𝑓(𝑥) ≤ 𝑓(𝑥
𝑜
).

As 𝜇
𝑖
≧ 0, 𝑖 = 1,𝑚, 𝛼̃1

𝑖
(𝑥, 𝑥
𝑜
) > 0, 𝑖 = 1,𝑚, and 𝑔

𝑗
(𝑥
𝑜
) = 0,

𝜆
𝑗
≧ 0, 𝛼̃2

𝑗
(𝑥, 𝑥
𝑜
) > 0, 𝑗 ∈ 𝐽(𝑥

𝑜
), therefore

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
)) ≦ 0,

∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
) = 0.

(30)

Using hypothesis (ii), we obtain

𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
))) ≦ 0,

𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
( ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
)) ≧ 0.

(31)

Since (𝑓, 𝑔
𝐽(𝑥
𝑜
)
) is strictly pseudo (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑

𝐼
-V-type I

univex at 𝑥
𝑜
, therefore, the above inequalities yield

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))) < −𝜌

1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
,

𝜑(𝑥, 𝑥
𝑜
; ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
))) < −𝜌

2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
.

(32)

Using subadditivity of 𝜑 and hypothesis (iv), we get

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))

+ ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)))

< − (𝜌
1
+ 𝜌
2
)
󵄩󵄩󵄩󵄩𝜎 (𝑥, 𝑥

𝑜
)
󵄩󵄩󵄩󵄩
2
≦ 0.

(33)

But hypothesis (i) and properties of 𝜑 imply

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))

+ ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
))) ≧ 0,

(34)
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which leads to a contradiction. Hence 𝑥
𝑜
is an efficient

solution of (MP).

In order to illustrate the result obtained, we will give an
example of a multiobjective optimization problem in which
the efficient solution will be obtained by the application of
Theorem 18.

Example 19. Let

Minimize 𝑓 (𝑥) = (𝑓
1 (𝑥) , 𝑓2 (𝑥))

subject to 𝑔 (𝑥) = (𝑔
1 (𝑥) , 𝑔2 (𝑥)) ≦ 0,

(35)

where 𝑓 : 𝑅
2 → 𝑅2 and 𝑔 : 𝑅2 → 𝑅2 be defined as

𝑓
1
(𝑥
1
, 𝑥
2
) =

{{

{{

{

2 + 𝑥
2

2
+ 8

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 if 𝑥

1
̸= 0, 𝑥
2

̸= 0

0 if 𝑥
1
= 0, 𝑥

2
= 0

𝑥2
1
+ 𝑥2
2

else,

𝑓
2
(𝑥
1
, 𝑥
2
) =

{{

{{

{

𝑥2
1
+ 𝑥2
2
− 4

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 if 𝑥

1
̸= 0, 𝑥
2

̸= 0

0 if 𝑥
1
= 0, 𝑥

2
= 0

4 + 2𝑥2
1
+ 3𝑥4
2

else,

𝑔
1
(𝑥
1
, 𝑥
2
) =

{{

{{

{

−𝑥4
1
+ 1 if 𝑥

1
̸= 0, 𝑥
2
= 0

0 if 𝑥
1
= 0, 𝑥

2
= 0

4𝑥
1
− 𝑥
2

1
− 3𝑥
2

2
else,

𝑔
2
(𝑥
1
, 𝑥
2
) =

{{

{{

{

2𝑥
1
− 3𝑥4
1

if 𝑥
1

̸= 0, 𝑥
2
= 0

0 if 𝑥
1
= 0, 𝑥

2
= 0

−𝑥2
2
− 𝑥2
1
+ 2 else.

(36)

Let 𝜂
1
(𝑥, 𝑦) = (1 + 𝑥2

1
+ 𝑦2
1
, 0), 𝜂
2
(𝑥, 𝑦) = (1 + 𝑥2

1
, 2 + 2𝑥2

2
),

𝜃
1
(𝑥, 𝑦) = (1 + 𝑥2

1
, 2 + 𝑥4

2
), 𝜃
2
(𝑥, 𝑦) = (2 + 2𝑥2

1
, 0), 𝜑(𝑥, 𝑦; 𝑎) =

|𝑎|(1+𝑥2
1
𝑦2
1
), 𝑏
𝑜
(𝑥, 𝑦) = 4, 𝑏

1
(𝑥, 𝑦) = 4,𝜙

𝑜
(𝑡) = 𝑡/2,𝜙

1
(𝑡) = 2𝑡,

and 𝜎(𝑥, 𝑦) = (𝑥
1
+ 𝑦
1
, 1 + 𝑦

2
).

Also, let 𝛼1
1
(𝑥, 𝑦) = 4, 𝛼1

2
(𝑥, 𝑦) = 2, 𝛼2

1
(𝑥, 𝑦) = 2,

𝛼2
2
(𝑥, 𝑦) = 1, 𝜌1 = 4, 𝜌2 = −4, 𝜌1

1
= 0, 𝜌1

2
= 4, 𝜌2

1
=

−2, 𝜌2
2

= −5, 𝜇
1

= 𝜇
2

= 1/2, 𝜆
1

= 1/2, and 𝜆
2

= 0

where 𝑥 = (𝑥
1
, 𝑥
2
), 𝑦 = (𝑦

1
, 𝑦
2
), 𝛼̃1
𝑖
(𝑥, 𝑦) = 1/𝛼1

𝑖
(𝑥, 𝑦),

and 𝛼̃2
𝑗
(𝑥, 𝑦) = 1/𝛼2

𝑗
(𝑥, 𝑦), 𝑖 = 1, 2, 𝑗 = 1, 2.

The set 𝑋 of feasible solutions of problem is
nonempty. Clearly, 𝑓

1
, 𝑓
2
and 𝑔

1
, 𝑔
2
are semidirectionally

differentiable at 𝑥
𝑜

= (0, 0) with 𝑓󸀠
1
(𝑥
𝑜
; 𝜂
1
(𝑥, 𝑥
𝑜
)) =

0, 𝑓󸀠
2
(𝑥
𝑜
; 𝜂
2
(𝑥, 𝑥
𝑜
)) = −4(1+𝑥2

1
), 𝑔󸀠
1
(𝑥
𝑜
; 𝜃
1
(𝑥, 𝑥
𝑜
)) = 4(1+𝑥2

1
),

and 𝑔󸀠
2
(𝑥
𝑜
; 𝜃
2
(𝑥, 𝑥
𝑜
)) = 4(1 + 𝑥2

1
).

It is easy to see that for all 𝑥 ∈ 𝑋 \ {𝑥
𝑜
}

𝜑(𝑥, 𝑥
𝑜
;

2

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)))

≧ −𝜌
1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2

󳨐⇒ 𝑏
𝑜
(𝑥, 𝑥
𝑜
) 𝜙
𝑜
(

2

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑥
𝑜
) (𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
𝑜
))) > 0,

𝑏
1
(𝑥, 𝑥
𝑜
) 𝜙
1
(

2

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑥
𝑜
) 𝑔
𝑗
(𝑥
𝑜
)) ≧ 0

󳨐⇒ 𝜑(𝑥, 𝑥
𝑜
;

2

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)))

< −𝜌
2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)

󵄩󵄩󵄩󵄩
2
.

(37)

Hence (𝑓, 𝑔
𝐽(𝑥
𝑜
)
) is strictly pseudo (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑

𝐼
-V-type I

univex function at 𝑥
𝑜
.

Also, hypotheses (i), (ii), and (iv) of Theorem 18 are
clearly satisfied and it follows that 𝑥

𝑜
is an efficient solution

of the above defined multiobjective optimization problem,
whereas it will be impossible to apply for this purpose the
sufficient optimality conditions given inKharbanda et al. [18],
Ahmad [17], Slimani and Radjef [12], Mishra and Noor [10],
Mishra et al. [16], Antczak [9], Suneja and Srivastava [19], and
Ye [8].

Theorem20. Suppose there exist a feasible solution𝑥
𝑜
of (MP)

and vector functions 𝜂
𝑖
: 𝑋 × 𝐷 → 𝑅𝑛, 𝑖 = 1,𝑚, and 𝜃

𝑗
:

𝑋 × 𝐷 → 𝑅𝑛, 𝑗 ∈ 𝐽(𝑥
𝑜
), and scalars 𝜇

𝑖
≧ 0, 𝑖 = 1,𝑚, and

𝜆
𝑗
≧ 0, 𝑗 ∈ 𝐽(𝑥

𝑜
), satisfying

(i) ∑
𝑚

𝑖=1
𝜇
𝑖
𝑓󸀠
𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))+∑

𝑗∈𝐽(𝑥
𝑜
)
𝜆
𝑗
𝑔󸀠
𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)) ≧

0, for all 𝑥 ∈ 𝑋,

(ii) for any 𝑢 ∈ 𝑅, 𝑢 ≦ 0 ⇒ 𝜙
𝑜
(𝑢) ≦ 0 and 𝑢 ≧ 0 ⇒

𝜙
1
(𝑢) ≧ 0, 𝑏

𝑜
(𝑥, 𝑥
𝑜
) ≧ 0, 𝑏

1
(𝑥, 𝑥
𝑜
) ≧ 0, and

(iii) 𝜌1 + 𝜌2 ≧ 0.

Also, if either the fact that

(a) (𝑓, 𝑔
𝐽(𝑥
𝑜
)
) is semistrictly quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑

𝐼
-V-type I

univex at 𝑥
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗∈𝐽(𝑥

𝑜
)
, or

(b) (𝑓, 𝑔
𝐽(𝑥
𝑜
)
) is quasistrictly pseudo (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑

𝐼
-V-type

I univex at 𝑥
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗∈𝐽(𝑥

𝑜
)
,

or

(c) (𝑓, 𝑔
𝐽(𝑥
𝑜
)
) is strictly pseudo-quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑

𝐼
-V-type

I univex at 𝑥
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗∈𝐽(𝑥

𝑜
)

holds,

then 𝑥
𝑜
is an efficient solution of (MP).

Proof. If (a) or (c) holds, then proceeding as in previous
theorem we get

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))) < −𝜌

1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
,

𝜑(𝑥, 𝑥
𝑜
; ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
))) ≦ −𝜌

2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
.

(38)
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And if (b) holds, we get

𝜑(𝑥, 𝑥
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
))) ≦ −𝜌

1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
,

𝜑(𝑥, 𝑥
𝑜
; ∑
𝑗∈𝐽(𝑥

𝑜
)

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
))) < −𝜌

2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑥𝑜)
󵄩󵄩󵄩󵄩
2
.

(39)

The remaining part of proof runs on the lines of the proof of
Theorem 18.

Now, following Antczak [9] and Slimani and Radjef [12],
we state the following necessary optimality conditions.

Theorem 21 (Karush-Kuhn-Tucker type necessary optimality
conditions). If

(i) 𝑥
𝑜
is a weakly efficient solution of (MP),

(ii) 𝑔
𝑗
is continuous at 𝑥

𝑜
for 𝑗 ∈ 𝐽(𝑥

𝑜
),

(iii) there exist vector functions 𝜂
𝑖
: 𝑋 ×𝐷 → 𝑅𝑛, 𝑖 = 1,𝑚,

and 𝜃
𝑗
: 𝑋 × 𝐷 → 𝑅

𝑛, 𝑗 ∈ 𝐽(𝑥
𝑜
), such that at 𝑥

𝑜
∈ 𝐷

the following inequalities are satisfied with respect to
𝜂 : 𝑋 × 𝐷 → 𝑅

𝑛:

𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂 (𝑥, 𝑥

𝑜
)) ≦ 𝑓

󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)) ,

∀𝑥 ∈ 𝑋, ∀𝑖 = 1,𝑚,

𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜂 (𝑥, 𝑥

𝑜
)) ≦ 𝑔

󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)) ,

∀𝑥 ∈ 𝑋, ∀𝑗 ∈ 𝐽(𝑥
𝑜
),

(40)

(iv) for all 𝑖 = 1,𝑚 and 𝑗 ∈ 𝐽(𝑥
𝑜
), 𝑓
𝑖
and 𝑔

𝑗
are

semidirectionally differentiable at 𝑥
𝑜
and the functions

𝑓󸀠
𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)), 𝑖 = 1,𝑚, and 𝑔󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)), 𝑗 ∈

𝐽(𝑥
𝑜
), are preinvex functions of 𝑥 on 𝑋,

(v) the function 𝑔 satisfies 𝑑
𝐼
-constraint qualification at 𝑥

𝑜

with respect to (𝜃
𝑗
)
𝑗∈𝐽(𝑥

𝑜
)
, then there exist 𝜇 ∈ 𝑅𝑚

⩾
and

𝜆 ∈ 𝑅𝑘
≧
such that

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)) +

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)) ≧ 0,

∀𝑥 ∈ 𝑋,

𝜆
𝑗
𝑔
𝑗
(𝑥
𝑜
) = 0, ∀𝑗 = 1, 𝑘.

(41)

5. Mond-Weir Type Duality

In this section, we considerMond-Weir type dual of (MP) and
establish weak, strong, converse, and strict converse duality
theorems. Consider

(MWD) Max 𝑓 (𝑦)

subject to
𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑦; 𝜂
𝑖
(𝑥, 𝑦))

+

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑦; 𝜃
𝑗
(𝑥, 𝑦)) ≧ 0,

∀𝑥 ∈ 𝑋,

(42)

𝜆
𝑗
𝑔
𝑗
(𝑦) ≧ 0, 𝑗 = 1, 𝑘, (43)

where 𝑦 ∈ 𝐷, 𝜇 ∈ 𝑅𝑚
⩾
, 𝜆 ∈ 𝑅𝑘

≧
, 𝜂
𝑖
: 𝑋 × 𝐷 → 𝑅𝑛, for all

𝑖 = 1,𝑚, and 𝜃
𝑗
: 𝑋 × 𝐷 → 𝑅𝑛, for all 𝑗 = 1, 𝑘. Let 𝑊 be the

set of feasible points of (MWD).

Theorem 22 (weak duality). Let 𝑥 and (𝑦, 𝜇, 𝜆, (𝜂
𝑖
)
𝑖=1,𝑚

,
(𝜃
𝑗
)
𝑗=1,𝑘

) be the feasible solutions of (MP) and (MWD),
respectively, with 𝜇 > 0. If

(i) (𝑓, 𝑔) is pseudo-quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-type I univex at

𝑦 with respect to (𝜂
𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

,
(ii) for any 𝑢 ∈ 𝑅, 𝑢 < 0 ⇒ 𝜙

𝑜
(𝑢) < 0 and 𝑢 ≧ 0 ⇒

𝜙
1
(𝑢) ≧ 0, 𝑏

𝑜
(𝑥, 𝑦) > 0, 𝑏

1
(𝑥, 𝑦) ≧ 0, and

(iii) 𝜌1 + 𝜌2 ≧ 0,

then

𝑓 (𝑥) ≰ 𝑓 (𝑦) . (44)

Proof. Suppose to the contrary that

𝑓 (𝑥) ⩽ 𝑓 (𝑦) . (45)

As 𝜇
𝑖
> 0, 𝛼̃1

𝑖
(𝑥, 𝑦) > 0, 𝑖 = 1,𝑚, we get

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑦) (𝑓

𝑖 (𝑥) − 𝑓
𝑖
(𝑦)) < 0. (46)

Since 𝜆
𝑗
𝑔
𝑗
(𝑦) ≧ 0, 𝛼̃2

𝑗
(𝑥, 𝑦) > 0, 𝑗 = 1, 𝑘, therefore

𝑘

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑦) 𝑔

𝑗
(𝑦) ≧ 0. (47)

Using hypothesis (ii), we get

𝑏
𝑜
(𝑥, 𝑦) 𝜙

𝑜
(

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥, 𝑦) (𝑓

𝑖 (𝑥) − 𝑓
𝑖
(𝑦))) < 0,

𝑏
1
(𝑥, 𝑦) 𝜙

1
(

𝑘

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥, 𝑦) 𝑔

𝑗
(𝑦)) ≧ 0.

(48)
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Since hypothesis (i) holds, therefore the above inequalities
yield

𝜑(𝑥, 𝑦;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑦; 𝜂
𝑖
(𝑥, 𝑦))) < −𝜌

1󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑦)
󵄩󵄩󵄩󵄩
2
,

𝜑(𝑥, 𝑦;

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑦; 𝜃
𝑗
(𝑥, 𝑦))) ≦ −𝜌

2󵄩󵄩󵄩󵄩𝜎(𝑥, 𝑦)
󵄩󵄩󵄩󵄩
2
.

(49)

Using subadditivity of 𝜑 and hypothesis (iii), we get

𝜑(𝑥, 𝑦;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑦; 𝜂
𝑖
(𝑥, 𝑦)) +

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑦; 𝜃
𝑗
(𝑥, 𝑦)))

< − (𝜌
1
+ 𝜌
2
)
󵄩󵄩󵄩󵄩𝜎 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩
2
≦ 0.

(50)

However, the feasible condition (42) and properties of 𝜑

imply

𝜑(𝑥, 𝑦;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑦; 𝜂
𝑖
(𝑥, 𝑦)) +

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑦; 𝜃
𝑗
(𝑥, 𝑦))) ≧ 0.

(51)

Thus we get a contradiction and hence the proof.

The proof of the following theorems runs on the lines of
the proof of Theorem 22.

Theorem 23 (weak duality). Let 𝑥 and (𝑦, 𝜇, 𝜆, (𝜂
𝑖
)
𝑖=1,𝑚

,
(𝜃
𝑗
)
𝑗=1,𝑘

) be the feasible solutions of (MP) and (MWD),
respectively. If

(i) (𝑓, 𝑔) is pseudo-quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-type I univex at

𝑦 with respect to (𝜂
𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

,

(ii) for any 𝑢 ∈ 𝑅, 𝑢 < 0 ⇒ 𝜙
𝑜
(𝑢) < 0 and 𝑢 ≧ 0 ⇒

𝜙
1
(𝑢) ≧ 0, 𝑏

𝑜
(𝑥, 𝑦) > 0, 𝑏

1
(𝑥, 𝑦) ≧ 0, and

(iii) 𝜌1 + 𝜌2 ≧ 0,

then

𝑓 (𝑥) ̸< 𝑓 (𝑦) . (52)

Theorem 24 (weak duality). Let 𝑥 and (𝑦, 𝜇, 𝜆, (𝜂
𝑖
)
𝑖=1,𝑚

,
(𝜃
𝑗
)
𝑗=1,𝑘

) be the feasible solutions of (MP) and (MWD),
respectively. If

(i) (𝑓, 𝑔) is quasistrictly pseudo (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-type I

univex at 𝑦 with respect to (𝜂
𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

,

(ii) for any 𝑢 ∈ 𝑅, 𝑢 ≦ 0 ⇒ 𝜙
𝑜
(𝑢) ≦ 0 and 𝑢 ≧ 0 ⇒

𝜙
1
(𝑢) ≧ 0, 𝑏

𝑜
(𝑥, 𝑦) ≧ 0, 𝑏

1
(𝑥, 𝑦) ≧ 0, and

(iii) 𝜌1 + 𝜌2 ≧ 0,

then

𝑓 (𝑥) ≰ 𝑓 (𝑦) . (53)

Theorem 25 (strong duality). Let 𝑥
𝑜
be a weakly efficient

solution of (MP) and 𝑔
𝑗
is continuous at 𝑥

𝑜
for 𝑗 ∈ 𝐽(𝑥

𝑜
). Also,

the vector functions 𝜂
𝑖
, 𝑖 = 1,𝑚 and 𝜃

𝑗
, 𝑗 ∈ 𝐽(𝑥

𝑜
) exist for

which

𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂 (𝑥, 𝑥

𝑜
)) ≦ 𝑓

󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)) ,

∀𝑥 ∈ 𝑋, ∀𝑖 = 1,𝑚,

𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜂 (𝑥, 𝑥

𝑜
)) ≦ 𝑔

󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)) ,

∀𝑥 ∈ 𝑋, ∀𝑗 ∈ 𝐽(𝑥
𝑜
)

(54)

at 𝑥
𝑜
and 𝑓

𝑖
, 𝑔
𝑗
are semidirectionally differentiable at 𝑥

𝑜
with

𝑓󸀠
𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)) and 𝑔󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)) as preinvex functions on

𝑋. Also if 𝑔 satisfies 𝑑
𝐼
-constraint qualification at 𝑥

𝑜
, then

∃𝜇 ∈ 𝑅𝑚
≥
and 𝜆 ∈ 𝑅𝑘

≧
such that (𝑥

𝑜
, 𝜇, 𝜆, (𝜂

𝑖
)
𝑖=1,𝑚

, (𝜃
𝑗
)
𝑗=1,𝑘

) is
feasible for (MWD) and the objective function values of (MP)
and (MWD) are equal. Moreover, if any weak duality holds,
then (𝑥

𝑜
, 𝜇, 𝜆, (𝜂

𝑖
)
𝑖=1,𝑚

, (𝜃
𝑗
)
𝑗=1,𝑘

) is a weakly efficient solution
of (MWD).

Proof. Since 𝑥
𝑜
is a weakly efficient solution of (MP), there-

fore, by Theorem 21, there exist 𝜇 ∈ 𝑅𝑚
⩾
and 𝜆 ∈ 𝑅𝑘

≧
such that

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑥
𝑜
; 𝜂
𝑖
(𝑥, 𝑥
𝑜
)) +

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑥
𝑜
; 𝜃
𝑗
(𝑥, 𝑥
𝑜
)) ≧ 0,

∀𝑥 ∈ 𝑋,

𝜆
𝑗
𝑔
𝑗
(𝑥
𝑜
) = 0, ∀𝑗 = 1, 𝑘.

(55)

It follows that (𝑥
𝑜
, 𝜇, 𝜆, (𝜂

𝑖
)
𝑖=1,𝑚

, (𝜃
𝑗
)
𝑗=1,𝑘

) ∈ 𝑊 and there-
fore feasible for (MWD). Clearly, objective function values of
(MP) and (MWD) are equal at these points.

Suppose (𝑥
𝑜
, 𝜇, 𝜆, (𝜂

𝑖
)
𝑖=1,𝑚

, (𝜃
𝑗
)
𝑗=1,𝑘

) is not a weakly effi-
cient solution for (MWD). Then ∃(𝑦, 𝜇, 𝜆̃, (𝜂

𝑖
)
𝑖=1,𝑚

, (𝜃
𝑗
)
𝑗=1,𝑘

)

∈ 𝑊 such that 𝑓(𝑥
𝑜
) < 𝑓(𝑦) which contradicts weak duality

theorems. Therefore (𝑥
𝑜
, 𝜇, 𝜆, (𝜂

𝑖
)
𝑖=1,𝑚

, (𝜃
𝑗
)
𝑗=1,𝑘

) is a weakly
efficient solution of (MWD).

Theorem 26 (converse duality). Let (𝑦
𝑜
, 𝜇, 𝜆, (𝜂

𝑖
)
𝑖=1,𝑚

,
(𝜃
𝑗
)
𝑗=1,𝑘

) be a feasible solution of (MWD). Suppose hypotheses
of Theorem 24 hold at 𝑦

𝑜
, then 𝑦

𝑜
is an efficient solution of

(MP).

Proof. Suppose that 𝑦
𝑜
is not an efficient solution of (MP).

Then ∃𝑥
𝑜
∈ 𝑋 such that

𝑓 (𝑥
𝑜
) ⩽ 𝑓 (𝑦

𝑜
) . (56)

Hence, byTheorem 24 (weak duality), we obtain a contradic-
tion. Therefore 𝑦

𝑜
is an efficient solution of (MP).

Theorem 27 (strict converse duality). Let 𝑥
𝑜
and (𝑦

𝑜
, 𝜇, 𝜆,

(𝜂
𝑖
)
𝑖=1,𝑚

, (𝜃
𝑗
)
𝑗=1,𝑘

) be the feasible solutions of (MP) and
(MWD), respectively. If

(i) 𝑓(𝑥
𝑜
) ≦ 𝑓(𝑦

𝑜
),
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(ii) (𝑓, 𝑔) is semistrictly quasi (𝜑, 𝛼̃, 𝜌, 𝜎)-𝑑
𝐼
-V-type I uni-

vex at 𝑦
𝑜
with respect to (𝜂

𝑖
)
𝑖=1,𝑚

and (𝜃
𝑗
)
𝑗=1,𝑘

,
(iii) for any 𝑢 ∈ 𝑅, 𝑢 ≦ 0 ⇒ 𝜙

𝑜
(𝑢) ≦ 0 and 𝑢 ≧ 0 ⇒

𝜙
1
(𝑢) ≧ 0, 𝑏

𝑜
(𝑥
𝑜
, 𝑦
𝑜
) ≧ 0, 𝑏

1
(𝑥
𝑜
, 𝑦
𝑜
) ≧ 0, and

(iv) 𝜌1 + 𝜌2 ≧ 0,

then 𝑥
𝑜
= 𝑦
𝑜
.

Proof. Suppose 𝑥
𝑜

̸= 𝑦
𝑜
.

Since 𝜇 ∈ 𝑅
𝑚

≥
, 𝛼̃1
𝑖
(𝑥
𝑜
, 𝑦
𝑜
) > 0, 𝑖 = 1,𝑚, and hypothesis (i)

holds, therefore
𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥
𝑜
, 𝑦
𝑜
) 𝑓
𝑖
(𝑥
𝑜
) ≦

𝑚

∑
𝑖=1

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥
𝑜
, 𝑦
𝑜
) 𝑓
𝑖
(𝑦
𝑜
) . (57)

As 𝛼̃2
𝑗
(𝑥
𝑜
, 𝑦
𝑜
) > 0, 𝑗 = 1, 𝑘, and 𝑦

𝑜
is feasible solution of

(MWD), therefore
𝑘

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥
𝑜
, 𝑦
𝑜
) 𝑔
𝑗
(𝑦
𝑜
) ≧ 0. (58)

Using hypothesis (iii), we obtain

𝑏
𝑜
(𝑥
𝑜
, 𝑦
𝑜
) 𝜙
𝑜
(

𝑚

∑
𝑖=𝑖

𝜇
𝑖
𝛼̃
1

𝑖
(𝑥
𝑜
, 𝑦
𝑜
) (𝑓
𝑖
(𝑥
𝑜
) − 𝑓
𝑖
(𝑦
𝑜
))) ≦ 0,

𝑏
1
(𝑥
𝑜
, 𝑦
𝑜
) 𝜙
1
(

𝑘

∑
𝑗=1

𝜆
𝑗
𝛼̃
2

𝑗
(𝑥
𝑜
, 𝑦
𝑜
) 𝑔
𝑗
(𝑦
𝑜
)) ≧ 0.

(59)

Applying hypothesis (ii) to the above inequalities, we get

𝜑(𝑥
𝑜
, 𝑦
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑦
𝑜
; 𝜂
𝑖
(𝑥
𝑜
, 𝑦
𝑜
))) < −𝜌

1󵄩󵄩󵄩󵄩𝜎(𝑥𝑜, 𝑦𝑜)
󵄩󵄩󵄩󵄩
2
,

𝜑(𝑥
𝑜
, 𝑦
𝑜
;

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑦
𝑜
; 𝜃
𝑗
(𝑥
𝑜
, 𝑦
𝑜
))) ≦ −𝜌

2󵄩󵄩󵄩󵄩𝜎(𝑥𝑜, 𝑦𝑜)
󵄩󵄩󵄩󵄩
2
.

(60)

Using subadditivity of 𝜑 and hypothesis (iv), we get

𝜑(𝑥
𝑜
, 𝑦
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑦
𝑜
; 𝜂
𝑖
(𝑥
𝑜
, 𝑦
𝑜
))

+

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑦
𝑜
; 𝜃
𝑗
(𝑥
𝑜
, 𝑦
𝑜
))) < 0

(61)

which is a contradiction as feasible condition (42) holds and
𝜑(𝑥
𝑜
, 𝑦
𝑜
; 0) = 0 and 𝜑(𝑥

𝑜
, 𝑦
𝑜
; 𝑎) > 0 for 𝑎 > 0 yield

𝜑(𝑥
𝑜
, 𝑦
𝑜
;

𝑚

∑
𝑖=1

𝜇
𝑖
𝑓
󸀠

𝑖
(𝑦
𝑜
; 𝜂
𝑖
(𝑥
𝑜
, 𝑦
𝑜
))

+

𝑘

∑
𝑗=1

𝜆
𝑗
𝑔
󸀠

𝑗
(𝑦
𝑜
; 𝜃
𝑗
(𝑥
𝑜
, 𝑦
𝑜
))) ≧ 0.

(62)

Hence 𝑥
𝑜
= 𝑦
𝑜
.
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