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A numerical algorithm for solving optimization problems with stochastic diffusion equation as a constraint is proposed. First,
separation of randomanddeterministic variables is done viaKarhunen-Loeve expansion.Then, the problem is discretized, in spatial
part, using the finite element method and the polynomial chaos expansion in the stochastic part of the problem.This process leads
to the optimal control problem with a large scale system in its constraint. To overcome these difficulties the adjoint technique for
derivative computation to implementation of the optimal control issue in preconditioned Newton’s conjugate gradient method is
used. By some numerical simulation, it is shown that this hybrid approach is efficient and simple to implement.

1. Introduction

Physical problems, in many cases, can be formulated as
optimization problems. These problems are utilized to gain
a more widely understanding of physical systems. Typically,
these problems depend on some models which, in many
cases, are deterministic. Uncertainty might plague every-
thing from modeling assumptions to experimental data.
As such, in order to accommodate for these uncertainties,
many practitioners have developed stochastic models. In
order to make sense of and solve these models, in addition
to randomness of the models, some additional theory is
required to the resulting optimization problems. This paper
proposes an adjoint based approach for solving optimization
problems governed by stochastic diffusion equations. In
order to deal with the stochastic partial differential equations
(SPDE) as a constraint in an optimization problem one may
first solve the SPDE. Since the provided systems by this
approach are random and nonlinear, such kind of problems
are difficult to handle and very challenging. One of the most
challenging examples in this area is the control of stochastic
diffusion equations with random forcing [1]. Polynomial
chaos expansion (PCE) [2] provides a good direction for
solution of nonlinear SPDEs numerically. In the presence of
the random forcing, PCE seems to be more accurate and

efficient numerical method than Monte Carlo simulation. In
fact, the PCE can be interpreted as the Fourier expansion
in the probability space. Particularly, the aim of this work is
the numerical solution for the distributed control problems
involving the stochastic diffusion equations in the form:

−∇ ⋅ (𝑎 (x, 𝜔) ∇𝑢 (x, 𝜔)) = 𝑧 (x) in 𝐷 × Ω (1)

𝑢 (x, 𝜔) = 0 on 𝜕𝐷 × Ω, (2)

where 𝐷 is the spatial domain, 𝜕𝐷 is the boundary of the
spatial domain, Ω is probability space, x ∈ 𝐷, 𝜔 ∈ Ω,
𝑢 is the solution of the SPDE, 𝑧 is the source function,
and 𝑎(x, 𝜔) is the permeability field of the problem. As an
important assumption for the stochastic diffusion equation
(1), it is assumed that the random coefficient 𝑎(x, 𝜔) satisfies
the elliptic condition [3]; that is, there exists a constant 𝑎min
such that

0 < 𝑎min ≤ 𝑎 (x, 𝜔) ∀ (x, 𝜔) ∈ 𝐷 × Ω. (3)

Karhunen-Loeve expansion (KLE) of correlated random
functions is used to separate the random and deterministic
parts in random coefficient [4, 5]. Therefore, a finite dimen-
sional approximation 𝑎

𝑀
(x, 𝜔) is performed by truncating the
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Karhunen-Loeve expansion of the permeability field 𝑎(x, 𝜔).
Then, (1) is approximated by

∇ (𝑎

𝑀 (x, 𝜔) ∇𝑢) = 𝑧. (4)

For approximation of the function 𝑢 with 𝑁random
variables and the Gaussian random variables of the highest
degree𝐾, the number of PCE coefficients are(𝑁+𝐾)!/𝑁!𝐾!,
[6]. Now, weak formulation of (4) and then Galerkin
finite element method are used to solve the SPDE problem
approximately. Generally in nature, optimization with SPDE-
constraint is infinite dimensional, large, and complex. There
are two numerical approaches for solving this problem [2, 7]:

(i) discretize then optimize (DO): for problems that can
be trivially discretized first,

(ii) optimize then discretize (OD): for problems that are
differentiable.

Our intention is to work with discretizethen optimization
algorithms for smooth functions. Thus, we follow the DO
approach. Galerkin finite element method incorporated with
polynomial chaos expansion is used for discretizing the
SPDE. By computing gradient and Hessian of the Lagrangian
augmented function, preconditionedNewton’s conjugate gra-
dient method is used to compute the best right hand side vec-
tor (control values at grid points), where the corresponding
solution of SPDE (state values) according to this vector, stays
as near as to the desired value approximation, and has lowest
cost in the objective function. The organization of this paper
is as follows: in Section 2, problem formulation in addition
to KLE, PCE, and stochastic Galerkin method is presented.
In Section 3, distributed control of random forced diffusion
equation with some numerical examples is proposed.

2. Problem Formulation

We consider optimal control problems of the form

min
𝑢∈𝑈, 𝑧∈Z

𝐽 (𝑢, 𝑧)

s.t. 𝑒 (𝑢, 𝑧) = 0,

(5)

where 𝐽 : 𝐻

1

0
(𝐷)⨂𝐿

2
(Ω) → R is the objective function,

𝑒 : 𝑈 = 𝐻

1

0
(𝐷)⨂𝐿

2
(Ω) → Z = 𝐿

2
(𝐷) is an operator which

stands as the constraint, 𝐷 is the spatial domain, Ω is the
probability space, and⨂ is the tensor product.

To provide a concrete setting for our discussion, the
following problem is considered as the constraint operator

−∇ ⋅ (𝑎 (x, 𝜔) ∇𝑢 (x, 𝜔)) = 𝑧 (x) in 𝐷 × Ω,

𝑢 (x, 𝜔) = 0 on 𝜕𝐷 × Ω,

(6)

where 𝑎(x, 𝜔) is the correlated random fields. Hence, the
solutions 𝑢(x, 𝜔) of the SPDE (6) are also random fields. It is

assumed that the control space 𝑧(x) ∈ 𝐿

2
(𝐷). The weak form

of the constraint function (6) can be defined for all V ∈ 𝑈 as

⟨𝑒 (𝑢, 𝑧) , V⟩𝑈∗ ,𝑈

= ∫

Ω

𝜌 (𝜔)∫

𝐷

(𝑎 (x, 𝜔) ∇𝑢 (x, 𝜔)

⋅ ∇V (x, 𝜔) 𝑑x𝑑𝜔 −𝑧 (x) V (x, 𝜔)) 𝑑x𝑑𝜔.

(7)

It is assumed that the objective or cost functional is as

𝐽 (𝑢, 𝑧) = 𝐸 [

1

2

‖𝑢 (x, 𝜔) − 𝑢̂ (x)‖2
𝐿
2
(𝐷)

]

+

𝛼

2

‖𝑧 (x)‖2
𝐿
2
(𝐷)

,

(8)

where 𝐸(⋅) denotes the expected value, 𝑢̂ is a given desired
function, and 𝛼 is the regularization parameter. Obviously,
controlling the solution of this problem leads to controlling
the statistics of the solution, for example, the expected value
of the solution, given by

‖𝐸[𝑢 (x, 𝜔) − 𝑢̂ (x)]‖2
𝐿
2
(𝐷)

≤ 𝐸 [‖𝑢 (x, 𝜔) − 𝑢̂ (x)‖2
𝐿
2
(𝐷)

]

≤ ‖𝑢 (x, 𝜔) − 𝑢̂ (x)‖2
𝐿
2
(𝐷)⊗𝐿

2
(Ω)

.

(9)

So, the optimal control problem can be interpreted
as follows: given the random field 𝑎(x, 𝜔), minimize the
objective function (8) over all 𝑧 ∈ Z, subject to 𝑢 ∈ 𝑈, such
that for the given random field 𝑎(x, 𝜔) satisfies in the weak
formulation (7) [1].

2.1. Basic Definitions. In (5), 𝐽 and 𝑒 are assumed to be
continuously F-differentiable and that for each 𝑧 ∈ Z the
state equation 𝑒(𝑢, 𝑧) = 0 possesses a unique corresponding
solution 𝑢(𝑧) ∈ 𝑈. Similar to the deterministic PDEs,
existence and uniqueness of the solution for these kind of
SPDEs can be established using the Lax-Milgram theorem.
Thus, there is a solution operator 𝑧 ∈ Z → 𝑢(𝑧) ∈ 𝑈.
In addition, it is assumed that 𝑒

𝑢
(𝑢(𝑧), 𝑧) ∈ L(𝑈,Z) is

continuously invertible. Then, existence and uniqueness of
the solution for the above optimal control problems as well as
the continuously differentiability of 𝑢(𝑧) are ensured by the
implicit function theorem [8].

2.2. Karhunen-Loeve Expansion (KLE). Consider a random
field 𝑎(x, 𝜔), x ∈ 𝐷, with finite second order moment

∫

Ω

𝐸 [𝑎

2
(x, 𝜔)] 𝑑𝑥 < ∞. (10)

Assume that 𝐸[𝑎] = 𝑎(x). It is possible to expand 𝑎(x, 𝜔),
for a given orthonormal basis {𝜓

𝑘
} in 𝐿

2
(𝐷), as a generalized

Fourier series

𝑎 (x, 𝜔) = 𝑎 (x) +
∞

∑

𝑘=1

𝑎

𝑘 (
𝜔) 𝜓𝑘 (

x) , (11)
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where

𝑎

𝑘 (
𝜔) = ∫

Ω

𝑎 (x, 𝜔) 𝜓𝑘 (
x) 𝑑x, 𝑘 = 1, 2, . . . (12)

are random variables with zero means. It is important,
now, to find a special basis {𝜙

𝑘
} that makes corresponding

𝑎

𝑘
uncorrelated: 𝐸[𝑎

𝑖
𝑎

𝑗
] = 0 for all 𝑖 ̸= 𝑗. Denoting the

covariance function of 𝑎(x, 𝜔) by 𝑅(x, y) = 𝐸[𝑎(x, 𝜔)𝑎(y, 𝜔)],
the basis functions {𝜙

𝑘
} should satisfy

𝐸 [𝑎

𝑖
𝑎

𝑗
] = ∫

𝐷

𝜙

𝑖 (
x) 𝑑x∫

𝐷

𝑅 (x, y) 𝜙
𝑗
(y) 𝑑y = 0, 𝑖 ̸= 𝑗.

(13)

Completion and orthonormality of {𝜙
𝑘
} in 𝐿

2
(𝐷) follow

that 𝜙
𝑘
(x) are eigenfunctions of 𝑅(x, y):

∫

𝐷

𝑅 (x, y) 𝜙
𝑗
(y) 𝑑𝑦 = 𝜆

𝑗
𝜙

𝑗 (
x) , 𝑗 = 1, 2, . . . , (14)

where 𝜆

𝑗
= 𝐸[𝑎

2

𝑗
] > 0. Indeed, by choosing basis

functions 𝜙
𝑘
(𝑥) as the solutions of the eigenproblem (14), the

randomvariables 𝑎
𝑘
(𝜔)will be uncorrelated. In (14), denoting

𝜃

𝑘
= 𝑎

𝑘
/
√
𝜆

𝑘
, yields the following expansion:

𝑎 (x, 𝜔) = 𝑎 (x) +
∞

∑

𝑘=1

√

𝜆

𝑘
𝜃

𝑘
(𝜔) 𝜙𝑘 (

x) , (15)

where 𝜃

𝑘
satisfy 𝐸[𝜃

𝑘
] = 0 and 𝐸[𝜃

𝑖
𝜃

𝑗
] = 𝛿

𝑖𝑗
. In the case

that 𝑎(x, 𝜔) is considered as a Gaussian process, 𝑎
𝑘
(𝜔), 𝑘 =

1, 2, . . . will be independent Gaussian random variables. The
expansion (15) is known as the Karhunen-Loeve expansion
(KLE) of the stochastic process 𝑎(x, 𝜔).

Using the KLE (15), the stochastic process can be rep-
resented as a series of uncorrelated random variables. Since
the basis functions 𝜙

𝑘
(x) are deterministic, the spatial depen-

dence of the random process can be resolved by them. The
convergence property of the KLE to the random process
𝑎(x, 𝜔) can be represented in the mean square sense

lim
𝑁→∞

∫

𝐷

𝐸

󵄨

󵄨

󵄨

󵄨

𝑎 (x, 𝜔) − 𝑎

𝑁 (x, 𝜔)

󵄨

󵄨

󵄨

󵄨

2
𝑑x = 0, (16)

where

𝑎

𝑁
= 𝑎 (x) +

𝑁

∑

𝑘=1

√

𝜆

𝑘
𝜃

𝑘
𝜙

𝑘
(17)

is a finite term KLE [4, 5].

2.3. Polynomial Chaos Expansion (PCE). There are problems,
as the solution of a PDE with random inputs, that the
covariance function of a random process 𝑢(x, 𝜔), x ∈ 𝐷 is
not known.The solution of such problems can be represented
using a polynomial chaos expansion (PCE) given by

𝑢 (x, 𝜔) =

∞

∑

𝑘=1

𝑢

𝑘 (
x) Ψ𝑘 (𝜉) , (18)

where the functions 𝑢

𝑘
(x) are deterministic coefficients, 𝜉

is a vector of orthonormal random variables, and Ψ

𝑘
(𝜉) are

multidimensional orthogonal polynomials that satisfy in the
following properties:

⟨Ψ

1
⟩ ≡ 𝐸 [Ψ

1
] = 1, ⟨Ψ

𝑘
⟩ = 0, 𝑘 > 1,

⟨Ψ

𝑖
Ψ

𝑗
⟩ = ℎ

𝑖
𝛿

𝑖𝑗
.

(19)

The convergence property of PCE for a random quantity
in 𝐿

2 is ensured by the Cameron-Martin theorem [6, 9]; that
is,

⟨𝑢 (x, 𝜔) −

∞

∑

𝑘=1

𝑢

𝑘 (
x) Ψ𝑘 (𝜉)⟩

𝐿
2

󳨀→ 0. (20)

Hence, this convergence justifies a truncation of PCE to a
finite number of terms,

𝑢 (x, 𝜔) =

𝑃

∑

𝑘=1

𝑢

𝑘 (
x) Ψ𝑘 (𝜉) , (21)

where the value of 𝑃 is determined by the highest degree of
polynomial 𝐾, used to represent 𝑢, and the number 𝑁 of
random variables—the length of 𝜉—with the formula 𝑃+1 =

(𝑁 + 𝐾)!/𝑁!𝐾!. Generally, the value of 𝑁 is the same as
the number of uncorrelated random variables in the system
or equivalently the truncation length of the truncated KLE.
Typically, the value of𝐾 is chosen by some heuristic method.
Indeed, in the case of𝐾 = 1 and𝑁 randomvariables, the KLE
is a special case of the PCE [9, 10].

2.4. Stochastic Galerkin. Suppose 𝑊

𝑖
⊂ 𝐿

2

𝜌
𝑖

(Ω

𝑖
) with dimen-

sion 𝜌

𝑖
for 𝑖 = 1, . . . ,𝑀 and 𝑉 ⊂ 𝐻

1

0
(𝐷) with dimension

𝑁. In addition, let {𝜓

𝑖

𝑛
}

𝑝
𝑖

𝑛=1
for 𝑖 = 1, . . . ,𝑀 be basis of

𝑊

𝑖
and {𝜙

𝑖
}

𝑁

𝑖=1
a basis of 𝑉. The finite dimensional tensor

product space 𝑊

1
⨂⋅ ⋅ ⋅⨂𝑊

𝑀
⨂𝑉 can be defined as the

space spanned by the functions {𝜓

1

𝑛
1

, . . . , 𝜓

𝑀

𝑛
𝑀

𝜙

𝑖
} for all 𝑛

1
∈

{1, . . . , 𝑝

1
}, . . . , 𝑛

𝑀
∈ {1, . . . , 𝑝

𝑀
} and 𝑖 ∈ {1, . . . , 𝑁}.

For simplification, let n denote a multi-index whose 𝑘th
component 𝑛

𝑘
∈ {1, . . . , 𝑝

𝑘
} and I denote the set of such

multi-indices; then, the basis functions for the tensor product
space have the form

Vn𝑖 (x, 𝜔) = 𝜙

𝑖
(x) Ψ𝑛 (𝜔) , (22)

where

Ψ

𝑛
=

𝑀

∏

𝑘=1

𝜓

𝑘

𝑛
𝑘

(𝜔

𝑘
) . (23)

Then, the Galerkin method is looking for a solution
𝑢̂ ∈ 𝑊

1
⨂⋅ ⋅ ⋅⨂𝑊

𝑀
⨂𝑉 such that for x = (𝑥, 𝑦), all n ∈I

and 𝑖 = 1, . . . , 𝑁,

∫

Ω

𝜌 (𝜔)∫

𝐷

𝑎 (x, 𝜔) ∇𝑢

ℎ𝑃 (x, 𝜔) ⋅ ∇Vn𝑖 (x, 𝜔) 𝑑x𝑑𝜔

= ∫

Ω

𝜌 (𝜔) ∫

𝐷

𝑧 (x, 𝜔) Vn𝑖 (x, 𝜔) 𝑑x𝑑𝜔,

(24)
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where 𝜌(𝜔) is the integration weight. Equation (24) is equiv-
alent to the following equation, which results by plugging in
the explicit formula for the basis functions

∫

Ω

𝜌 (𝜔)Ψn (𝜔) ∫

𝐷

𝑎 (x, 𝜔) ∇𝑢

ℎ𝑃 (x, 𝜔) ⋅ ∇𝜙

𝑖 (
x) 𝑑x𝑑𝜔

= ∫

Ω

𝜌 (𝜔)Ψn (𝜔) ∫

𝐷

𝑧 (x, 𝜔) 𝜙𝑖 (
x) 𝑑x𝑑𝜔

(25)

for all n ∈I and 𝑖 = 1, . . . , 𝑁.
Now, considering the approximate solution as

𝑢

ℎ𝑃 (x, 𝜔) =

𝑁

∑

𝑗=1

∑

m∈I
𝑢

𝑗m𝜙

𝑗 (
x) Ψm (𝜔) (26)

and substituting (26) into (25) yields
𝑁

∑

𝑗=1

∑

m∈I
𝑢

𝑗m ∫

Ω

𝜌 (𝜔)Ψn (𝜔)Ψm (𝜔)

× ∫

𝐷

𝑎 (x, 𝜔) ∇𝜙

𝑗 (
x) ⋅ ∇𝜙

𝑖 (
x) 𝑑x𝑑𝜔

= ∫

Ω

𝜌 (𝜔)Ψn (𝜔) ∫

𝐷

𝑧 (x, 𝜔) 𝜙𝑖 (
x) 𝑑x𝑑𝜔

(27)

for allm ∈I and 𝑖 = 1, . . . , 𝑁. Let 𝑃 = |I| = ∏

𝑀

𝑘=1
𝑝

𝑘
; then,

a natural bijection between {1, . . . , 𝑃} and Ican be defined.
Thus, (27) can be written as

𝑃

∑

𝑚=1

𝑁

∑

𝑗=1

𝑢

𝑚𝑗
∫

Ω

𝜌 (𝜔)Ψ

𝑛
(𝜔)Ψ𝑚 (𝜔)

× ∫

𝐷

𝑎 (x, 𝜔) ∇𝜙

𝑗 (
x) ⋅ ∇𝜙

𝑖 (
x) 𝑑x𝑑𝜔

= ∫

Ω

𝜌 (𝜔)Ψ𝑛 (
𝜔) ∫

𝐷

𝑧 (x, 𝜔) 𝜙𝑖 (
x) 𝑑x𝑑𝜔.

(28)

Now, if 𝑎 and 𝑧 have the following KLE

𝑎 (x, 𝜔) = 𝑎

0 (
x) +

𝑀

∑

𝑖=1

𝜔

𝑖
𝑎

𝑖 (
x) ,

𝑧 (x, 𝜔) = 𝑧

0 (
x) +

𝑀

∑

𝑖=1

𝜔

𝑖
𝑧

𝑖 (
x) ,

(29)

then, we can rewrite the Galerkin projection (28) as
𝑃

∑

𝑚=1

𝑁

∑

𝑗=1

𝑢

𝑚𝑗
((𝐾

0
)

𝑖,𝑗
∫

Ω

𝜌 (𝜔)Ψ

𝑛
(𝜔)Ψ𝑚 (𝜔) 𝑑𝜔

+

𝑀

∑

𝑘=1

(𝐾

𝑘
)

𝑖,𝑗
∫

Ω

𝜌 (𝜔)Ψ

𝑛
(𝜔)Ψ𝑚 (𝜔) 𝜔𝑘

𝑑𝜔)

= (𝑧

0
)

𝑖
∫

Ω

𝜌 (𝜔)Ψ𝑛 (
𝜔) 𝑑𝜔

+

𝑀

∑

𝑘=1

(𝑧

𝑘
)

𝑖
∫

Ω

𝜌 (𝜔)Ψ𝑛 (
𝜔) 𝜔𝑘

𝑑𝜔,

(30)

where

(𝐾

𝑘
)

𝑖,𝑗
= ∫

𝐷

𝑎

𝑘 (
x) ∇𝜙

𝑖 (
x) ⋅ ∇𝜙

𝑗 (
x) 𝑑x

≅ ∑

𝑟

𝑤

𝑟
𝑎

𝑘
(x
𝑟
) ∇𝜙

𝑖
(x
𝑟
) ⋅ ∇𝜙

𝑗
(x
𝑟
) ,

(𝑧

𝑘
)

𝑖
= ∫

𝐷

𝑧

𝑖 (
x) 𝜙𝑖 (x) 𝑑x ≅ ∑

𝑟

𝑤

𝑟
𝑧

𝑖
(x
𝑟
) 𝜙

𝑖
(x
𝑟
)

(31)

for 𝑘 = 1, . . . ,𝑀 [3]. Equation (31) is approximated by
quadrature rule in spatial domain. Now, assume that there
exist functions Ψ

𝑛
, 𝑛 = 1, . . . 𝑃, such that

∫

Ω

𝜌 (𝜔)Ψ

𝑛
(𝜔)Ψ𝑚 (𝜔) 𝑑𝜔 = 𝛿

𝑚𝑛
,

∫

Ω

𝜌 (𝜔)Ψ

𝑛
(𝜔)Ψ𝑚 (𝜔) 𝜔𝑘

𝑑𝜔 = 𝐶

𝑘𝑛
𝛿

𝑛𝑚
,

(32)

where, for 𝑚 = 𝑛, the above integral is approximated using
quadrature rule in random domain as follows:

∫

Ω

𝜌 (𝜔)Ψ

𝑛
(𝜔)Ψ𝑛 (

𝜔) 𝜔𝑘
𝑑𝜔 ≅ ∑

𝑠

𝑤

󸀠

𝑠
𝜌 (𝜔

𝑠
) Ψ

2

𝑛
(𝜔

𝑠
) 𝜔

𝑘
. (33)

Then, (30) becomes

𝑃

∑

𝑚=1

𝑁

∑

𝑗=1

𝑢

𝑚𝑗
((𝐾

0
)

𝑖,𝑗
+

𝑀

∑

𝑘=1

𝐶

𝑘𝑛
(𝐾

𝑘
)

𝑖,𝑗
)𝛿

𝑛𝑚

= (𝑧

0
)

𝑖
∫

Ω

𝜌 (𝜔)Ψ𝑛 (
𝜔) 𝑑𝜔

+

𝑀

∑

𝑘=1

(𝑧

𝑘
)

𝑖
∫

Ω

𝜌 (𝜔)Ψ𝑛 (
𝜔) 𝜔𝑘

𝑑𝜔

(34)

or, equivalently,

𝑁

∑

𝑗=1

𝑢m𝑗 ((𝐾

0
)

𝑖,𝑗
+

𝑀

∑

𝑘=1

𝐶

𝑘𝑛
(𝐾

𝑘
)

𝑖,𝑗
)

= (𝑧

0
)

𝑖
∫

Ω

𝜌 (𝜔)Ψ𝑛 (
𝜔) 𝑑𝜔

+

𝑀

∑

𝑘=1

(𝑧

𝑘
)

𝑖
∫

Ω

𝜌 (𝜔)Ψ𝑛 (
𝜔) 𝜔𝑘

𝑑𝜔.

(35)

In (34) and (35) we have

∫

Ω

𝜌 (𝜔)Ψ𝑛 (
𝜔) 𝑑𝜔 = 0; for 𝑛 ̸= 0,

∫

Ω

𝜌 (𝜔)Ψ𝑛 (
𝜔) 𝜔𝑘

𝑑𝜔 = ∫

Ω

𝜌 (𝜔)Ψ0 (
𝜔)Ψ𝑛 (

𝜔) 𝜔𝑘
𝑑𝜔

= 𝐶

𝑘𝑛
𝛿

0𝑛
= 𝐶

𝑘0
.

(36)
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Finally, (35) can be considered as the following block
diagonal system:

(

(

(

𝐾

0
+

𝑀

∑

𝑘=1

𝐶

𝑘1
𝐾

𝑘
⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝐾

0
+

𝑀

∑

𝑘=1

𝐶

𝑘𝑝
𝐾

𝑘

)

)

)

(

𝑢⃗

1

...
𝑢⃗

𝑃

)

= (

⃗
𝑧

1

...
⃗

𝑧

𝑝

)

(37)

or briefly 𝐾𝑢⃗ =
⃗

𝑧.

3. Distributed Optimal Control Problem

Using the stochastic Galerkin method for general objective
functions, computing the derivatives becomes very tedious
and rather messy. Consider the following optimal control
problem:

min
𝑢∈𝑈, 𝑧∈z

𝐽 (𝑢, 𝑧) =

1

2

𝐸 [‖𝑢 (x, 𝜔) − 𝑢̂ (x)‖2
𝐿
2
(𝐷)

]

+

𝛼

2

‖𝑧 (x)‖2
𝐿
2
(𝐷)

s.t. − ∇ ⋅ (𝑎 (x, 𝜔) ∇𝑢 (x, 𝜔)) = 𝑧 (x) in 𝐷 × Ω

𝑢 (x, 𝜔) = 0 on 𝜕𝐷 × Ω.

(38)

The solutions to linear elliptic SPDEs live in the space𝑈 =

𝐻

1

0
(𝐷)⨂𝐿

2
(Ω) and the control space Z = 𝐿

2
(𝐷). Denoting

the constraint equation by 𝑒(𝑢, 𝑧) = 0, usually, it is possible
to invoke the implicit function theorem to find a solution
𝑢(𝑧) to the constraint equation. This leads to an implicitly
defined objective function ̂

𝐽(𝑧) := 𝐽(𝑢(𝑧), 𝑧). Now we focus
on computing derivatives of ̂𝐽 [11]. For any direction 𝑠 ∈ Z,

⟨

̂

𝐽

󸀠
(𝑧) , 𝑠⟩

Z∗ ,Z
= ⟨𝐽

𝑢 (
𝑢 (𝑧) , 𝑧) , 𝑢𝑧 (

𝑧) 𝑠⟩

𝑈
∗
,𝑈

+ ⟨𝐽

𝑧 (
𝑢 (𝑧) , 𝑧) , 𝑠⟩

Z∗ ,Z
,

(39)

where𝑈∗ andZ∗ are the dual space of𝑈 andZ, respectively.
Now, computing the derivative of the constraint 𝑒with respect
to 𝑧, in the direction 𝑠, and applying it to the implicit solution
to 𝑒(𝑢(𝑧), 𝑧) = 0 yield

𝑒

𝑢 (
𝑢 (𝑧) , 𝑧) 𝑢𝑧 (

𝑧) 𝑠 + 𝑒

𝑧 (
𝑢 (𝑧) , 𝑧) 𝑠 = 0. (40)

So 𝑢

𝑧
(𝑧) is

𝑢

𝑧 (
𝑧) 𝑠 = −𝑒

𝑢(
𝑢 (𝑧) , 𝑧)

−1
𝑒

𝑧 (
𝑢 (𝑧) , 𝑧) 𝑠.

(41)

Hence

⟨

̂

𝐽

󸀠
(𝑧) , 𝑠⟩

Z∗ ,Z
= − ⟨𝐽

𝑢 (
𝑢 (𝑧) , 𝑧) , 𝑒𝑢(

𝑢 (𝑧) , 𝑧)

−1

× 𝑒

𝑧 (
𝑢 (𝑧) , 𝑧) 𝑠⟩

𝑈
∗
,𝑈

+ ⟨𝐽

𝑧 (
𝑢 (𝑧) , 𝑧) , 𝑠⟩

Z∗ ,Z
.

(42)

Applying the adjoint to the 𝑢

𝑧
(𝑧) term,

⟨

̂

𝐽

󸀠
(𝑧) , 𝑠⟩

Z∗ ,Z
= − ⟨𝑒

𝑧(
𝑢 (𝑧) , 𝑧)

∗
𝑒

𝑢(
𝑢 (𝑧) , 𝑧)

−∗

× 𝐽

𝑢 (
𝑢 (𝑧) , 𝑧) , 𝑠⟩

Z∗ ,Z

+ ⟨𝐽

𝑧 (
𝑢 (𝑧) , 𝑧) , 𝑠⟩

Z∗ ,Z

= − ⟨𝑒

𝑧(
𝑢 (𝑧) , 𝑧)

∗
𝑒

𝑢(
𝑢 (𝑧) , 𝑧)

−∗
𝐽

𝑢
(𝑢 (𝑧) , 𝑧)

+𝐽

𝑧 (
𝑢 (𝑧) , 𝑧) , 𝑠⟩

Z∗ ,Z
.

(43)

Considering the adjoint state, 𝜇 = 𝜇(𝑧) ∈ Z∗, as the solution
to

𝑒

𝑢(
𝑢 (𝑧) , 𝑧)

∗
𝜇 = −𝐽

𝑢 (
𝑢 (𝑧) , 𝑧) (44)

the derivative of ̂𝐽󸀠 becomes

̂

𝐽

󸀠
(𝑧) = 𝑒

𝑧(
𝑢 (𝑧) , 𝑧)

∗
𝜇 (𝑧) + 𝐽

𝑧 (
𝑢 (𝑧) , 𝑧) .

(45)

Theweak formof the constraint function is defined as follows:
for all V ∈ 𝑈,

⟨𝑒 (𝑢, 𝑧) , V⟩𝑈∗ ,𝑈 = ∫

Ω

𝜌 (𝜔)∫

𝐷

(𝑎 (x, 𝜔) ∇𝑢 (x, 𝜔) ⋅ ∇V (x, 𝜔)

−𝑧 (x, 𝜔) V (x, 𝜔)) 𝑑x𝑑𝜔.

(46)

Thus, the constraint function 𝑒 : 𝑈 × Z → 𝑈

∗ and 𝑌 = 𝑈

∗.
Since the constraint function 𝑒 acts linearly with respect to 𝑢

and 𝑧, thus the corresponding derivative of 𝑒 with respect to
𝑧 in the direction 𝛿𝑧 ∈ Z, for all V ∈ 𝑈, is given by

⟨𝑒

𝑧 (
𝑢, 𝑧) 𝛿𝑧, V⟩

𝑈
∗
,𝑈

= −∫

Ω

𝜌 (𝜔)∫

𝐷

𝛿𝑧 (x, 𝜔) V (x, 𝜔) 𝑑x𝑑𝜔.

(47)

Similarly, the derivative of 𝑒 with respect to 𝑢, for any
direction 𝛿𝑢 ∈ 𝑈 and for all V ∈ 𝑈, is given by

⟨𝑒

𝑢 (
𝑢, 𝑧) 𝛿𝑢, V⟩

𝑈
∗
,𝑈

= ∫

Ω

𝜌 (𝜔)∫

𝐷

𝑎 (x, 𝜔) ∇𝛿𝑢 (x, 𝜔)

⋅ ∇V (x, 𝜔) 𝑑x𝑑𝜔.

(48)

Both of these derivatives are symmetric, so 𝑒

𝑢
(𝑢, 𝑧)

∗
=

𝑒

𝑢
(𝑢, 𝑧) and 𝑒

𝑧
(𝑢, 𝑧)

∗
= 𝑒

𝑧
(𝑢, 𝑧). From here, the adjoint can

be computed as

𝑒

𝑢 (
𝑢 (𝑧) , 𝑧) 𝜇 = −𝐽

𝑢 (
𝑢 (𝑧) , 𝑧) . (49)

Using this to any direction V ∈ 𝑈,

⟨𝑒

𝑢 (
𝑢 (𝑧) , 𝑧) 𝜇, V⟩

𝑈
∗
,𝑈

= ∫

Ω

𝜌 (𝜔)∫

𝐷

𝑎 (x, 𝜔) ∇𝜇 (x, 𝜔)

⋅ ∇V (x, 𝜔) 𝑑x𝑑𝜔

= −𝐽

𝑢 (
𝑢 (𝑧) , 𝑧) V.

(50)



6 ISRN Applied Mathematics

By the chain rule, the derivative of 𝐽 with respect to 𝑢 in
the direction 𝛿𝑢 is

⟨𝐽

𝑢 (
𝑢, 𝑧) , 𝛿𝑢⟩

𝑈
∗
,𝑈

= 𝐸 [‖𝑢 (x, 𝜔) − 𝑢̂ (x)‖2
𝐿
2
(𝐷)

× ⟨𝑢 (x, 𝜔)−𝑢̂ (x) , 𝛿𝑢 (x, 𝜔)⟩𝐿
2
(𝐷)

] .

(51)

Similarly, the derivative of 𝐽 with respect to 𝑧 in the 𝛿𝑧 ∈

Z direction is

⟨𝐽

𝑧 (
𝑢, 𝑧) , 𝛿𝑧⟩

Z∗ ,Z
= 𝛼⟨𝑧, 𝛿𝑧⟩Z. (52)

With these computations, one can compute the first
derivative of ̂

𝐽(𝑧) via the adjoint approach. The aim is to
derive the discrete versions of the objective function, gradi-
ent, and Hessian times a vector calculation corresponding to
the stochastic Galerkin solution technique for SPDE; that is,
𝑒(𝑢, 𝑧) = 0. Suppose 𝑋

ℎ
⊂ 𝐻

1

0
(𝐷) is a finite dimensional

subspace of dimension 𝑁 and 𝑌

ℎ
⊂ 𝐿

2
(Ω) is a finite

dimensional subspace of dimension 𝑃; then 𝑋

ℎ
⨂𝑌

ℎ
is a

finite dimensional subspace of the state space 𝑈. Similarly,
let Z

ℎ
⊂ Z be a finite dimensional subspace of the control

space (with dimension). For the stochastic Galerkin method,
it is assumed that 𝑌

ℎ
= P𝑃−1, the space of polynomials with

highest degree 𝑃−1, and𝑋

ℎ
is any finite element space; here,

𝑋

ℎ
is the space of linear functions built on a given meshT

ℎ
.

We choose the system of polynomials that are 𝜌-orthonormal
to be a basis for 𝑌

ℎ
; that is, 𝑌

ℎ
= span{Ψ

1
(𝜔), . . . , Ψ

𝑃
(𝜔)},

where

∫

Ω

𝜌 (𝜔)Ψ

𝑛
(𝜔)Ψ𝑚 (𝜔) 𝑑𝜔 = 𝛿

𝑚𝑛
. (53)

The discretized optimization problem in the stochastic
Galerkin framework is

min
𝑧
ℎ
∈Z
ℎ

̂

𝐽

ℎ𝑃
(𝑧

ℎ
) =

1

2

𝐸

[

[

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑃

∑

𝑘=1

𝑁

∑

𝑗=1

(𝑢⃗

𝑘
(𝑧

ℎ
))

𝑗
Ψ

𝑘 (
𝜔) 𝜙𝑗 (

x)

−𝑢̂ (x)
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐿
2
(𝐷)

]

]

+

𝛼

2

󵄩

󵄩

󵄩

󵄩

𝑧

ℎ

󵄩

󵄩

󵄩

󵄩

2

𝐿
2
(𝐷)

,

(54)

where

𝑢⃗

𝑘
(𝑧

ℎ
) = (𝑢⃗

1
(𝑧

ℎ
)

𝑇
, . . . , 𝑢⃗

𝑃
(𝑧

ℎ
)

𝑇
)

𝑇

= 𝑢⃗

(55)

is the stochastic Galerkin solution to the state equation

(

𝐾

11
⋅ ⋅ ⋅ 𝐾

1𝑃

... d
...

𝐾

𝑃1
⋅ ⋅ ⋅ 𝐾

𝑃𝑃

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝐾

(

𝑢⃗

1

...
𝑢⃗

𝑃

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑢⃗

= (

𝐸 [Ψ

1
]𝑀

⃗
𝑧

ℎ

...
𝐸 [Ψ

𝑃
]𝑀

⃗
𝑧

ℎ

)

= (

𝛿

11
𝑀

⃗
𝑧

ℎ

...
𝛿

1𝑃
𝑀

⃗
𝑧

ℎ

)

(56)

since 𝐸[Ψ

𝑘
] = 𝐸[1Ψ

𝑘
] = 𝐸[Ψ

1
Ψ

𝑘
] = 𝛿

1𝑘
. The blocks of the

above 𝐾matrix have the form

(𝐾

𝑘𝑙
)

𝑖𝑗
= ∫

Ω

𝜌 (𝜔)Ψ

𝑘
(𝜔)Ψ𝑙 (

𝜔)

× ∫

𝐷

𝑎 (x, 𝜔) ∇𝜙

𝑖 (
x) ⋅ ∇𝜙

𝑗 (
x) 𝑑x𝑑𝜔.

(57)

First, in order to compute the derivatives of the objective
function, we attempt to compute the adjoint state [8]. Indeed,
the adjoint state, in the infinite dimensional formulation,
solves the following equations:

− ∇ ⋅ (𝑎 (x, 𝜔) ∇𝜇 (x, 𝜔)) = − (𝑢 (x, 𝜔) − 𝑢̂ (x))

in 𝐷 × Ω,

𝜇 (x, 𝜔) = 0 on 𝜕𝐷 × Ω.

(58)

Thus, as in (37), the block system for (58) can bewritten in
the form 𝐾𝜇⃗ = 𝐹, where 𝐹 = (𝐹

𝑇

1
, . . . , 𝐹

𝑇

𝑝
)

𝑇 and 𝐹

𝑘
is defined

as

(

⃗

𝐹

𝑘
)

𝑖
= −∫

Ω

𝜌 (𝜔)Ψ𝑘 (
𝜔) ∫

𝐷

(𝑢 (x, 𝜔) − 𝑢̂ (x)) 𝜙𝑖 (x) 𝑑x𝑑𝜔

= −∫

Ω

𝜌 (𝜔)Ψ𝑘 (
𝜔) ∫

𝐷

(

𝑃

∑

𝑙=1

𝑁

∑

𝑗=1

(𝑢⃗

𝑙
)

𝑗
𝜙

𝑗 (
x) Ψ𝑙 (𝜔) 𝜙𝑖 (

x)

−𝑢̂ (x) 𝜙𝑖 (x))𝑑x𝑑𝜔

= −

𝑃

∑

𝑙=1

𝑁

∑

𝑗=1

(𝑢⃗

𝑙
)

𝑗
∫

Ω

𝜌 (𝜔)Ψ𝑘 (
𝜔)Ψ𝑙 (

𝜔) 𝑑𝜔

× ∫

𝐷

𝜙

𝑗 (
x) 𝜙𝑖 (x) 𝑑x

+ ∫

Ω

𝜌 (𝜔)Ψ𝑘 (
𝜔) 𝑑𝜔∫

𝐷

𝑢̂ (x) 𝜙𝑖 (x) 𝑑x

=

⃗

𝑏

𝑖
𝛿

1𝑘
−

𝑃

∑

𝑙=1

𝑁

∑

𝑗=1

𝑀

𝑖𝑗
(𝑢⃗

𝑙
)

𝑗
𝛿

𝑘𝑙

=

⃗

𝑏

𝑖
𝛿

1𝑘
−

𝑁

∑

𝑗=1

𝑀

𝑖𝑗
(𝑢⃗

𝑙
)

𝑗
,

(59)

in which ⃗

𝑏

𝑖
= {∫ 𝑢̂𝜙

𝑖
} and𝑀

𝑖𝑗
= {∫ 𝜙

𝑖
𝜙

𝑗
}.

Thus,

(

⃗

𝐹

𝑘
)

𝑖
= {

⃗

𝑏 − 𝑀𝑢

1
if 𝑘 = 1

−𝑀𝑢 if 𝑘 = 2, . . . , 𝑃,

(60)

where b= [

⃗

𝑏

1
, . . . ,

⃗

𝑏

𝑁
] and the matrix 𝑀 = (𝑀

𝑖𝑗
) is of order

𝑁 × 𝑁.
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Now, the derivative of ̂

𝐽(𝑧) in the direction 𝜙

𝑗
(x) for all

𝑗 = 1, . . . , 𝑁, with the computed adjoint state, is

⟨

̂

𝐽

󸀠
(𝑧) , 𝜙𝑗 (

x)⟩
Z∗ ,Z

= ⟨𝑒

𝑧(
𝑢 (𝑧, ⋅, ⋅) , 𝑧)

∗
𝜇

+ 𝐽

𝑧 (
𝑢 (𝑧, ⋅, ⋅) , 𝑧) , 𝜙𝑗 (

x) ⟩
Z∗ ,Z

= −∫

Ω

𝜌 (𝜔)∫

𝐷

𝜇 (𝑧, ⋅, ⋅) 𝜙𝑗 (
x) 𝑑x 𝑑𝜔

+ 𝛼∫

𝐷

𝑧 (𝑥) 𝜙𝑗 (
x) 𝑑x

= −

𝑃

∑

𝑘=1

𝑁

∑

𝑖=1

(𝜇⃗

𝑘
)

𝑖
∫

Ω

𝜌 (𝜔)Ψ𝑘 (
𝜔) 𝑑𝜔

× ∫

𝐷

𝜙

𝑗 (
x) 𝜙𝑖 (x) 𝑑x

+ 𝛼

𝑁

∑

𝑖=1

⃗
𝑧

𝑖
∫

𝐷

𝜙

𝑗 (
x) 𝜙𝑖 (x) 𝑑x

= −

𝑃

∑

𝑘=1

𝑁

∑

𝑖=1

(𝜇⃗

𝑘
)

𝑖
𝑀

𝑖𝑗
𝛿

1𝑘
+ 𝛼

𝑁

∑

𝑖=1

𝑀

𝑖𝑗
⃗

𝑧

𝑖

= −

𝑁

∑

𝑖=1

(𝜇⃗

1
)

𝑖
𝑀

𝑖𝑗
+ 𝛼

𝑁

∑

𝑖=1

𝑀

𝑖𝑗
⃗

𝑧

𝑖
.

(61)

Therefore, the gradient can be computed as follows:

̂

𝐽

󸀠
(𝑧) = 𝑀(𝛼

⃗
𝑧

ℎ
− 𝜇⃗

1
) .

(62)

Now, for any vector V ∈ Z, it is possible to write V as

V =

𝑁

∑

𝑘=1

V
𝑘
𝜙

𝑘 (
x) . (63)

In order to compute the Hessian times a vector, that is,
multiply the Hessian of the ̂

𝐽 with a some vector V ∈ Z, the
equation 𝑒

𝑢
(𝑢(𝑧), 𝑧)𝑤 = 𝑒

𝑧
(𝑢(𝑧), 𝑧)V for 𝑤 must be solved.

Similar to the adjoint computation,𝑤 solves the linear system
𝐾𝑤⃗ = 𝐺 where ⃗

𝐺 = (

⃗

𝐺

𝑇

1
, . . . ,

⃗

𝐺

𝑇

𝑃
) and ⃗

𝐺

𝑘
for 𝑘 = 1, . . . , 𝑃 is

(

⃗

𝐺

𝑘
)

𝑖
= ∫

Ω

𝜌 (𝜔)Ψ𝑘 (
𝜔) 𝑑𝜔∫

𝐷

𝑁

∑

𝑗=1

V
𝑗
𝜙

𝑗 (
x) 𝜙𝑖 (x) 𝑑x

=

𝑁

∑

𝑗=1

𝑀

𝑖𝑗
V
𝑗
𝛿

1𝑘

(64)

for all 𝑖 = 1, . . . , 𝑁. Thus,

⃗

𝐺

𝑘
= {

𝑀V⃗ if 𝑘 = 1

0 if 𝑘 = 2, . . . , 𝑃.

(65)

Now, solving 𝑒

𝑢
(𝑢(𝑧), 𝑧)𝑞 = 𝐽

𝑢𝑢
(𝑢(𝑧), 𝑧)𝑤 for 𝑞 requires

the solution to the linear system 𝐾 ⃗𝑞 = 𝐻, where

(

⃗

𝐻

𝑘
)

𝑖
=

𝑃

∑

𝑙=1

𝑁

∑

𝑗=1

(𝑤⃗

𝑙
)

𝑗
∫

Ω

𝜌 (𝜔)Ψ𝑘 (
𝜔)Ψ𝑙 (

𝜔) 𝑑𝜔

× ∫

𝐷

𝜙

𝑗 (
x) 𝜙𝑖 (x) 𝑑x

=

𝑁

∑

𝑗=1

𝑀

𝑖𝑗
(𝑤⃗

𝑘
)

𝑗

(66)

or equivalently ⃗

𝐻

𝑘
= 𝑀𝑤⃗

𝑘
for all 𝑘 = 1, . . . , 𝑃. Hence, in the

direction 𝜙

𝑖
for 𝑖 = 1, . . . , 𝑁, ̂𝐽󸀠󸀠(𝑧)V can be approximated by

⟨

̂

𝐽

󸀠󸀠
(𝑧) V, 𝜙𝑖⟩Z∗ ,Z

≈ ⟨

̂

𝐽

󸀠󸀠

ℎ𝑝
(𝑧

ℎ
) V, 𝜙

𝑖
⟩

Z∗ ,Z

= −∫

Ω

𝜌 (𝜔)∫

𝐷

𝑃

∑

𝑘=1

𝑁

∑

𝑗=1

( ⃗𝑞

𝑘
)

𝑗
𝜙

𝑗 (
x) Ψ𝑘 (𝜔)

× 𝜙

𝑖 (
x) 𝑑x𝑑𝜔

+ 𝛼∫

𝐷

V (𝑥) 𝜙𝑖 (x) 𝑑x

= −

𝑃

∑

𝑘=1

𝑁

∑

𝑗=1

𝑀

𝑖𝑗
( ⃗𝑞

𝑘
)

𝑗
𝛿

1𝑘
+ 𝛼

𝑁

∑

𝑗=1

𝑀

𝑖𝑗
V⃗
𝑗

=

𝑁

∑

𝑗=1

𝑀

𝑖𝑗
(𝛼V⃗

𝑗
− ( ⃗𝑞

1
)

𝑗
) .

(67)

Therefore,

̂

𝐽

󸀠󸀠
(𝑧) V ≈ 𝑀(𝛼V⃗ − ⃗𝑞

1
) .

(68)

Having (62) and (68), we can use the iterative solvers to
the Newton equation

̂

𝐽

󸀠󸀠
(𝑧

𝑘
) 𝑠

𝑘
= −

̂

𝐽

󸀠
(𝑧

𝑘
) . (69)

Now, by using the preconditioned conjugate gradient
(PCG) method, the Newton equation (69) is solved approx-
imately. When we access to the sufficiently small residual of
Newton system, the PCG method is truncated. In real world
computation, it is possible to employ some globalization
technique for Newton’s method. Considering the case of
implementation and relatively low computational cost, line
search techniques are popular choices in this way. Finding
an optimal step size 𝛼

𝑘
and using this step size to generate

the iterate 𝑧

𝑘+1
= 𝑧

𝑘
+ 𝛼

𝑘
𝑆

𝑘, are the mission of a line search
algorithm. The Armijo condition (or sufficient decrease
condition) that the step size is required to satisfy is

𝐽 (𝑧

𝑘
+ 𝛼

𝑘
𝑆

𝑘
) ≤ 𝐽 (𝑧

𝑘
) + 𝑐𝛼

𝑘
𝐽

󸀠
(𝑧

𝑘
) 𝑆

𝑘
, (70)

where 𝑐 ∈ (0, 1) and typically is quite small, for example, 𝑐 =

10

−4 [12, 13].
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(1) Given 𝑧

0 and tol > 0, set 𝑘 = 0

(2) Compute 𝐾,𝑀, 𝐴, 𝑢⃗, and ⃗

𝑏

(3) Compute (

⃗

𝐹

𝑘
)

𝑖
= {

𝑏 − 𝑀𝑢 if 𝑘 = 1

−𝑀𝑢 if 𝑘 = 2, . . . , 𝑃.

(4) Solve 𝐾 ⃗𝜇 = 𝐹

(5) Compute ̂

𝐽

󸀠
(𝑧

𝑘
) = 𝑀(𝛼𝑧

𝑘
− 𝜇⃗

1
).

(6) Compute ⃗

𝐺

1
= 𝑀V⃗ and ⃗

𝐺

𝑡
= 0 for 𝑡 = 2, . . . , 𝑃

(7) Solve 𝐾𝑤⃗ = 𝐺 = (

⃗

𝐺

𝑇

1
, . . . ,

⃗

𝐺

𝑇

𝑃
)

𝑇

(8) Compute ⃗

𝐻

𝑘
= 𝑀𝑤⃗

𝑘
for 𝑘 = 1, . . . , 𝑃

(9) Solve 𝐾 ⃗𝑞 = 𝐻 = (

⃗

𝐻

𝑇

1
, . . . ,

⃗

𝐻

𝑇

𝑃
)

𝑇

(10) Compute ̂

𝐽

󸀠󸀠
(𝑧)V ≈ 𝑀(𝛼V⃗ − ⃗𝑞

1
)

(11) If 󵄩󵄩󵄩
󵄩

󵄩

∇

̂

𝐽 (𝑧

𝑘
)

󵄩

󵄩

󵄩

󵄩

󵄩

< tol, stop.
(12) Solve ̂

𝐽

󸀠󸀠
(𝑧

𝑘
) 𝑠

𝑘
= −

̂

𝐽

󸀠
(𝑧

𝑘
) using PCG method with preconditioner ̂

𝑃 = 𝐺⨂𝐾

0
:

(i) Set 𝑥
0
= 0.

(ii) Set 𝑟
0
←

̂

𝐽

󸀠󸀠
(𝑧

𝑘
) 𝑥

0
+

̂

𝐽

󸀠
(𝑧

𝑘
);

(iii) Solve ̂

𝑃𝑦

0
= 𝑟

0
for 𝑦

0
;

(iv) Set 𝑝
0
= −𝑟

0
, 𝑡 ← 0;

(v) While 󵄩

󵄩

󵄩

󵄩

𝑟

𝑡

󵄩

󵄩

󵄩

󵄩

> tol

𝛼

𝑘
←

𝑟

𝑇

𝑡
𝑦

𝑡

𝑝

𝑇

𝑡
𝐴𝑝

𝑡

𝑥

𝑡+1
← 𝑥

𝑡
+ 𝛼

𝑡
𝑝

𝑡

𝑟

𝑡+1
← 𝑟

𝑡
+ 𝛼

𝑡
𝐴𝑝

𝑡

𝑃𝑦

𝑡+1
← 𝑟

𝑡+1

𝛽

𝑡+1
←

𝑟

𝑇

𝑡+1
𝑦

𝑡+1

𝑟

𝑇

𝑡
𝑦

𝑡

𝑝

𝑡+1
← −𝑦

𝑡+1
+ 𝛽

𝑡+1
𝑝

𝑡

𝑡 ← 𝑡 + 1

End (while)
(vi) 𝑠𝑘 = 𝑥

𝑡+1

(13) Perform Armijo line-search.
(i) Set 𝛼𝑘 = 1 and evaluate 𝐽(𝑧

𝑘
+ 𝛼

𝑘
𝑆

𝑘
)

(ii) While 𝐽 (𝑧

𝑘
+ 𝛼

𝑘
𝑆

𝑘
) > 𝐽 (𝑧

𝑘
) + 10

−4
𝛼

𝑘
𝑆

𝑘
∇

̂

𝐽 (𝑧

𝑘
) do

(i) Set 𝛼𝑘 = 𝛼

𝑘
/2 and evaluate 𝐽 (𝑧

𝑘
+ 𝛼

𝑘
𝑆

𝑘
).

(14) Set 𝑧𝑘+1 = 𝑧

𝑘
+ 𝛼

𝑘
𝑆

𝑘, 𝑘 ← 𝑘 + 1. Go to (2).

Algorithm 1

3.1. Kronecker Product Preconditioners. Let us to rewrite (37)
in the form ̂

𝐴𝑢⃗ =
⃗

𝑧, where

̂

𝐴 = (

𝑀

∑

𝑘=0

𝐺

𝑘
⨂𝐾

𝑘
) . (71)

The strategy here is to introduce ̂

𝑃 = 𝐺⨂𝐾

0
as a

preconditioner, such that

𝐺 = argmin {𝐻 ∈ R
𝑃×𝑃

:

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝐴 − 𝐻⨂𝐾

0

󵄩

󵄩

󵄩

󵄩

󵄩𝐹
} , (72)

where as mentioned in PCE, 𝑃 is equal with the degree of
polynomial chaos truncation, and ‖ ⋅ ‖

𝐹
denotes the Frobe-

nius norm. The closed form of the solution can be written as
follow [14]:

𝐺 = 𝐼 + ∑

𝑃

tr (𝐾𝑇

𝑘
𝐾

0
)

tr (𝐾𝑇

0
𝐾

0
)

𝐺

𝑘
.

(73)

Here, tr(𝐾𝑇

𝑘
𝐾

0
) = ∑

𝑁
𝑞

𝑖=1
[𝐾

𝑘
]

𝑖,𝑖
[𝐾

0
]

𝑖,𝑖
and hence, the coeffi-

cients in the above equality can be computed straightforward.
In addition, since ̂

𝐴 and 𝐾

0
are symmetric and positive

definite, thus 𝐺 and ̂

𝑃 = 𝐺⨂𝐾

0
have also these properties

[15, 16].

Example 1. Consider the following distributed optimal con-
trol problem

min
𝑢,𝑧

𝐽 (𝑢, 𝑧) = 𝐸 [

1

2

‖𝑢 (x, 𝜔) − 𝑢̂ (x)‖2
𝐿
2
(𝐷)

]

+

𝛼

2

‖𝑧 (x)‖2
𝐿
2
(𝐷)

,

−∇ ⋅ (𝑎 (x, 𝜔) ∇𝑢 (x, 𝜔)) = 𝑧 (x) , x ∈ 𝐷, 𝜔 ∈ Ω,

(74)

where 𝐷 = [−1, 1]

2, Ω ∼ 𝑈[−1, 1], the boundary conditions
are given as

𝑢 (−1, 𝑦, 𝜔) = 𝑢 (1, 𝑦, 𝜔) = 𝑢 (𝑥, 1, 𝜔) = 𝑢 (𝑦, −1, 𝜔) = 0,

(75)
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Figure 1: Illustration of the optimal control and state achieved by solving Example 1, taking 𝑢̂(𝑥, 𝑦) = exp[−64((𝑥 − (1/2))

2
+ (𝑦 − (1/2))

2
)],

𝑁 = 3, 𝐾 = 5, and 𝛼 = 0.00005.

and the desired function is given by

𝑢̂ (𝑥, 𝑦) = exp [−64 ((𝑥 −

1

2

)

2

+ (𝑦 −

1

2

)

2

)] .
(76)

The random field 𝑎(x, 𝜔) is characterized by its mean and
covariance function

𝐸 [𝑎] = 𝑎 = 10,

𝑅 (𝑥

1
, 𝑥

2
) = 𝑒

−|𝑥
1
−𝑥
2
|
, 𝑥

1
, 𝑥

2
∈ [−1, 1] .

(77)

Following Section 2.2, the truncated KLE can be represented
as:

𝑎 (𝑥, 𝑦, 𝜔) = 10 +

𝑁

∑

𝑗=0

√𝜆

𝑗
𝜃

𝑗
𝜙

𝑗 (
𝑥) . (78)

The aim is to calculate 𝑢opt and 𝑧opt such that for all
𝑢 ∈ 𝐻

1

0
(𝐷)⨂𝐿

2
(Ω) and all 𝑧∈ 𝐿

2
(𝐷)

𝐽 (𝑢opt, 𝑧opt) ≤ 𝐽 (𝑢, 𝑧) . (79)

The eigenpairs {𝜆
𝑗
, 𝜃

𝑗
} in truncated KLE solve the integral

equation

∫

1

−1

𝑒

−|𝑥
1
−𝑥
2
|
𝜙

𝑗
(𝑥

2
) 𝑑𝑥

2
= 𝜆

𝑗
𝜙

𝑗
(𝑥

1
) .

(80)

For this special case of the covariance function, we have
explicit expressions for 𝜙

𝑗
and 𝜆

𝑗
, [6]. Let𝜔

𝑗even
and𝜔

𝑗odd
solve

the equations

1 − 𝜔

𝑗even
tan (𝜔

𝑗even
) = 0,

𝜔

𝑗odd
+ tan (𝜔

𝑗odd
) = 0.

(81)

Then the even and odd indexed eigenfunctions are given by

𝜙

𝑗even
(𝑥) =

cos (𝜔
𝑗even

𝑥)

√
1 + (sin (2𝜔

𝑗even
) /2𝜔

𝑗even
)

𝜙

𝑗odd
(𝑥)

=

sin (𝜔

𝑗odd
𝑥)

√
1 − (sin (2𝜔

𝑗odd
) /2𝜔

𝑗odd
)

(82)
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Figure 2: Illustration of optimal control and state achieved by solving Example 2, taking 𝑢̂(𝑥, 𝑦) = 2𝜋

2 sin(𝜋𝑥) sin(𝜋𝑦), 𝑁 = 3, 𝐾 = 4, and
𝛼 = 0.00001.

and corresponding eigenvalues

𝜆

𝑗even
(𝑥) =

2

𝜔

2

𝑗even
+ 1

𝜆

𝑗odd
(𝑥) =

2

𝜔

2

𝑗odd
+ 1

. (83)

We choose 𝜃 = (𝜃

1
, . . . , 𝜃

𝑁
)

𝑇 to be independent random
variables uniformly distributed over the interval [−1, 1].

First of all, we find numerical approximations of𝜔
𝑗even

and
𝜔

𝑗odd
with bisection method, and then, with the eigenpairs

evaluated by this 𝜔
𝑗even

and 𝜔

𝑗odd
, by choosing dimension 𝑁 =

3 and order 𝐾 = 5, which emphasize that 𝑃 = 55, we
construct the KLE. Taking 𝛼 = 0.00005, Algorithm 1 is used
to compute 𝑢opt and 𝑧opt. Illustration of computed optimal
control and corresponding state in addition to the global
matrix sparsity, standard deviation and expected values of the
solution, adjoint values, and initial state approximation of the
desired function is shown in Figure 1.

In Figure 1(a), the desired function 𝑢̂ (𝑥, 𝑦) is plotted
for 𝑥

𝑖
= 𝑦

𝑖
= −1 + 0.04 ∗ 𝑖, 𝑖 = 0, 1, 2, . . . , 50. Initial

state is computed and plotted in Figure 1(b) by solving (37)
where ⃗

𝑧 = 0. Approximated 𝑢opt corresponding to the

optimal control 𝑧opt is calculated by Algorithm 1 and its
graph is depicted in Figure 1(c). As it was expected, by using
the proposed Algorithm 1, even by very far initial state, the
approximated state solution reaches to the desired function.
In Figure 1(d), the 𝑧opt is depicted. Serious changes during
the computation for initial ⃗

𝑧 = 0 happened reach to the
optimal control function 𝑧opt. The adjoint state is computed
and plotted in Figure 1(e). As it is expected from (58), the
adjoint state corresponding to the 𝑧

𝑜𝑝𝑡
must approximate the

initial state (see Figures 1(b) and 1(c)). Figures 1(f) and 1(g)
represent counter plots of the optimal state expectation and
standard deviation. Finally, in Figure 1(h), the representation
of coefficient matrix sparsity with the number of nonzero
component in the computation is plotted in 𝑥-𝑦 plane.

In Example 1 we considered an exponential desired func-
tion, with v-sharp points. In the next example the smooth
desired function and boundary conditions are considered.
This is the case that Algorithm 1 is more efficient to use.

Example 2. Consider the optimal control of Example 1, in
which the right hand side function as well as boundary
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conditions is replaced by 𝑢̂(𝑥, 𝑦) = 2𝜋

2 sin(𝜋𝑥) sin(𝜋𝑦),
𝑁 = 3, and 𝐾 = 4, which emphasize that 𝑃 = 34.
Taking 𝛼 = 0.00001, the illustration of computed optimal
control and corresponding state in addition to the global
matrix sparsity, standard deviation and expected values of the
solution, adjoint values and initial state approximation of the
desired function is shown in Figure 2.

4. Conclusion

The solution of SPDE-constrained optimization problems is
a recently challenging computational task. Here, we consider
distributed control problems in which stochastic diffusion
equation is the SPDE. Since the saddle point system extracted
from using KKT optimality condition of the problem is a
very large system and more expensive to solve, hence, we
use the strategy of adjoint technique and preconditioned
Newton’s conjugate gradient method, which iteratively solve
the problem and has low computational cost. By separating
the stochastic and deterministic parts of the SPDE using
KLE and discretizing each part by WCE and Galerkin
finite element method, respectively, we adjoint technique
to compute the gradient and Hessian of the discretized
optimization problem. By using preconditioned Newton’s
conjugate gradient method the optimal control and state
of the problem are calculated numerically. Two numerical
examples are given to illustrate the correspondence between
theoretical and numerical approaches.
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