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Thepresent study is an attempt toward evaluating the performance of portfolios and asset selection using cross-efficiency evaluation.
Cross-efficiency evaluation is an effective way of ranking decision making units (DMUs) in data envelopment analysis (DEA). The
most widely used approach is to evaluate the efficiencies in each row or column in the cross-efficiency matrix with equal weights
into an average cross-efficiency score for each DMU and consider it as the overall performance measurement of the DMU. This
paper focuses on the evaluation process of the efficiencies in the cross-efficiency matrix and proposes the use of ordered weighted
averaging (OWA) operator weights for cross-efficiency evaluation. The OWA operator weights are generated by the minimax
disparity approach and allow the decision maker (DM) or investor to select the best assets that are characterized by an orness
degree. The problem consists of choosing an optimal set of assets in order to minimize the risk and maximize return. This method
is illustrated by application in mutual funds and weights are obtained via OWA operator for making the best portfolio. The finding
could be used for constructing the best portfolio in stock companies, in various finance organization, and public and private sector
companies.

1. Introduction

In financial literature, a portfolio is an appropriate mix of
investments held by an institution or private individuals.
Evaluation of portfolio performance has created a large
interest among employees also academic researchers because
of huge amount ofmoney being invested in financialmarkets.
The theory of mean-variance, Markowitz [1] is considered
the basis of many current models and this theory is widely
used to select portfolios. This model is due to the nature of
the variance in quadratic form. Other problem in Markowitz
model is that increasing the number of assets will develop
the covariance matrix of asset returns and will be added
to the content calculation. Due to these problems sharp
one-factor model is proposed by Sharpe [2]. This method
reduces the number of calculations requiring information
for the decision. Data envelopment analysis (DEA) has
proved the efficiency for assessing the relative efficiency of

decision making units (DMUs) employing multiple inputs
to produce multiple outputs [3]. M. R. Morey and R. C.
Morey [4] proposed mean-variance framework based on
Data Envelopment Analysis, which the variance of the
portfolios is used as an input to the DEA and expected
return is the output. Joro and Na [5] introduced mean-
variance-skewness framework and skewness of returns are
also considered as an output. The portfolio optimization
problem is a well-known problem in financial real world.The
investor’s objective is to get the maximum possible return
on an investment with the minimum possible risk. Since
there are a large number of assets to invest in, this objective
leads to select the best assets via cross-efficiency matrix by
using OWA weighted. Cross-efficiency evaluation, proposed
by Sexton et al., [6] is the effective way of ranking decision
making units (DMUs). It allows the overall efficiencies of the
DMUs to be evaluated through self- and peer-evaluations.
The self-evaluation allows the efficiencies of the DMUs to
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be evaluated with the most favorable weights so that each
of them can achieve its best possible relative efficiency,
whereas the peer-evaluation requires the efficiency of each
DMU to be evaluated with the weights determined by the
otherDMUs.The self-evaluated efficiency andpeer-evaluated
efficiencies of each DMU are then averaged as the overall
efficiency of the DMU. Since, its remarkable discrimination
power, the cross-efficiency evaluation has found significant
number of applications in a wide variety of areas such as
preference voting and project ranking [7, 8], economic-
environmental performance assessment [9, 10], and Olympic
ranking and benchmarking [11–13]. Besides a large number
of applications, theoretical research has also been conducted
on the cross-efficiency evaluation. For example, Doyle and
Green [14, 15] presented mathematical formulations for
possible implementations of aggressive and benevolent cross-
efficiencies. Liang et al. [16] suggested the concept of game
cross-efficiency and developed a game cross-efficiencymodel
which treats each DMU as a player that seeks to maximize
own efficiency under the condition that the cross-efficiency
of each of the other DMUs dose not deteriorate. Wu et al.
[13] extended the game cross-efficiency model to variable
returns to scale later. In our work, the use of equal weights
for cross-efficiency model has a significant problem. That
is, self-evaluated efficiencies are much less weighted than
peer-evaluated efficiencies. This is because each DMU has
only one self-evaluated efficiency value, but multiple peer-
evaluated efficiency values. When they are simply averaged
together, the weight assigned to the self-evaluated efficiency
is only 1/𝑛 if there are 𝑛 DMUs to be evaluated, whereas
the remaining weights (𝑛 − 1)/𝑛 are all given to those peer-
evaluated efficiencies. To overcome this problem, the use
of ordered weighted averaging (OWA) operator weights is
stated for assets cross-efficiencies. The use of OWA operator
weights for the assets cross-efficiency allows the weights to
be reasonably allocated between self- and peer-evaluated
efficiencies by investor’s control [17]. The OWA operator
weights are generated by theminimax disparity approach and
allow the decision maker (DM) or investors to select the best
assets that are characterized by an orness degree [18]. The
method consists of choosing an optimal set of assets in order
to minimize the risk and maximize return in cross-efficiency
using OWA operator. Since there are a large number of
assets to invest in, the best assets are chosen via cross-
efficiency evaluation by using OWA weighted by control
investors.

The rest of the paper is organized as follows: Section 2
briefly reviews the portfolio performance literature, OWA
operators, and their weight determination methods, thus
the cross-efficiency evaluation in DEA. Section 3 develops
a proposed method for selecting the best of the portfolio.
Section 4 presents computational results using mutual funds
data and finally conclusions are given in Section 5.

2. Background

2.1. Portfolio Performance Literature. Portfolio theory to
investing is published by Markowitz (1952). This approach

starts by assuming that an investor has a given sum of money
to invest at the present time. This money will be invested
for a time as the investor’s holding period. At the end of
the holding period, the investor will sell all of the assets
that were bought at the beginning of the period and then
either consume or reinvest. Since portfolio is a collection of
assets, it is better to select an optimal portfolio from a set
of possible portfolios. Hence, the investor should recognize
the returns (and portfolio returns), expected (mean) return,
and standard deviation of return.Thismeans that the investor
wants to both maximize expected return and minimize
uncertainty (risk). Rate of return (or simply the return) of the
investor’s wealth from the beginning to the end of the period
is calculated as follows:

Return

=
(end-of-period wealth) − (beginning-of-period wealth)

beginning-of-period wealth
.

(1)

Since Portfolio is a collection of assets, its return 𝑟𝑝 can be
calculated in a similarmanner.Thus, according toMarkowitz,
the investor should view the rate of return associatedwith any
one of these portfolios as what is called in statistics a random
variable. These variables can be described as the expected
return (min or 𝑟𝑝) and standard deviation of return. Expected
return and deviation standard of return are calculated as
follows:

𝑟𝑝 =

𝑛

∑

𝑖=1

𝜆𝑖𝑟𝑖, 𝜎𝑝 =
[

[

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜆𝑖𝜆𝑗𝜎𝑖𝑗
]

]

1/2

, (2)

where 𝑛 is the number of assets in the portfolio, 𝑟𝑝 is the
expected return of the portfolio,𝜆𝑖 is the proportion of the
portfolio’s initial value invested in asset 𝑖, 𝑟𝑖 is the expected
return of asset 𝑖,𝜎𝑝 is the deviation standard of the portfolio,
and𝜎𝑖𝑗 is the covariance of the returns between asset 𝑖 and
asset 𝑗.

In the above, optimal portfolio from the set of portfolios
will be chosen asmaximumexpected return for varying levels
of risk and minimum risk for varying levels of expected
return [19]. Data Envelopment Analysis is a nonparametric
method for evaluating the efficiency of systems with multiple
inputs and multiple outputs. In this section, we present some
basic definitions, models, and concepts that will be used in
other sections in DEA. They will not be discussed in details.
Consider DMU𝑗, (𝑗 = 1, . . . , 𝑛), where each DMU consumes
𝑚 inputs to produce 𝑠 outputs. Suppose that the observed
input and output vectors of DMU𝑗 are 𝑋𝑗 = (𝑥1𝑗, . . . , 𝑥𝑚𝑗)
and 𝑌𝑗 = (𝑦1𝑗, . . . , 𝑦𝑠𝑗), respectively, and let 𝑋𝑗 ≥ 0 and
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𝑋𝑗 ̸= 0, 𝑌𝑗 ≥ 0, and 𝑌𝑗 ̸= 0. A basic DEA formulation in input
orientation is as follows:

min 𝜃 − 𝜀(

𝑠

∑

𝑟=1

𝑠
+

𝑟
+

𝑚

∑

𝑖=1

𝑠
−

𝑖
)

s.t.
𝑛

∑

𝑗=1

𝜆𝑗𝑥𝑖𝑗 + 𝑠
−

𝑖
= 𝜃𝑥𝑖𝑜 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1

𝜆𝑗𝑦𝑟𝑗 + 𝑠
+

𝑟
= 𝑦𝑟𝑜 𝑟 = 1, . . . , 𝑠

𝜆 ∈ Λ,

𝑠
+
, 𝑠
−
≥ 0,

𝜀 ≥ 0,

(3)

where 𝜆 is an 𝑛-vector of 𝜆 variables, 𝑠+ as-vector of output
slacks, 𝑠− an 𝑚-vector of input slacks and set Λ is defined as
follows:

Λ=

{{{{

{{{{

{

{𝜆 ∈ 𝑅
𝑛

+
} with constant returns to scale,

{𝜆∈𝑅
𝑛

+
, 1𝜆≤1} with nonincreasing

returns to scale,
{𝜆 ∈ 𝑅

𝑛

+
, 1𝜆= 1} with variable returns to scale.

(4)

Note that subscript “𝑜” refers to the unit under the evaluation.
A DMU is efficient if and only if 𝜃 = 1 and all slack variables
𝑠
−
, 𝑠
+ equal zero; otherwise, it is inefficient [20]. In the DEA

formulation above, the left-hand sides in the constraints
define an efficient portfolio. 𝜃 is a multiplier which defines
the distance from the efficient frontier.The slack variables are
used to ensure that the efficient point is fully efficient. This
model is used for asset selection. The portfolio performance
evaluation literature is vast. In recent years, thesemodels have
been used to evaluate the portfolio efficiency. Also, in the
Markowitz theory, it is required to characterize the whole
efficient frontier but the proposed models by Joro and Na do
not need to characterize the whole efficient frontier but only
the projection points. The distance between the asset and its
projection which means the ratio between the variance of the
projection point and the variance of the asset is considered as
an efficiency measure (𝜃) [5].

2.2. OWA Operators and Their Weight Determination Meth-
ods. An OWA operator of dimension 𝑛 is a mapping 𝐹 :

R𝑛 → R with an associated weight vector 𝑊 =

(𝑤1, . . . , 𝑤𝑛)
𝑇 such that

𝑤1 + ⋅ ⋅ ⋅ + 𝑤𝑛 = 1, 𝑜 ≤ 𝑤𝑖 ≤ 1, 𝑖 = 1, . . . , 𝑛,

𝐹 (𝑎1, . . . , 𝑎𝑛) =

𝑛

∑

𝑖=1

𝑤𝑖𝑏𝑖,

(5)

where 𝑏𝑖 is the 𝑖th largest of 𝑎1, . . . , 𝑎𝑛.
OWA operators, introduced by Yager [21], provide a

unified framework for decision making under uncertainty,

where different decision criteria such as maximax (opti-
mistic), maximin (pessimistic), and equally likely (Laplace),
and Hurwicz criteria are characterized by different OWA
operator weights.

For different weight selections, they are distinguished by
the following orness degree [21]:

orness (𝑊) = 1

𝑛 − 1

𝑛

∑

𝑖=1

(𝑛 − 𝑖) 𝑤𝑖. (6)

The orness degree can be regarded as a measure of the
optimism level of the DM.

To apply OWA operators for decision making, it is
essential to determine the weights of OWA operators. The
following models (7) and (8) are two important approaches
for determining OWA operator weights under a given orness
degree:

Maximize Disp (𝑊) = −
𝑛

∑

𝑖=1

𝑤𝑖 ln𝑤𝑖,

Subject to orness (𝑊) = 𝛼 = 1

𝑛 − 1

𝑛

∑

𝑖=1

(𝑛 − 𝑖) 𝑤𝑖,

0 ≤ 𝛼 ≤ 1,

𝑛

∑

𝑖=1

𝑤𝑖 = 1,

𝑤𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

(7)

Minimize 𝛿

Subject to orness (𝑊) = 𝛼 = 1

𝑛 − 1

𝑛

∑

𝑖=1

(𝑛 − 𝑖) 𝑤𝑖,

0 ≤ 𝛼 ≤ 1,

𝑛

∑

𝑖=1

𝑤𝑖 = 1,

𝑤𝑖 − 𝑤𝑖+1 − 𝛿 ≤ 0, 𝑖 = 1, . . . , 𝑛 − 1,

𝑤𝑖 − 𝑤𝑖+1 − 𝛿 ≥ 0, 𝑖 = 1, . . . , 𝑛 − 1,

𝑤𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛.

(8)

Model (7), suggested byO’Hagan [22],maximizes the entropy
of weight distribution and is thus referred to as themaximum
entropy method, whereas model (8) that was proposed by
Wang and Parkan [18] minimizes the maximum disparity
between two adjacent weights and is thus called the minimax
disparity approach.

The OWA operator weights determined by the above
models have the following characteristics.

The weights are ordered. That is, 𝑤1 ≥ 𝑤2 ≥ ⋅ ⋅ ⋅ ≥ 𝑤𝑛 ≥ 0
if the orness degree 𝛼 > 0.5 and 0 ≤ 𝑤1 ≤ 𝑤2 ≤ ⋅ ⋅ ⋅ ≤ 𝑤𝑛 if
𝛼 ≤ 0.5.
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The weights have nothing to do with the magnitudes of
the aggregates 𝑏1 ∼ 𝑏𝑛 but depend upon their ranking orders
and the DM’s optimism level (orness degree).

Consider 𝑤1 = 1 and 𝑤𝑗 = 0 (𝑗 = 1) if 𝛼 = 1,
whichmeans that the DMor investor is purely optimistic and
considers only the biggest value 𝑏1 = max𝑖(𝑎𝑖) in decision
analysis.

Consider 𝑤𝑛 = 1 and 𝑤𝑗 = 0 (𝑗 ̸= 𝑛) if 𝛼 = 0, which
represents that the DM or investor is purely pessimistic and
is only concerned with the most conservative value 𝑏𝑛 =
min𝑖(𝑎𝑖) when making decision.

Consider 𝑤1 = ⋅ ⋅ ⋅ = 𝑤𝑛 = (1/𝑛) if 𝛼 = 0.5, which stands
for that the DM or investor is neutral andmakes use of all the
aggregates 𝑏1 ∼ 𝑏𝑛 equally in decision making.

Consider 𝑤1, . . . , 𝑤𝑛 determined by model (7) vary in
the form of geometric progression, that is 𝑤𝑖+1/𝑤𝑖 ≡ 𝑞 for
𝑖 = 1, . . . , 𝑛 − 1, where 𝑞 > 0, while 𝑤1, . . . , 𝑤𝑛 determined
by model (8) vary in the form of arithmetical progression;
namely,𝑤𝑖−𝑤𝑖+1 = 𝑑 for 𝑖 = 1, . . . , 𝐾 (𝐾 ≤ 𝑛) or𝑤𝑖+1−𝑤𝑖 = 𝑑
for 𝑖 = 𝐾, . . . , 𝑛 (𝐾 ≥ 1), where 𝑑 > 0.

2.3. The Cross-Efficiency Evaluation. Consider 𝑛 DMUs that
are to be evaluated with 𝑚 inputs and 𝑠 output. Denote by
𝑥𝑖𝑗 (1, . . . , 𝑚) and 𝑦𝑟𝑗 (𝑟 = 1, . . . , 𝑠) the input and output
values ofDMU𝑗 (𝑗 = 1, . . . , 𝑛).The efficiencies of the 𝑛DMUs
can then be computed by solving the following CCR model
for each of the 𝑛 DMUs, respectively [3]:

max 𝜃𝑘𝑘 =

𝑠

∑

𝑟=1

𝑢𝑟𝑘𝑦𝑟𝑘,

subject to
𝑚

∑

𝑖=1

V𝑖𝑘𝑥𝑖𝑘 = 1,

𝑠

∑

𝑟=1

𝑢𝑟𝑘𝑦𝑟𝑗 −

𝑠

∑

𝑟=1

V𝑖𝑘𝑥𝑖𝑗 ≤ 0, 𝑗 = 1, . . . , 𝑛,

𝑢𝑟𝑘, V𝑖𝑘 ≥ 0, 𝑟 = 1, . . . , 𝑠, 𝑖 = 1, . . . , 𝑚,

(9)

where DMU𝑘 is the DMU under evaluation and V𝑖𝑘 (𝑖 =
1, . . . , 𝑚) and 𝑢𝑟𝑘 (𝑟 = 1, . . . , 𝑠) are input and output weights.
Let 𝑢∗
𝑟𝑘
(𝑟 = 1, . . . , 𝑠) and V∗

𝑖𝑘
(𝑖 = 1, . . . , 𝑚) be the optimal

solution to the above CCR model. Then, 𝜃∗
𝑘𝑘
= ∑
𝑠

𝑟=1
𝑢
∗

𝑟𝑘
𝑦𝑟𝑘

is referred to as the CCR-efficiency of DMU𝑘, which is the
best relative efficiency of DMU𝑘 by self-evaluation. If 𝜃∗

𝑘𝑘
=

1, DMU𝑘 is said to be CCR-efficient; otherwise, it is said
to be non-CCR-efficient. 𝜃𝑗𝑘 = ∑

𝑠

𝑟=1
𝑢
∗

𝑟𝑘
𝑦𝑟𝑗/∑

𝑚

𝑖=1
V∗
𝑖𝑘
𝑥𝑖𝑗 is

referred to as the cross-efficiency of DMU𝑘 to DMU𝑗 by peer-
evaluation; where 𝑗 = 1, . . . , 𝑛; 𝑗 ̸= 𝑘.

Model (9) is solved n times, each time for one particular
DMU. As a result, we can get one CCR-efficiency value
and (𝑛 − 1) cross-efficiency values for each DMU. The
𝑛 efficiency values constitute a cross-efficiency matrix, as
shown in Table 1, where 𝜃𝑘𝑘 (𝑘 = 1, . . . , 𝑛) are the CCR-
efficiency values of the 𝑛 DMUs; that is, 𝜃𝑘𝑘 = 𝜃

∗

𝑘𝑘
. The

𝑛 efficiency values of each DMU are then simply averaged
as its overall performance, which is called average cross-
efficiency value. Based on these overall performance values,
the 𝑛 DMUs can be compared or fully ranked.

Table 1: Cross-efficiency matrix for 𝑛 DMUs.

DMU Target DMU Average crosses efficiency
1 2 ⋅ ⋅ ⋅ 𝑛

1 𝜃11 𝜃12 ⋅ ⋅ ⋅ 𝜃1𝑛 (
1

𝑛
)

𝑛

∑

𝑘=1

𝜃1𝑘

2 𝜃21 𝜃22 ⋅ ⋅ ⋅ 𝜃2𝑛 (
1

𝑛
)

𝑛

∑

𝑘=1

𝜃2𝑘

...
...

...
...

...

𝑛 𝜃𝑛1 𝜃𝑛2 ⋅ ⋅ ⋅ 𝜃𝑛𝑛 (
1

𝑛
)

𝑛

∑

𝑘=1

𝜃𝑛𝑘

Table 2: Re-ordered cross-efficiency matrix of the 𝑛 DMUs.

DMU

Re-ordered efficiencies
in descending order

Weighted
average
cross
efficiency

1st 2nd ⋅ ⋅ ⋅ 𝑛th
𝑤1 𝑤2 ⋅ ⋅ ⋅ 𝑤𝑛

1 𝜗11 𝜗12 ⋅ ⋅ ⋅ 𝜗1𝑛

𝑛

∑

𝑘=1

𝑤𝑘𝜗1𝑘

2 𝜗21 𝜗22 ⋅ ⋅ ⋅ 𝜗2𝑛

𝑛

∑

𝑘=1

𝑤𝑘𝜗2𝑘

... ...
...

...
...

𝑛 𝜗𝑛1 𝜗𝑛2 ⋅ ⋅ ⋅ 𝜗𝑛𝑛

𝑛

∑

𝑘=1

𝑤𝑘𝜗𝑛𝑘

The above approach about cross-efficiency value in CCR
efficiencies or constant returns to scale (CRS) DEA model
was extended to the variable returns to scale (VRS) DEA
model [13].TheVRSDEAmodel can generate negative cross-
efficiency scores.

The VRS DEA model is as follows [23]:

max
𝑠

∑

𝑟=1

𝑢𝑟𝑘𝑦𝑟𝑘 − 𝑢0

s.t.
𝑠

∑

𝑟=1

𝑢𝑟𝑘𝑦𝑟𝑗 −

𝑚

∑

𝑖=1

V𝑖𝑘𝑥𝑖𝑗 − 𝑢0 ≤ 0, 𝑗 = 1, . . . , 𝑛

𝑚

∑

𝑖=1

V𝑖𝑘𝑥𝑖𝑘 = 1

𝑢𝑟𝑘 ≥ 0, 𝑟 = 1, . . . , 𝑠

V𝑖𝑘 ≥ 0, 𝑖 = 1, . . . , 𝑚

𝑢0 ≥ 0.

(10)

For each DMU𝑘 (𝑘 = 1, . . . , 𝑛) under evaluation in model
(10), we obtain a set of optimal weights (𝑢∗

𝑟𝑘
, V∗
𝑟𝑘
). Using

this set of weights, the DMU𝑘-based cross-efficiency for any
DMU𝑗 (𝑗 = 1, . . . , 𝑛) is calculated as

𝐸𝑘𝑗 =

∑
𝑠

𝑟=1
𝑢
∗

𝑟𝑘
𝑦𝑟𝑗 − 𝑢0

∑
𝑚

𝑖=1
V∗
𝑖𝑘
𝑥𝑖𝑗

𝑘, 𝑗 = 1, 2, . . . , 𝑛.

(11)
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Table 3: Descriptive statistics of the mutual funds.

Mutual fund Expected return Variance
ACEFX 2.671 64.173
ACEGX 2.734 64.254
ACEMX 2.668 64.098
AELAX 1.241 22.976
AELGX 1.287 22.970
AGTHX 1.902 23.445
ARCGX 2.017 30.697
AVLFX 1.615 19.817
BJBIX 1.506 33.203
CUCAX 1.990 24.858
FAGIX 0.533 5.471
FAIAX 1.404 39.099
FAICX 1.420 39.095
FDEGX 2.445 53.059
FEURX 1.696 30.655
FIUIX 1.398 13.813
FSUTX 1.697 18.829
GEGTX 1.727 19.483
HRCPX 2.376 34.856
IDETX 2.356 35.331
IDEUX 1.874 24.913
IGLBX 1.858 25.178
IGLCX 2.488 39.982
JAMRX 1.991 35.740
JAOSX 1.870 23.264
JAVLX 2.237 30.771
JAWWX 1.946 20.705
LMVTX 1.735 19.463
MAFGX 1.849 20.490
MBFGX 1.923 20.626
MCFGX 2.463 60.247
MCOBX 1.959 19.729
MCOFX 1.875 18.821
MDFGX 1.942 18.833
MGCAX 1.789 31.720
MSEQX 1.842 31.348
NAWCX 1.318 24.631
NAWGX 1.384 24.676
POVBX 2.579 149.234
POVSX 1.619 21.647
RYOSX 2.690 42.951
SCGEX 1.656 18.530
SRGFX 2.224 40.412
SSGWX 2.044 26.771
TALGX 1.368 30.664
TRGEX 1.786 25.739
TWIEX 1.773 23.208
UMBIX 1.823 12.379

Table 3: Continued.

Mutual fund Expected return Variance
USBOX 2.093 24.542
VGHCX 1.334 26.919
VPMCX 1.513 20.243
WAGEX 1.625 17.619
WBIGX 0.979 25.015
FMAGX 1.681 14.225
JANSX 2.643 35.453
VFINX 1.690 27.731
VWNDX 1.889 21.968

The average of all 𝐸𝑘𝑗 (𝑘 = 1, . . . , 𝑛)

𝐸𝑗 =
1

𝑛

𝑛

∑

𝑘=1

𝐸𝑘𝑗 (12)

is used as the cross-efficiency score for DMU𝑗 (𝑗 = 1, . . . , 𝑛).
Note that the cross-efficiency score obtained in the above

manner can be negative.This subject is presented by a simple
numerical example involving five DMUs, with two input and
single output [13].

The negative VRS cross-efficiency score is due to the fact
that∑𝑠

𝑟=1
𝑢𝑟𝑘𝑦𝑟𝑗−𝑢0 < 0 for someDMU𝑗; that is, someDMU𝑗

will have negative efficiency ratios when they use a set of
optimal weights obtained when DMU𝑘 is under evaluation.
Naturally, we want every output-input efficiency ratio to be
positive regardless of the chosen weights. Therefore, adding
∑
𝑠

𝑟=1
𝑢𝑟𝑘𝑦𝑟𝑗 − 𝑢0 ≥ 0 into the VRS model is proposed

when calculating the cross-efficiency scores [13].Thiswill also
guarantee nonnegativity of both VRS cross-efficiency scores
and VRS efficiency ratios.

Therefore, the following modified VRS DEA model is
used for model (10) development and application:

max
𝑠

∑

𝑟=1

𝑢𝑟𝑘𝑦𝑟𝑘 − 𝑢0

s.t.
𝑠

∑

𝑟=1

𝑢𝑟𝑘𝑦𝑟𝑗 −

𝑚

∑

𝑖=1

V𝑖𝑘𝑥𝑖𝑗 − 𝑢0 ≤ 0, 𝑗 = 1, . . . , 𝑛

𝑚

∑

𝑖=1

V𝑖𝑘𝑥𝑖𝑘 = 1

𝑠

∑

𝑟=1

𝑢𝑟𝑘𝑦𝑟𝑗 − 𝑢0 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛

𝑢𝑟𝑘 ≥ 0, 𝑟 = 1, . . . , 𝑠

V𝑖𝑘 ≥ 0, 𝑖 = 1, . . . , 𝑚

𝑢0 ≥ 0.

(13)

3. Methodology

Return of assets consists of money which we receive among
period plus difference of buying and selling. Return is
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Table 4: OWA operator weights for cross efficiency evaluation.

𝛼 = 1 𝛼 = 0.9613 𝛼 = 0.9 𝛼 = 0.8 𝛼 = 0.7 𝛼 = 0.6 𝛼 = 0.5 𝛼 = 0.4 𝛼 = 0.3 𝛼 = 0.2 𝛼 = 0.1

1 0.2 0.106 0.056 0.038 0.028 0.018 0.007 0 0 0
0 0.178 0.1 0.055 0.037 0.027 0.018 0.008 0 0 0
0 0.156 0.094 0.053 0.037 0.027 0.018 0.008 0 0 0
0 0.134 0.088 0.051 0.036 0.027 0.018 0.008 0 0 0
0 0.112 0.082 0.05 0.035 0.026 0.018 0.009 0 0 0
0 0.09 0.077 0.048 0.034 0.026 0.018 0.009 3.00𝐸 − 04 0 0
0 0.068 0.071 0.046 0.034 0.026 0.018 0.01 0.001 0 0
0 0.046 0.065 0.045 0.033 0.025 0.018 0.01 0.002 0 0
0 0.024 0.059 0.043 0.032 0.025 0.018 0.01 0.003 0 0
0 0.002 0.053 0.042 0.031 0.024 0.018 0.011 0.003 0 0
0 0 0.047 0.04 0.031 0.024 0.018 0.011 0.004 0 0
0 0 0.041 0.038 0.03 0.024 0.018 0.011 0.005 0 0
0 0 0.035 0.037 0.029 0.023 0.018 0.012 0.005 0 0
0 0 0.029 0.035 0.029 0.023 0.018 0.012 0.006 0 0
0 0 0.023 0.033 0.028 0.023 0.018 0.012 0.007 0 0
0 0 0.017 0.032 0.027 0.022 0.018 0.013 0.008 0 0
0 0 0.011 0.03 0.026 0.022 0.018 0.013 0.008 0 0
0 0 0.005 0.029 0.026 0.022 0.018 0.014 0.009 0 0
0 0 0 0.027 0.025 0.021 0.018 0.014 0.01 0 0
0 0 0 0.025 0.024 0.021 0.018 0.014 0.011 0 0
0 0 0 0.024 0.023 0.02 0.018 0.015 0.011 0 0
0 0 0 0.022 0.023 0.02 0.018 0.015 0.012 0 0
0 0 0 0.02 0.022 0.02 0.018 0.015 0.013 0 0
0 0 0 0.019 0.021 0.019 0.018 0.016 0.014 0.003 0
0 0 0 0.017 0.02 0.019 0.018 0.016 0.014 0.004 0
0 0 0 0.016 0.02 0.019 0.018 0.016 0.015 0.006 0
0 0 0 0.014 0.019 0.018 0.018 0.017 0.016 0.007 0
0 0 0 0.012 0.018 0.018 0.018 0.017 0.017 0.009 0
0 0 0 0.011 0.017 0.018 0.018 0.018 0.017 0.011 0
0 0 0 0.009 0.017 0.017 0.018 0.018 0.018 0.012 0
0 0 0 0.007 0.016 0.017 0.018 0.018 0.019 0.014 0
0 0 0 0.006 0.015 0.016 0.018 0.019 0.02 0.016 0
0 0 0 0.004 0.014 0.016 0.018 0.019 0.02 0.017 0
0 0 0 0.003 0.014 0.016 0.018 0.019 0.021 0.019 0
0 0 0 0 0.013 0.015 0.018 0.02 0.022 0.02 0
0 0 0 0 0.012 0.015 0.018 0.02 0.023 0.022 0
0 0 0 0 0.011 0.015 0.018 0.02 0.023 0.024 0
0 0 0 0 0.011 0.014 0.018 0.021 0.024 0.025 0
0 0 0 0 0.01 0.014 0.018 0.021 0.025 0.027 0
0 0 0 0 0.009 0.014 0.018 0.022 0.026 0.029 0.005
0 0 0 0 0.008 0.013 0.018 0.022 0.026 0.03 0.011
0 0 0 0 0.008 0.013 0.018 0.022 0.027 0.032 0.017
0 0 0 0 0.007 0.012 0.018 0.023 0.028 0.033 0.023
0 0 0 0 0.006 0.012 0.018 0.023 0.029 0.035 0.029
0 0 0 0 0.005 0.012 0.018 0.023 0.029 0.037 0.035
0 0 0 0 0.005 0.011 0.018 0.024 0.03 0.038 0.041
0 0 0 0 0.004 0.011 0.018 0.024 0.031 0.04 0.047
0 0 0 0 0.003 0.011 0.018 0.024 0.031 0.042 0.053
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Table 4: Continued.

𝛼 = 1 𝛼 = 0.9613 𝛼 = 0.9 𝛼 = 0.8 𝛼 = 0.7 𝛼 = 0.6 𝛼 = 0.5 𝛼 = 0.4 𝛼 = 0.3 𝛼 = 0.2 𝛼 = 0.1

0 0 0 0 0.003 0.01 0.018 0.025 0.032 0.043 0.059
0 0 0 0 0.002 0.01 0.018 0.025 0.033 0.045 0.065
0 0 0 0 0.001 0.01 0.018 0.026 0.034 0.046 0.071
0 0 0 0 3.00𝐸 − 04 0.009 0.018 0.026 0.034 0.048 0.077
0 0 0 0 0 0.009 0.018 0.026 0.035 0.05 0.082
0 0 0 0 0 0.008 0.018 0.027 0.036 0.051 0.088
0 0 0 0 0 0.008 0.018 0.027 0.037 0.053 0.094
0 0 0 0 0 0.008 0.018 0.027 0.037 0.055 0.1
0 0 0 0 0 0.007 0.018 0.028 0.038 0.056 0.106

not definitely usually obvious. This is uncertain in rate of
expected return defined as deviation of return. Deviation
of return is called risk. The investor’s objective is to get
the maximum possible return on an investment with the
minimum possible risk. In this regard, mean-variance model
Markowitz expected return is treated as output and deviation
as input. The methodology in this paper starts with asset
selection via cross-efficiency evaluation using OWA operator
weights. The data used for this methodology is from 57
mutual funds [5]. In many cases similar to this example,
there are a lot of assets. It is better that starts with asset
selection. The choice of the asset can be random or discrete.
The random choice of assets is usually biased and does not
promise an optimum portfolio; hence, it is more rational
to have an objective choice while selecting the assets to be
included in the portfolio. Among many evaluation methods,
Data Envelopment Analysis (DEA) is one of the best ways
for assessing the relative efficiency a group of homogenous
decision making units (DMUs) that use multiple inputs
to produce multiple outputs, originated from the work by
Charnes et al. [3]. Selection of assets to be included in portfo-
lio is followed by using cross-efficiency in DEA. The variable
returns to scale (VRS) DEA model is used for efficiency
evaluation. In the analysis, the variance of the assets is used as
an input to the DEA and expected return is used as an output.
Because the VRS DEA model can generate negative cross-
efficiency score, thusmodel (13) is proposed so that the cross-
efficiency scores are nonnegative. Traditional approaches for
the cross-efficiency evaluation do not differentiate between
self-evaluated and peer-evaluated efficiencies. A significant
problem with these approaches is that the weight assigned
to the self-evaluated efficiency of each DMU is fixed and
has no way of incorporating the DM’s or investor’s subjective
preferences in to the evaluation. For example, the investors
may wish self-evaluated efficiencies to account for 20% or
play a leading role in the final overall efficiency assessment.
Obviously, equal evaluation has no method to obtain this
purpose. To show the investor’s subjective preferences on
different efficiencies, the use of OWA operator weights
is stated for cross-efficiency evaluation (see Table 4). This
requires the reordering of the efficiencies, both self-evaluated
and peer-evaluated, of each DMU, as shown in Table 2, where
𝑤1, . . . , 𝑤𝑛 are OWA operator weights and 𝜗𝑖𝑗 (𝑖, 𝑗 = 1, . . . , 𝑛)
are reordered efficiencies of each DMU from the biggest to

the smallest. Obviously, self-evaluated efficiencies are always
ranked in the first place; that is, 𝜗𝑖1 = 𝜃

∗

𝑖𝑖
, 𝑖 = 1, . . . , 𝑛.

In order to determine the weights of OWA operator, it is
necessary for the investor to provide his/her preferences
on different efficiencies or optimism level towards the best
relative efficiencies. For example, if the investorwants the self-
evaluated efficiencies to account for 20% in the final overall
efficiency assessment, then 𝑤1 should take 0.2, whereas the
other weights can be designatedminimax disparity approach.
With regard to theminimax disparityOWAoperator weights,
the following theorems are existed [17].

Theorem 1. For a given 𝑤1, there exists an integer 𝑘 ≤ 𝑛 such
that 𝑤𝑖 = 𝑤1 − (𝑖 − 1)𝑑 ≥ 0 for 𝑖 = 1, . . . , 𝑘 and 𝑤𝑖 = 0 for
𝑖 = 𝑘 + 1, . . . , 𝑛, where 𝑘 and 𝑑 are determined by

𝑘 = min(𝑛, INT [ 2
𝑤1

]) , 𝑑 =
2 (𝑘𝑤1 − 1)

𝑘 (𝑘 − 1)
. (14)

Theorem 2. For a given orness degree 𝛼 ∈ (0.5, 1), there exists
an integer 𝑘 ≤ 𝑛 such that 𝑤𝑖 = 𝑤1 − (𝑖 − 1)𝑑 ≥ 0 for 𝑖 =
1, . . . , 𝑘 and 𝑤𝑖 = 0 for 𝑖 = 𝑘 + 1, . . . , 𝑛, where 𝑘, 𝑤1, and 𝑑 are
determined by

𝑤1 =
4 (𝑘 + 1) − 6𝑛 + 6𝛼 (𝑛 − 1)

𝑘 (𝑘 + 1)
, 𝑑 =

2 (𝑘𝑤1 − 1)

𝑘 (𝑘 − 1)
.

(15)

In this paper, the OWA operator weights can be deter-
mined by using the minimax disparity approach. In the
following, some very special OWA operator weights for the
cross-efficiency evaluation are given.

Consider 𝑤1 = 1 and 𝑤𝑗 = 0 (𝑗 ̸= 1). In this case,
orness(𝑊) = 1 and 𝜃𝑖 = ∑

𝑛

𝑘=1
𝑤𝑘𝜗𝑖𝑘 = 𝜗𝑖1 = 𝜃

∗

𝑖𝑖
for 𝑖 = 1, . . . , 𝑛.

The investor considers only self-evaluated efficiencies in the
final overall efficiency assessment and is purely optimistic.

Consider 𝑤𝑛 = 1 and 𝑤𝑗 = 0 (𝑗 ̸= 1). In this case,
orness(𝑊) = 0 and 𝜃𝑖 = ∑

𝑛

𝑘=1
𝑤𝑘𝜗𝑖𝑘 = 𝜗𝑖𝑛 = min𝑘(𝜃𝑖𝑘)

for 𝑖 = 1, . . . , 𝑛. The investor chooses the least efficiency
value of each DMU as its overall efficiency and is extremely
pessimistic.

Consider 𝑤1, . . . , 𝑤𝑛 = 1/𝑛. In this case, orness(𝑊) = 0.5
and 𝜃𝑖 = ∑

𝑛

𝑘=1
𝑤𝑘𝜗𝑖𝑘 = (1/𝑛)∑

𝑛

𝑘=1
𝜃𝑖𝑘 for 𝑖 = 1, . . . , 𝑛, which

is the average cross-efficiency value in the traditional cross-
efficiency evaluation.
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Table 5: Cross efficiency by optimism level of the investor for 𝛼 ≥ 0.5.

DMU Mutual funds VRS efficiency 𝛼 = 1 𝛼 = 0.9613 𝛼 = 0.9 𝛼 = 0.8 𝛼 = 0.7 𝛼 = 0.6 𝛼 = 0.5
Ranking
𝛼 = 0.8

1 ACEFX 0.32 0.324 0.323 0.323 0.319 0.312 0.306 0.308 50
2 ACEGX 0.33 0.334 0.333 0.333 0.328 0.322 0.315 0.317 48
3 ACEMX 0.32 0.324 0.287 0.323 0.319 0.312 0.306 0.308 49
4 AELAX 0.37 0.370 0.373 0.370 0.363 0.350 0.3392 0.336 44
5 AELGX 0.38 0.377 0.371 0.383 0.377 0.365 0.3550 0.353 43
6 AGTHX 0.56 0.569 0.572 0.566 0.560 0.558 0.556 0.568 21
7 ARCGX 0.46 0.472 0.454 0.468 0.463 0.459 0.456 0.465 34
8 AVLFX 0.55 0.560 0.563 0.558 0.552 0.546 0.541 0.549 22
9 BJBIX 0.31 0.311 0.313 0.310 0.307 0.301 0.297 0.300 51
10 CUCAX 0.56 0.572 0.564 0.568 0.561 0.558 0.554 0.565 20
11 FAGIX 0.66 0.669 0.667 0.670 0.627 0.509 0.410 0.320 9
12 FAIAX 0.24 0.246 0.248 0.246 0.242 0.236 0.232 0.233 55
13 FAICX 0.25 0.249 0.251 0.249 0.245 0.239 0.235 0.236 54
14 FDEGX 0.35 0.351 0.352 0.349 0.345 0.339 0.334 0.337 46
15 FEURX 0.38 0.379 0.382 0.378 0.3751 0.372 0.370 0.377 42
16 FIUIX 0.69 0.694 0.693 0.693 0.683 0.667 0.653 0.655 6
17 FSUTX 0.61 0.618 0.615 0.620 0.611 0.607 0.603 0.615 13
18 GEGTX 0.60 0.608 0.605 0.607 0.601 0.598 0.595 0.607 16
19 HRCPX 0.51 0.516 0.518 0.512 0.506 0.498 0.491 0.496 27
20 IDETX 0.50 0.503 0.505 0.500 0.494 0.486 0.480 0.485 31
21 IDEUX 0.52 0.525 0.527 0.521 0.517 0.515 0.513 0.525 26
22 IGLBX 0.50 0.513 0.515 0.510 0.506 0.504 0.503 0.514 28
23 IGLCX 0.47 0.477 0.478 0.474 0.468 0.459 0.452 0.456 34
24 JAMRX 0.39 0.398 0.399 0.395 0.390 0.388 0.386 0.393 39
25 JAOSX 0.55 0.561 0.562 0.557 0.552 0.550 0.548 0.560 19
26 JAVLX 0.53 0.540 0.542 0.536 0.530 0.523 0.517 0.524 24
27 JAWWX 0.65 0.666 0.668 0.661 0.654 0.650 0.647 0.661 7
28 LMVTX 0.61 0.611 0.604 0.610 0.605 0.602 0.599 0.611 15
29 MAFGX 0.62 0.627 0.628 0.622 0.618 0.616 0.614 0.628 10
30 MBFGX 0.65 0.657 0.659 0.653 0.646 0.643 0.640 0.654 8
31 MCFGX 0.31 0.312 0.314 0.310 0.306 0.301 0.299 0.282 52
32 MCOBX 0.69 0.705 0.707 0.700 0.693 0.688 0.685 0.699 4
33 MCOFX 0.68 0.696 0.698 0.691 0.685 0.682 0.680 0.695 5
34 MDFGX 0.72 0.730 0.732 0.725 0.717 0.713 0.710 0.725 3
35 MGCAX 0. 38 0.387 0.387 0.386 0.383 0.382 0.381 0.389 40
36 MSEQX 0.40 0.407 0.409 0.405 0.402 0.400 0.399 0.408 36
37 NAWCX 0.36 0.367 0.312 0.366 0.360 0.350 0.340 0.340 45
38 NAWGX 0.38 0.385 0.337 0.384 0.378 0.369 0.361 0.362 41
39 POVBX 0.13 0.134 0.134 0.133 0.131 0.128 0.126 0.127 57
40 POVSX 0.51 0.513 0.511 0.512 0.506 0.501 0.497 0.504 30
41 RYOSX 0.48 0.490 0.492 0.486 0.480 0.470 0.462 0.465 32
42 SCGEX 0.61 0.613 0.593 0.612 0.606 0.600 0.596 0.606 14
43 SRGFX 0.40 0.408 0.410 0.405 0.401 0.395 0.391 0.396 38
44 SSGWX 0.54 0.551 0.552 0.547 0.541 0.536 0.532 0.542 23
45 TALGX 0.30 0.306 0.266 0.305 0.301 0.293 0.286 0.287 53
46 TRGEX 0.47 0.476 0.476 0.475 0.472 0.470 0.469 0.479 33
47 TWIEX 0.52 0.524 0.523 0.523 0.519 0.517 0.515 0.526 25
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Table 5: Continued.

DMU Mutual funds VRS efficiency 𝛼 = 1 𝛼 = 0.9613 𝛼 = 0.9 𝛼 = 0.8 𝛼 = 0.7 𝛼 = 0.6 𝛼 = 0.5
Ranking
𝛼 = 0.8

48 UMBIX 1.00 1.000 1.020 1.012 1.005 1.002 1.021 0.988 1
49 USBOX 0.61 0.620 0.622 0.616 0.609 0.603 0.598 0.608 12
50 VGHCX 0.34 0.342 0.339 0.342 0.336 0.327 0.3191 0.319 47
51 VPMCX 0.51 0.513 0.473 0.512 0.505 0.497 0.490 0.495 29
52 WAGEX 0.63 0.633 0.627 0.631 0.624 0.618 0.613 0.623 10
53 WBIGX 0.27 0.174 0.174 0.172 0.172 0.187 0.201 0.220 56
54 FMAGX 0.80 0.810 0.790 0.808 0.801 0.795 0.790 0.804 2
55 JANSX 0.57 0.580 0.583 0.576 0.569 0.558 0.548 0.552 18
56 VFINX 0.41 0.418 0.408 0.417 0.413 0.410 0.408 0.415 36
57 VWNDX 0.59 0.602 0.583 0.597 0.592 0.590 0.588 0.601 17

The orness degree can be regarded as a measure of the
optimism level of the investor. If the investor wants self-
evaluated to be more influenced, it should be used of orness
> 0.5. And if investor wants peer-evaluated to be more
influenced, it should be used of orness < 0.5. Obviously, the
best selection of mutual funds is not fixed. It varies with the
investor’s optimism level or subjective performance.

4. Application in Mutual Funds

We illustrate our approach using OWA operator weights in
cross-efficiency evaluation for a dataset of 57 mutual funds.
A list of funds used is provided in Table 3. In this report,
there is expected return and variance of mutual funds which
expected return is considered as output and variance is as
input. The example is received from Joro and Na [5] and is
about portfolio performance evaluation in a mean-variance
framework. Four mutual funds are evaluated as efficient
in model [1] which portfolio can be composed with them.
But it is better to use cross-efficiency to choose the best
portfolio. Because themodel (10) can generate negative cross-
efficiency score, thus model (13) is used so that the cross-
efficiency scores are nonnegative. Traditional approaches for
the cross-efficiency evaluation do not differentiate between
self-evaluated and peer-evaluated efficiencies. A main prob-
lem with these approaches is that the weight assigned to the
self-evaluated efficiency of each DMU is fixed and has no
way of incorporating the investor’s subjective preferences into
the evaluation. Obviously, equal evaluation has no way to
obtain this goal. To show the investor’s subjective preferences
on different efficiencies, the use of OWA operator weights
is stated for cross-efficiency evaluation. This requires the
reordering of the efficiencies. The orness degree can be
regarded as a measure of the optimism level of the investor.
If the investor wants self-evaluated to be more influenced, it
should be used of orness > 0.5. And if investor wants peer-
evaluated to be more influenced, it should be used of orness
< 0.5. In the traditional equal of cross-efficiencies, the weight
assigned to the self-evaluated efficiencies is only 0.017% =
(1/57). For an optimistic investor, he/she may wish the self-
evaluated efficiencies to play a more role in the final overall

efficiency assessment. For example, the investor may wish the
weight for the self-evaluated efficiencies to account for 20%
rather than 0.017% in the final overall efficiency assessment.
By Theorem 1, 𝑘 = min(57, INT[2/0.2]) = 10 and 𝑑 =

2(𝑘𝑤1 − 1)/𝑘(𝑘 − 1) = 2(10 × 0.2 − 1)/(10 × 9) = 0.022

are obtained. As a result, the weights for cross-efficiency are
computed as 𝑤1 = 0.2, 𝑤2 = 𝑤1 − 𝑑 = 0.178, 𝑤3 =

𝑤1 − 2𝑑 = 0.156, 𝑤4 = 𝑤1 − 3𝑑 = 0.134, 𝑤5 = 𝑤1 − 4𝑑 =

0.112, 𝑤6 = 𝑤1 − 5𝑑 = 0.09, 𝑤7 = 𝑤1 − 6𝑑 = 0.068, 𝑤8 =
𝑤1 − 7𝑑 = 0.046, 𝑤9 = 𝑤1 − 8𝑑 = 0.024, 𝑤10 = 𝑤1 − 9𝑑 =
0.002, and 𝑤11 = ⋅ ⋅ ⋅ = 𝑤57 = 0. The investor’s optimism level
is measured as orness(𝑊) = (1/(𝑛−1))∑𝑛

𝑖=1
(𝑛−𝑖)𝑤𝑖 = 0.9613.

The weighted average cross-efficiency values of the 57 mutual
funds are computed by 𝜃𝑖 = ∑

𝑛

𝑘=1
𝑤𝑘𝜗𝑖𝑘 for 𝑖 = 1, . . . , 𝑛 and

the results are presented in the fifth column of the Table 5.
As is seen in Tables 5 and 6, ranks are not the same. We
calculated these ranks for 𝛼 = 0.8 and 𝛼 = 0.1. Some of the
best ranks are designated according to investor. We consider
ten of the best ranks. Five of the best ranks become the same,
in this example,incidentally. Selecting of mutual funds to be
included in portfolio is followed by ten of the best ranks in
Tables 7 and 8 for 𝛼 ≥ 0.5, 𝛼 ≤ 0.4, respectively.

5. Conclusion

In this paper, a new method is suggested for selecting the
best of portfolio with one input (variance) and one output
(expected return) in the DEA context. As an advanced
management decision tool, DEA has been widely used for
performance evaluation [24, 25], productivity analysis [26–
28], resource allocation [29], and so on. The cross-efficiency
evaluation is an important method for ranking DMUs in
DEA. Traditional approaches for the cross-efficiency evalu-
ation do not differentiate between self-evaluated and peer-
evaluated efficiencies. Amain problemwith these approaches
is that the weight assigned to the self-evaluated efficiency
of each DMU is fixed and has no way of incorporating the
investor’s subjective preferences in to the evaluation. To show
the investor’s subjective preferences on different efficiencies,
the use of OWA operator weights is stated for cross-efficiency
evaluation. In this case, if the investor wants self-evaluated
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Table 6: Cross efficiency by OWA operator weights for 𝛼 ≤ 0.4.

DMU Mutual funds VRS efficiency 𝛼 = 0.4 𝛼 = 0.3 𝛼 = 0.2 𝛼 = 0.1
Ranking
𝛼 = 0.1

1 ACEFX 0.32 0.295 0.288 0.282 0.282 48
2 ACEGX 0.33 0.302 0.296 0.289 0.287 46
3 ACEMX 0.32 0.295 0.288 0.282 0.281 49
4 AELAX 0.37 0.316 0.305 0.293 0.291 45
5 AELGX 0.38 0.334 0.323 0.312 0.310 43
6 AGTHX 0.56 0.551 0.548 0.545 0.545 17
7 ARCGX 0.46 0.450 0.446 0.443 0.443 32
8 AVLFX 0.55 0.530 0.524 0.518 0.515 20
9 BJBIX 0.31 0.288 0.283 0.278 0.276 49
10 CUCAX 0.56 0.547 0.543 0.540 0.539 18
11 FAGIX 0.66 0.213 0.115 0.011 0 57
12 FAIAX 0.24 0.222 0.217 0.211 0.210 55
13 FAICX 0.25 0.225 0.220 0.215 0.214 54
14 FDEGX 0.35 0.323 0.318 0.312 0.311 42
15 FEURX 0.38 0.365 0.362 0.359 0.358 40
16 FIUIX 0.69 0.625 0.610 0.595 0.591 9
17 FSUTX 0.61 0.595 0.590 0.586 0.584 11
18 GEGTX 0.60 0.588 0.585 0.581 0.578 13
19 HRCPX 0.51 0.477 0.469 0.461 0.460 28
20 IDETX 0.50 0.466 0.459 0.451 0.450 31
21 IDEUX 0.52 0.509 0.507 0.505 0.504 23
22 IGLBX 0.50 0.499 0.497 0.494 0.494 25
23 IGLCX 0.47 0.437 0.430 0.421 0.420 34
24 JAMRX 0.39 0.381 0.378 0.376 0.375 35
25 JAOSX 0.55 0.544 0.542 0.539 0.539 19
26 JAVLX 0.53 0.505 0.498 0.492 0.490 26
27 JAWWX 0.65 0.640 0.637 0.633 0.633 6
28 LMVTX 0.61 0.592 0.589 0.585 0.583 12
29 MAFGX 0.62 0.609 0.607 0.604 0.603 8
30 MBFGX 0.65 0.634 0.631 0.627 0.627 7
31 MCFGX 0.31 0.287 0.282 0.277 0.276 51
32 MCOBX 0.69 0.677 0.673 0.669 0.669 4
33 MCOFX 0.68 0.675 0.672 0.669 0.668 5
34 MDFGX 0.72 0.702 0.698 0.695 0.694 3
35 MGCAX 0. 38 0.378 0.376 0.374 0.373 38
36 MSEQX 0.40 0.396 0.395 0.393 0.392 36
37 NAWCX 0.36 0.322 0.313 0.303 0.300 44
38 NAWGX 0.38 0.345 0.336 0.327 0.325 41
39 POVBX 0.13 0.122 0.119 0.117 0.116 56
40 POVSX 0.51 0.486 0.481 0.475 0.473 27
41 RYOSX 0.48 0.444 0.435 0.425 0.422 33
42 SCGEX 0.61 0.586 0.580 0.574 0.572 16
43 SRGFX 0.40 0.382 0.377 0.372 0.371 39
44 SSGWX 0.54 0.524 0.519 0.515 0.515 21
45 TALGX 0.30 0.273 0.266 0.258 0.257 53
46 TRGEX 0.47 0.465 0.463 0.460 0.459 29
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Table 6: Continued.

DMU Mutual funds VRS efficiency 𝛼 = 0.4 𝛼 = 0.3 𝛼 = 0.2 𝛼 = 0.1
Ranking
𝛼 = 0.1

47 TWIEX 0.52 0.511 0.508 0.505 0.504 22
48 UMBIX 1.00 0.992 0.988 0.983 0.981 1
49 USBOX 0.61 0.587 0.581 0.576 0.575 15
50 VGHCX 0.34 0.303 0.295 0.286 0.284 47
51 VPMCX 0.51 0.475 0.467 0.459 0.457 30
52 WAGEX 0.63 0.601 0.594 0.588 0.585 10
53 WBIGX 0.27 0.228 0.242 0.259 0.264 52
54 FMAGX 0.80 0.778 0.772 0.765 0.761 2
55 JANSX 0.57 0.527 0.517 0.505 0.503 24
56 VFINX 0.41 0.402 0.398 0.395 0.394 35
57 VWNDX 0.59 0.583 0.580 0.578 0.577 14

Table 7: Selecting the best assets for making portfolio for 𝛼 ≥ 0.5.

Expected return Variance Ranking
48 UMBIX 1.833 12.379 1
54 FMAGX 1.681 14.225 2
34 MDFGX 1.942 18.833 3
32 MCOBX 1.959 19.729 4
33 MCOFX 1.875 18.821 5
16 FIUIX 1.398 13.813 6
27 JAWWX 1.946 20.705 7
30 MBFGX 1.923 20.626 8
11 FAGIX 0.533 5.471 9
29 MAFGX 1.849 20.490 10

Table 8: Selecting the best assets for making portfolio for 𝛼 ≤ 0.4.

Expected return Variance Ranking
48 UMBIX 1.833 12.379 1
54 FMAGX 1.681 14.225 2
34 MDFGX 1.942 18.833 3
32 MCOBX 1.959 19.729 4
33 MCOFX 1.875 18.821 5
27 JAWWX 1.946 20.705 6
30 MBFGX 1.923 20.626 7
29 MAFGX 1.849 20.490 8
16 FIUIX 1.398 13.813 9
52 WAGEX 1.625 17.619 10

to be more influenced, it should be used of orness > 0.5.
Thus, if investor wants peer-evaluated to be more influenced,
it should be used of orness < 0.5. In Tables 7 and 8, rankings
have been designated for ten of the best mutual funds via
OWA operator weights in cross-efficiency evaluation. Since
there are a large number of assets to invest in, this objective
leads to two investment problems. First, the assets are selected
for making portfolio and, second, the proportion or weights
are determined to be allocated to the selected assets. Selection

of assets to be included in portfolio is followed by using cross-
efficiency evaluation. Model (13) is used for this purpose. In
this regard, this model is used to analyze the given 57 mutual
funds and ten of the bestmutual funds are obtained.Theother
methods of ranking can be used for ten of the best mutual
funds for asset allocation in the future.
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