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Abstract. 
A new algorithm for solving sequence alignment problem is proposed, which is named SAPS (Simulated Annealing with Previous Solutions). This algorithm is based on the classical Simulated Annealing (SA). SAPS is implemented in order to obtain results of pair and multiple sequence alignment. SA is a simulation of heating and cooling of a metal to solve an optimization problem. In order to select randomly a current solution, SAPS algorithm chooses a solution from solutions that have been previously generated within the Metropolis Cycle. This simple change has led to increase the quality of the solution to the problem of aligning genomic sequences with respect to the classical Simulated Annealing algorithm. The parameters of SAPS, for certain instances, are tuned by an analytical method, and some parameters have experimentally been tuned. SAPS has generated high-quality results in comparison with the classical SA. The instances used are specific genes of the AIDS virus.


1. Introduction
Sequence alignment is one of the most important and challenging problems in computational biology and bioinformatics [1, 2]. Finding the optimal alignment of a set of sequences is known as a NP-complete problem [3]. Alignment of sequences can be an important tool to measure the similarity of two or more sequences. Sequence Alignment is classified as a combinatorial optimization problem [4], which is solved by using computer algorithms. These algorithms lead to represent, to process, and to compare genetic information to determine evolutionary relationships among living beings [3]. The sequence alignment highlights areas of similarity among sequences. The similarities among sequences may indicate functional or evolutionary relationships among genes or proteins [5].
The problem of sequence alignment is to obtain the maximum alignment of a set of 
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Exact algorithms have been applied to solve the sequence alignment problem. For example, dynamic programming has been one of the most used to solve the sequence alignment problem [6, 7]. The disadvantage of using exact algorithms is that these generate optimal solutions for small problems, but for large problems, exact algorithms become inefficient. For this reason, several metaheuristic methods have been designed to obtain suboptimal alignments. Metaheuristics have also been applied to solve this problem [8], for example, Ant Colony Algorithm [9], Simulated Annealing [10, 11], Genetic Algorithms [12], among others. The disadvantage is that metaheuristics do not guarantee optimal solutions, but solutions generated can be very close to optimal solution in a reasonable processing time.




The proposed algorithm is a modified version of classical Simulated Annealing. SAPS includes a new way to select a current solution after the Metropolis Cycle is finished. In general, SAPS generates better solutions to sequence alignment problem than the classical Simulated Annealing. SAPS was tested with different genes of AIDS virus.
This paper is organized as follows: in Section 2, classical simulated annealing algorithm is described. In Section 3, the SASP algorithm is explained in detail. In Section 4, the analytical tuning method is described. In Section 5, the implementation of the SASP is detailed. In Section 6, the experimentation and results are described. Finally, Section 7 discusses the conclusions.
2. Classical Simulated Annealing
The classical Simulated Annealing is an algorithmic process that simulates the gradual metal cooling for crystallization. This algorithm usually starts at high value of temperature, and then this parameter is decreased until a final temperature is reached. The final temperature typically is very close to zero 
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 [13, 14]. Through a cooling function, the temperature value is decreased from the initial temperature to the final temperature. There are cooling functions that have been used in the simulated annealing algorithm [15–18]; the most common cooling function is defined by 
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The classical Simulated Annealing has two cycles; the first cycle is named Cycle of Temperature. Into this cycle, value temperature is decreased by a cooling function. The second cycle is named Metropolis Cycle, and it is applied to generate, to accept, or to reject solutions for the problem to be optimized. Algorithm 1 shows the pseudo code of the classical Simulated Annealing. The initial and final temperature values are set (see line 1). These values are obtained by an analytical (see Section 4) or experimental way. It is recommended that the initial temperature is as high as possible, and the final temperature is as close to zero. The initial solution 
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. Set T to initial temperature (see line 3). The temperature cycle is executed from the initial temperature to the final temperature (see lines 4–18). The Metropolis Cycle gets started (see lines 5–16). This cycle takes a number of times specified in the stop criterion. A new solution 
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) is obtained. If the difference is less or equal than zero (see line 8), the new solution is accepted (see line 9). If the difference is greater than zero, the Boltzmann probability is calculated (see line 11). If the Boltzmann probability is higher than a random value between 0 and 1 (see line 12) then the new solution is accepted (see line 13). After the Metropolis Cycle is completed, the temperature value is decreased (see line 17).
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	Algorithm 1: Pseudocode of classical Simulated Annealing.



				Algorithm 2 shows the pseudo code of the SA, which is applied to obtain solutions to the problem of aligning two or more genomic sequences. The Simulated Annealing algorithm is modified then it can be implemented to solve the problem of alignment sequence. The values of initial and final temperatures are tuned by using an analytical method (see lines 1-2). The cooling factor value 
	
		
			

				𝛼
			

		
	
 is set to a value very close to 1 (
	
		
			
				𝛼
				≈
				1
			

		
	
) (see line 3). The current solution 
	
		
			

				𝑆
			

			
				c
				u
				r
				r
				e
				n
				t
			

		
	
 is set to the original solution 
	
		
			

				𝑆
			

			
				i
				n
				i
				t
				i
				a
				l
			

		
	
 (see line 4). The similarity of this solution is calculated by comparing base by base (see line 5). The variable 
	
		
			

				𝑇
			

		
	
 is set to the initial temperature 
	
		
			

				𝑇
			

			
				i
				n
				i
				t
				i
				a
				l
			

		
	
 (see line 6). The Metropolis Cycle length is set to an initial value 
	
		
			

				𝐿
			

			
				c
				m
			

		
	
 (see line 7). This cycle has an increasing length, at high temperature, it has a low value, and it is increased as the temperature is decreased. The length of Metropolis Cycle is increased by a factor 
	
		
			

				𝛾
			

		
	
, where 
	
		
			

				𝛾
			

		
	
 must be greater than 1. Temperature cycle is executed (see lines 8–29) with a logic condition that T is greater than 
	
		
			

				𝑇
			

			
				ﬁ
				n
				a
				l
			

		
	
. Within this cycle, the variable 
	
		
			

				𝑛
			

		
	
 is updated with value 1 (see line 9), and within the metropolis cycle, this variable is incremented 
	
		
			
				(
				𝑛
				=
				𝑛
				+
				1
				)
			

		
	
 (see line 25).
		1: Tune initial temperature (
	
		
			

				𝑇
			

			
				i
				n
				i
				t
				i
				a
				l
			

		
	
) 
	2: Tune final temperature (
	
		
			

				𝑇
			

			
				ﬁ
				n
				a
				l
			

		
	
) 
	
	
		
			

				3
			

		
	
: Setting cooling factor 
	4: Create 
	
		
			

				𝑆
			

			
				c
				u
				r
				r
				e
				n
				t
			

		
	

 from Initial solution 
	
		
			

				𝑆
			

			
				i
				n
				i
				t
				i
				a
				l
			

		
	

	5: Calculate similarity of 
	
		
			

				𝑆
			

			
				c
				u
				r
				r
				e
				n
				t
			

		
	

	6: 
	
		
			

				𝑇
			

		
	
 = 
	
		
			

				𝑇
			

			
				i
				n
				i
				t
				i
				a
				l
			

		
	

	7: Setting 
	
		
			

				𝐿
			

			
				c
				m
			

		
	

	8: While (
	
		
			

				𝑇
			

		
	
 > 
	
		
			

				𝑇
			

			
				ﬁ
				n
				a
				l
			

		
	
) do 
	9:     
	
		
			

				𝑛
			

		
	
 = 1 
	10:     While (
	
		
			

				𝐿
			

			
				c
				m
			

		
	

 > 
	
		
			

				𝑛
			

		
	
) 
	11:         Create 
	
		
			

				𝑆
			

			
				n
				e
				w
			

		
	

 adding or removing gaps to 
	
		
			

				𝑆
			

			
				c
				u
				r
				r
				e
				n
				t
			

		
	

	12:         Calculate similarity of 
	
		
			

				𝑆
			

			
				n
				e
				w
			

		
	

	13:         Obtain difference similarity between 
	
		
			

				𝑆
			

			
				n
				e
				w
			

		
	

 and 
	
		
			

				𝑆
			

			
				c
				u
				r
				r
				e
				n
				t
			

		
	

	14:             If (difference 
	
		
			

				⇐
			

		
	
 0) then 
	15:                   Scurrent = S new
	16:                  If similarity (
	
		
			

				𝑆
			

			
				n
				e
				w
			

		
	
) > similarity (
	
		
			

				𝑆
			

			
				b
				e
				t
				t
				e
				r
			

		
	
) then 
	
	
		
			
				1
				7
			

		
	
:                         
	
		
			

				𝑆
			

			
				b
				e
				t
				t
				e
				r
			

		
	

 = 
	
		
			

				𝑆
			

			
				c
				u
				r
				r
				e
				n
				t
			

		
	

	
	
		
			
				1
				8
			

		
	
:             end if 
	19:         else 
	20:             Boltzmann probability = exp(−difference/
	
		
			

				𝑇
			

		
	
) 
	21:             If (Boltzmann probability) > random(0,1) then 
	22:                 
	
		
			

				𝑆
			

			
				c
				u
				r
				r
				e
				n
				t
			

		
	

 = 
	
		
			

				𝑆
			

			
				n
				e
				w
			

		
	

	23:            end if 
	24:         end if 
	25:         
	
		
			

				𝑛
			

		
	
 = 
	
		
			

				𝑛
			

		
	
 + 1 
	26:     end while 
	27:     Descrease 
	
		
			

				𝑇
			

		
	

	28:     Increase 
	
		
			

				𝐿
			

			
				c
				m
			

		
	

	29: end while


	Algorithm 2: Pseudo code SA applied to Sequence Alignment.


The Metropolis Cycle is executed (see lines 10–26). At the end of the Metropolis Cycle, the temperature is decreased (see line 27), and the Metropolis Cycle length is increased (see line 28). Within the Metropolis Cycle, new solutions 
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3. Simulated Annealing with Previous Solutions
In order to generate high-quality solutions to sequence alignment, the classical SA was modified, so the SAPS algorithm is a modified version of the classical SA. After the Metropolis Cycle execution is done, the selection of a current solution 
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The Metropolis Cycle length of SAPS is growing, which ranges from an initial 
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				 Algorithm 3 shows the pseudo code of SAPS, some lines of code were added to SA, for example, at line 5, 
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	Algorithm 3: Pseudo code of SAPS.


4. Analytical Tuning Method
Some parameters of SAPS are tuned by the analytical method [19–22]. For example, in order to calculate the initial temperature, the maximum deterioration (defined by 
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There are other parameters of SAPS that are calculated by applying a particular cooling function; for example, the Metropolis Cycle length is calculated by applying 
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The analytical method determines the Metropolis Cycle lenght 
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5. Implementation
SASP was tested with all of the most HIV virus genes of human and simian. The nine genes of the human virus were compared with the nine genes of simian virus; for example, the gen named “env” of HIV human was aligned with the gen “env” of HIV simian, the gen named “gag” of HIV human was aligned with the gen “gag” of HIV simian, and so successively. The information of the virus genes is shown in Table 1. The parameters 
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 is higher than 1, and it is very close to 1. The values of these parameters are shown in Table 2. In this table, the values of initial temperatures are high; these values are related to the maximum deterioration and the probability of accepting solutions at high temperatures. It is observed that the final temperature has a value very close to zero (0.43); this is because the minimum deterioration is equal to 1.0. The parameters 
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 have the values 2, and 300, respectively.
Table 1: HIV genes of human and simian.
	

	  Gen 	 Number of bases (human) 	 Number of bases (simian)
	

	  pol 	 3011 	 3179
	 env 	 2570 	 2564
	 gag 	 1502 	 1532
	 vif 	 578 	 644
	 nef 	 371 	 791
	 rev 	 351 	 351
	 tat 	 259 	 304
	 vpu 	 248 	 245
	 vpr 	 237 	 306
	



Table 2: Values of parameters.
	

	  Algorithm 	 Gen 	
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	  SA 	 env 	 2,639.71 	 0.43 	 26.53 	 1.06
	 SAPS 	 env 	 1,269.61 	 0.43 	 12.76 	 1.07
	 SA 	 gag 	 1,211.90 	 0.43 	 12.18 	 1.07
	 SAPS 	 gag 	 365.16 	 0.43 	 3.67 	 1.08
	 SA 	 nef 	 883.55 	 0.43 	 8.88 	 1.07
	 SAPS 	 nef 	 787.04 	 0.43 	 7.61 	 1.07
	 SA 	 pol 	 369.14 	 0.43 	 3.71 	 1.08
	 SAPS 	 pol 	 436.80 	 0.43 	 4.39 	 1.08
	 SA 	 rev 	 5,726.18 	 0.43 	 57.55 	 1.06
	 SAPS 	 rev 	 6,651.52 	 0.43 	 66.85 	 1.06
	 SA 	 tat 	 6,151.04 	 0.43 	 61.82 	 1.06
	 SAPS 	 tat 	 6,594.80 	 0.43 	 66.28 	 1.06
	 SA 	 vif 	 666.64 	 0.43 	 6.70 	 1.07
	 SAPS 	 vif 	 1,349.21 	 0.43 	 13.56 	 1.07
	 SA 	 vpr 	 1,248.71 	 0.43 	 12.55 	 1.07
	 SAPS 	 vpr 	 1,784.02 	 0.43 	 17.93 	 1.07
	 SA 	 vpu 	 4,556.07 	 0.43 	 45.79 	 1.06
	 SAPS 	 vpu 	 1609.90 	 0.43 	 16.16 	 1.07
	



6. Experimentation and Results
In Table 3, the results of the experiments are shown. The information shown is the average similarity and the standard deviation of the genes of both viruses (HIV Human and HIV Simian). The results show that the average obtained by SASP is of better quality than the average obtained by the classical SA. Table 4 shows that the SAPS processing time generally is better than the processing time of SA.
Table 3: Results of quality solutions.
	

	Gen 	 Classical SA 	 SASP
	 Average (%) 	Standard deviation 	 Average (%) 	Standard deviation
	

	 pol 	 29.70 	 0.31 	 30.35 	 0.24
	 env 	 47.41 	 5.59 	 61.60 	 4.31
	 gag 	 40.33 	 3.30 	 47.20 	 1.01
	 vif 	 33.71 	 2.72 	 39.40 	 0.66
	 nef 	 34.84 	 1.07 	 36.56 	 0.44
	 rev 	 98.00 	 0.00 	 98.00 	 0.00
	 tat 	 98.00 	 0.00 	 98.00 	 0.00
	 vpu 	 52.40 	 10.60 	 77.65 	 8.63
	 vpr 	 37.37 	 3.38 	 50.24 	 4.26
	



Table 4: Results of processing time.
	

	Gen 	 Processing time SA (s) 	 Processing time SAPS (s)
	

	  pol 	 171 	 224
	 env 	 149 	 142
	 gag 	 90 	 84
	 vif 	 19 	 20
	 nef 	 20 	 18
	 rev 	 34 	 19
	 tat 	 22 	 15
	 vpu 	 14 	 11
	 vpr 	 13 	 11
	



7. Conclusions
In this paper, a new approach is to make efficient the classical Simulated Annealing algorithm proposed to solve the problem of aligning genomic sequences. This approach is called SAPS. After completing the Metropolis Cycle, a current solution is selected randomly from the best solutions’ set, the best solution and the initial solution. This change in the classical simulated annealing resulted in an improved efficiency to solve the problem of aligning sequences. The parameters of the algorithms SA and SAPS were tuned using a tuning method, specifically the initial temperature, final temperature, and Metropolis Cycle length.
This approach to tune the parameters depends directly on the instance to test. With a preprocessing of the instance, the minimum and maximum deteriorations are calculated. With these values and the probability of acceptance, the initial and final temperatures are calculated.
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