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Content-based image retrieval (CBIR) systems require users to query images by their low-level visual content; this not only makes
it hard for users to formulate queries, but also can lead to unsatisfied retrieval results. To this end, image annotation was proposed.
The aim of image annotation is to automatically assign keywords to images, so image retrieval users are able to query images by
keywords. Image annotation can be regarded as the image classification problem: that images are represented by some low-level
features and some supervised learning techniques are used to learn the mapping between low-level features and high-level concepts
(i.e., class labels). One of the most widely used feature representation methods is bag-of-words (BoW). This paper reviews related
works based on the issues of improving and/or applying BoW for image annotation. Moreover, many recent works (from 2006 to
2012) are compared in terms of the methodology of BoW feature generation and experimental design. In addition, several different
issues in using BoW are discussed, and some important issues for future research are discussed.

1. Introduction

Advances in computer and multimedia technologies allow
for the production of digital images and large repositories
for image storage with little cost. This has led to the rapid
increase in the size of image collections, including digital
libraries, medical imaging, art and museum, journalism,
advertising and home photo archives, and so forth. As a
result, it is necessary to design image retrieval systems which
can operate on a large scale. The main goal is to create,
manage, and query image databases in an efficient and
effective, that is, accurate manner.

Content-based image retrieval (CBIR), which was pro-
posed in the early 1990s, is a technique to automatically index
images by extracting their (low-level) visual features, such as
color, texture, and shape, and the retrieval of images is based
solely upon the indexed image features [1–3]. Therefore,
it is hypothesized that relevant images can be retrieved
by calculating the similarity between the low-level image
contents through browsing, navigation, query-by-example,
and so forth. Typically, images are represented as points in
a high dimensional feature space. Then, a metric is used to
measure similarity or dissimilarity between images on this
space. Thus, images close to the query are similar to the query
and retrieved. Although CBIR introduced automated image

feature extraction and indexation, it does not overcome the
so-called semantic gap described below.

The semantic gap is the gap between the extracted
and indexed low-level features by computers and the high-
level concepts (or semantics) of user’s queries. That is, the
automated CBIR systems cannot be readily matched to the
users’ requests. The notation of similarity in the user’s
mind is typically based on high-level abstractions, such as
activities, entities/objects, events, or some evoked emotions,
among others. Therefore, retrieval by similarity using low-
level features like color or shape will not be very effective. In
other words, human similarity judgments do not obey the
requirements of the similarity metric used in CBIR systems.
In addition, general users usually find it difficult to search
or query images by using color, texture, and/or shape fea-
tures directly. They usually prefer textual or keyword-based
queries, since they are easier and more intuitive for repre-
senting their information needs [4–6]. However, it is very
challenging to make computers capable of understanding or
extracting high-level concepts from images as humans do.

Consequently, the semantic gap problem has been
approached by automatic image annotation. In automatic
image annotation, computers are able to learn which low-
level features correspond to which high-level concepts.
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Specifically, the aim of image annotation is to make the
computers extract meanings from the low-level features by
a learning process based on a given set of training data which
includes pairs of low-level features and their corresponding
concepts. Then, the computers can assign the learned
keywords to images automatically. For the review of image
annotation, please refer to Tsai and Hung [7], Hanbury [8],
and Zhang et al. [9].

Image annotation can be defined as the process of auto-
matically assigning keywords to images. It can be regarded as
an automatic classification of images by labeling images into
one of a number of predefined classes or categories, where
classes have assigned keywords or labels which can describe
the conceptual content of images in that class. Therefore,
the image annotation problem can be thought of as image
classification or categorization.

More specifically, image classification can be divided
into object categorization [10] and scene classification. For
example, object categorization focuses on classifying images
into “concrete” categories, such as “agate”, “car”, “dog”, and so
on. On the other hand, scene classification can be regarded as
abstract keyword based image annotation [11, 12], where
scene categories are such as “harbor”, “building”, and
“sunset”, which can be regarded as an assemblage of multiple
physical or entity objects as a single entity. The difference
between object recognition/categorization and scene
classification was defined by Quelhas et al. [13].

However, image annotation performance is heavily
dependent on image feature representation. Recently, the
bag-of-words (BoW) or bag-of-visual-words model, a well-
known and popular feature representation method for
document representation in information retrieval, was first
applied to the field of image and video retrieval by Sivic
and Zisserman [14]. Moreover, BoW has generally shown
promising performance for image annotation and retrieval
tasks [15–22].

The BoW feature is usually based on tokenizing key-
point-based features, for example, scale-invariant feature
transform (SIFT) [23], to generate a visual-word vocabulary
(or codebook). Then, the visual-word vector of an image
contains the presence or absence information of each visual
word in the image, for example, the number of keypoints in
the corresponding cluster, that is, visual word.

Since 2003, BoW has been used extensively in image
annotation, but there has not as yet been any comprehensive
review of this topic. Therefore, the aim of this paper is to
review the work of using BoW for image annotation from
2006 to 2012.

The rest of this paper is organized as follows. Section 2
describes the process of extracting the BoW feature for image
representation and annotation. Section 3 discusses some
important extension studies of BoW, including the improve-
ment of BoW per se and its application to other related
research problems. Section 4 provides some comparisons of
related work in terms of the methodology of constructing the
BoW feature, including the detection method, the clustering
algorithm, the number of visual words, and so forth and the
experimental set up including the datasets used, the number

of object or scene categories, and so forth. Finally, Section 5
concludes the paper.

2. Bag-of-Words Representation

The bag-of-words (BoW) methodology was first proposed in
the text retrieval domain problem for text document analysis,
and it was further adapted for computer vision applications
[24]. For image analysis, a visual analogue of a word is used
in the BoW model, which is based on the vector quantization
process by clustering low-level visual features of local regions
or points, such as color, texture, and so forth.

To extract the BoW feature from images involves the fol-
lowing steps: (i) automatically detect regions/points of inter-
est, (ii) compute local descriptors over those regions/points,
(iii) quantize the descriptors into words to form the visual
vocabulary, and (iv) find the occurrences in the image of each
specific word in the vocabulary for constructing the BoW
feature (or a histogram of word frequencies) [24]. Figure 1
describes these four steps to extract the BoW feature from
images.

The BoW model can be defined as follows. Given a
training dataset D containing n images represented by D =
d1,d2, . . ., and dn, where d is the extracted visual features, a
specific unsupervised learning algorithm, such as k-means,
is used to group D based on a fixed number of visual words
W (or categories) represented by W = w1,w2, . . ., and wv,
where V is the cluster number. Then, we can summarize the
data in a V ×N cooccurrence table of counts Nij = n(wi,dj),
where n(wi,dj) denotes how often the word wi occurred in
an image di.

2.1. Interest Point Detection. The first step of the BoW meth-
odology is to detect local interest regions or points. For
feature extraction of interest points (or keypoints), they are
computed at predefined locations and scales. Several well-
known region detectors that have been described in the
literature are discussed below [25, 26].

(i) Harris-Laplace regions are detected by the scale-ada-
pted Harris function and selected in scale-space by
the Laplacian-of-Gaussian operator. Harris-Laplace
detects corner-like structures.

(ii) DoG regions are localized at local scale-space max-
ima of the difference-of-Gaussian. This detector is
suitable for finding blob-like structures. In addition,
the DoG point detector has previously been shown to
perform well, and it is also faster and more compact
(less feature points per image) than other detectors.

(iii) Hessian-Laplace regions are localized in space at the
local maxima of the Hessian determinant and in scale
at the local maxima of the Laplacian-of-Gaussian.

(iv) Salient regions are detected in scale-space at local
maxima of the entropy. The entropy of pixel intensity
histograms is measured for circular regions of various
sizes at each image position.

(v) Maximally stable extremal regions (MSERs) are com-
ponents of connected pixels in a thresholded image.
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(iv) Bag-of-words

(i) Region detection (ii) Feature extraction (iii) Vector quantization
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Figure 1: Four steps for constructing the bag-of-words for image representation.

A watershed-like segmentation algorithm is applied
to image intensities and segment boundaries which
are stable over a wide range of thresholds that define
the region.

In Mikolajczyk et al. [27], they compare six types of
well-known detectors, which are detectors based on affine
normalization around Harris and Hessian points, MSER, an
edge-based region detector, a detector based on intensity
extrema, and a detector of salient regions. They conclude that
the Hessian-Affine detector performs best.

On the other hand, according to Hörster and Lienhart
[21], interest points can be detected by the sparse or dense
approach. For sparse features, interest points are detected
at local extremas in the difference of a Gaussian pyramid
[23]. A position and scale are automatically assigned to
each point and thus the extracted regions are invariant to
these properties. For dense features, on the other hand,
interest points are defined at evenly sampled grid points.
Feature vectors are then computed based on three different
neighborhood sizes, that is, at different scales, around each
interest point.

Some authors believe that a very precise segmentation of
an image is not required for the scene classification problem
[28], and some studies have shown that coarse segmentation
is very suitable for scene recognition. In particular, Bosch et
al. [29] compare four dense descriptors with the widely used
sparse descriptor (i.e., the Harris detector) [14, 15] and show
that the best results are obtained with the dense descriptors.
This is because there is more information on scene images,
and intuitively a dense image description is necessary to
capture uniform regions such as sky, calm water, or road
surface in many natural scenes. Similarly, Jurie and Triggs
[30] show that the sampling of many patches on a regular
dense grid (or a fixed number of patches) outperforms the
use of interest points. In addition, Fei-Fei and Perona [31],

and Bosch et al. [29] show that dense descriptors outperform
the sparse ones.

2.2. Local Descriptors. In most studies, some single local
descriptors are extracted, in which the Scale Invariant Feature
Transform (SIFT) descriptor is the most widely extracted
[23]. It combines a scale invariant region detector and a
descriptor based on the gradient distribution in the detected
regions. The descriptor is represented by a 3D histogram of
gradient locations and orientations. The dimensionality of
the SIFT descriptor is 128.

In order to reduce the dimensionality of the SIFT
descriptor, which is usually 128 dimensions per keypoint,
principal component analysis (PCA) can be used for
increasing image retrieval accuracy and faster matching
[32]. Specifically, Uijlings et al. [33] show that retrieval
performance can be increased by using PCA for the removal
of redundancy in the dimensions.

SIFT was found to work best [13, 25, 34, 35]. Specifi-
cally, Mikolajczyk and Schmid [34] compared 10 different
descriptors extracted by the Harris-Affine detector, which
are SIFT, gradient location and orientation histograms
(GLOH) (i.e., an extension of SIFT), shape context, PCA-
SIFT, spin images, steerable filters, differential invariants,
complex filters, moment invariants, and cross-correlation
of sampled pixel values. They show that the SIFT-based
descriptors perform best.

In addition, Quelhas et al. [13] confirm in practice that
DoG + SIFT constitutes a reasonable choice. Very few con-
sider the extraction of different descriptors. For example,
Li et al. [36] combine or fuse the SIFT descriptor and the
concatenation of block and blob based HSV histogram and
local binary patterns to generate the BoW.

2.3. Visual Word Generation/Vector Quantization. When the
keypoints are detected and their features are extracted, such
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as with the SIFT descriptor, the final step of extracting the
BoW feature from images is based on vector quantization.
In general, the k-means clustering algorithm is used for this
task, and the number of visual words generated is based on
the number of clusters (i.e., k). Jiang et al. [17] conducted a
comprehensive study on the representation choices of BoW,
including vocabulary size, weighting scheme, such as binary,
term frequency (TF) and term frequency-inverse document
frequency (TF-IDF), stop word removal, feature selection,
and so forth for video and image annotation.

To generate visual words, many studies focus on captur-
ing spatial information in order to improve the limitations of
the conventional BoW model, such as Yang et al. [37], Zhang
et al. [38], Chen et al. [39], S. Kim and D. Kim [40], Lu and Ip
[41], Lu and Ip [42], Uijlings et al. [43], Cao and Fei-Fei [44],
Philbin et al. [45], Wu et al. [46], Agarwal and Triggs [47],
Lazebnik et al. [48], Marszałek and Schmid [49], and Monay
et al. [50], in which spatial pyramid matching introduced by
Lazebnik et al. [48] has been widely compared as one of the
baselines.

However, Van de Sande et al. [51] have shown that
the severe drawback of the bag-of-words model is its high
computational cost in the quantization step. In other words,
the most expensive part in a state-of-the-art setup of the
bag-of-words model is the vector quantization step, that is,
finding the closest cluster for each data point in the k-means
algorithm.

Uijlings et al. [33] compare k-means and random forests
for the word assignment task in terms of computational
efficiency. By using different descriptors with different grid
sizes, random forests are significantly faster than k-means. In
addition, using random forests to generate BoW can provide
a slightly better Mean Average Precision (MAP) than k-
means does. They also recommend two BoW pipelines when
the focuses are on accuracy and speed, respectively.

In their seminal work, Philbin et al. [45], the approxi-
mate k-means, hierarchical k-means, and (exact) k-means
are compared in terms of the precision performance and
computational cost, where approximate k-means works best.
(See Section 4.3 for further discussion).

Chum et al. [52] observe that feature detection and
quantization are noisy processes and this can result in
variation in the particular visual words that appear in
different images of the same object, leading to missed results.

2.4. Learning Models. After the BoW feature is extracted
from images, it is entered into a classifier for training or
testing. Besides constructing the discriminative models as
classifiers for image annotation, some Bayesian text models
by Latent Semantic Analysis [53], such as probabilistic Latent
Semantic Analysis (pLSA) [54] and Latent Dirichlet Analysis
(LDA) [55] can be adapted to model object and scene
categories.

2.4.1. Discriminative Models. The construction of discrimi-
native models for image annotation is based on the super-
vised machine learning principle for pattern recognition.
Supervised learning can be thought as learning by examples

or learning with a teacher [56]. The teacher has knowledge
of the environment which is represented by a set of input-
output examples. In order to classify unknown patterns, a
certain number of training samples are available for each
class, and they are used to train the classifier [57].

The learning task is to compute a classifier or model
∧
f

that approximates the mapping between the input-output
examples and correctly labels the training set with some level
of accuracy. This can be called the training or model gener-

ation stage. After the model
∧
f is generated or trained, it is

able to classify an unknown instance, into one of the learned
class labels in the training set. More specifically, the classifier
calculates the similarity of all trained classes and assigns the
unlabeled instance to the class with the highest similarity
measure. More specifically, the most widely developed
classifier is based on support vector machines (SVM) [58].

2.4.2. Generative Models. In text analysis, pLSA and LDA
are used to discover topics in a document using the BoW
document representation. For image annotation, documents
and discovered topics are thought of as images and object
categories, respectively. Therefore, an image containing
instances of several objects is modeled as a mixture of topics.
This topic distribution over the images is used to classify an
image as belonging to a certain scene. For example, if an
image contains “water with waves”, “sky with clouds”, and
“sand”, it will be classified into the “coast” scene class [24].

Following the previous definition of BoW, in pLSA there
is a latent variable model for cooccurrence data which
associates an unobserved class variable z ∈ Z = z1, ..., zZ
with each observation. A joint probability model P(w,d)
over V ×N is defined by the mixture:

P(w | d) =
∑

z∈Z
P(w | z)P(z | d), (1)

where P(w | z) are the topic specific distributions and each
image is modeled as a mixture of topics, P(z | d).

On the other hand, LDA treats the multinomial weights
P(z | d) over topics as latent random variables. In particular,
the pLSA model is extended by sampling those weights from
a Dirichlet distribution. This extension allows the model
to assign probabilities to data outside the training corpus
and uses fewer parameters, which can reduce the overfitting
problem.

The goal of LDA is to maximize the following likelihood:

P
(
w | φ,α,β

) =
∫ ∑

z

P
(
w | z,φ

)
P(z | θ)P(θ | α)P

(
φ | β)dθ,

(2)

where θ and φ are multinomial parameters over the topics
and words, respectively, and P(θ | α) and P(φ | β) are
Dirichlet distributions parameterized by the hyperparame-
ters α and β.

Bosch et al. [24] compare BoW + pLSA with different
semantic modeling approaches, such as the traditional global
based feature representation, block-based feature representa-
tion [59] with the k-nearest neighbor classifier. They show
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that BoW + pLSA performs best. Specifically, the HIS his-
togram + cooccurrence matrices + edge direction histogram
are used as the image descriptors.

However, it is interesting that Lu and Ip [41] and Quelhas
et al. [60] show that pLSA does not perform better than
BoW + SVM over the Corel dataset, where the former uses
blocked based HSV and Gabor texture features and the latter
uses keypoint based SIFT features.

3. Extensions of BoW

This section reviews the literature regarding using BoW for
some related problems. They are divided into five categories,
namely, feature representation, vector quantization, visual
vocabulary construction, image segmentation, and others.

3.1. Feature Representation. Since the annotation accuracy is
heavily dependent on feature representation, using different
region/point descriptors and/or the BoW feature represen-
tation will provide different levels of discriminative power
for annotation. For example, Mikolajczyk and Schmid [34]
compare 10 different local descriptors for object recognition.
Jiang et al. [17] examine the classification accuracy of the
BoW features using different numbers of visual words and
different weighting schemes.

Due to the drawbacks that vector quantization may
reduce the discriminative power of images and the BoW
methodology ignores geometric relationships among visual
words, Zhong et al. [61] present a novel scheme where
SIFT features are bundled into local groups. These bundled
features are repeatable and are much more discriminative
than an individual SIFT feature. In other words, a bundled
feature provides a flexible representation that allows us to
partially match two groups of SIFT features.

On the other hand, since the image feature generally
carries mixed information of the entire image which may
contain multiple objects and background, the annotation
accuracy can be degraded by such noisy (or diluted) feature
representations. Chen et al. [62] propose a novel feature
representation, pseudo-objects. It is based on a subset of
proximate feature points with its own feature vector to repre-
sent a local area to approximate candidate objects in images.

Gehler and Nowozin [63] focus on feature combination,
which is to combine multiple complementary features based
on different aspects such as shape, color, or texture. They
study several models that aim at learning the correct weight-
ing of different features from training data. They provide
insight into when combination methods can be expected to
work and how the benefit of complementary features can be
exploited most efficiently.

Qin and Yung [64] use localized maximum-margin
learning to fuse different types of features during the BoW
modeling. Particularly, the region of interest is described
by a linear combination of the dominant feature and other
features extracted from each patch at different scales, respec-
tively. Then, dominant feature clustering is performed to
create contextual visual words, and each image in the training
set is evaluated against the codebook using the localized

maximum-margin learning method to fuse other features,
in order to select a list of contextual visual words that best
represents the patches of the image.

As there is a relation between the composition of a
photograph and its subject, similar subjects are typically
photographed in a similar style. Van Gemert [65] exploits
the assumption that images within a category share a similar
style, such as colorfulness, lighting, depth of field, viewpoints
and saliency. They use the photographic style for category-
level image classification. In particular, where the spatial
pyramid groups features spatially [48], they focus on more
general feature grouping, including these photographic style
attributes.

In Rasiwasia and Vasconcelos [66], they introduce an
intermediate space, based on a low dimensional semantic
“theme” image representation, which is learned with weak
supervision from casual image annotations. Each theme
induces a probability density on the space of low-level fea-
tures, and images are represented as vectors of posterior
theme probabilities.

3.2. Vector Quantization. In order to reduce the quantization
noise, Jégou et al. [67] construct short codes using quantiza-
tion. The goal is to estimate distances using vector-to-
centroid distances, that is, the query vector is not quantized,
codes are assigned to the database vectors only. In other
words, the feature space is decomposed into a Cartesian
product of low-dimensional subspaces, and then each sub-
space is quantized separately. In particular, a vector is repre-
sented by a short code composed of its subspace quantization
indices.

As abrupt quantization into discrete bins does cause
some aliasing, Agarwal and Triggs [47] focus on soft vector
quantization, that is, softly voting into the cluster centers that
lie close to the patch, for example, with Gaussian weights.
They show that diagonal-covariance Gaussian mixtures fitted
using expectation-maximization performs better than hard
vector quantization.

Similarly, Fernando et al. [68] propose a supervised
learning algorithm based on a Gaussian mixture model,
which not only generalizes the k-means by allowing “soft
assignments”, but also exploits supervised information to
improve the discriminative power of the clusters. In their
approach, an EM-based approach is used to optimize a
convex combination of two criteria, in which the first one
is unsupervised and based on the likelihood of the training
data, and the second is supervised and takes into account the
purity of the clusters.

On the other hand, Wu et al. [69] propose a Semantics-
Preserving Bag-of-Words (SPBoW) model, which considers
the distance between the semantically identical features as a
measurement of the semantic gap and tries to learn a code-
book by minimizing this semantic gap. That is, the codebook
generation task is formulated as a distance metric learning
problem. In addition, one visual feature can be assigned to
multiple visual words in different object categories.

In de Campos et al. [70], images are modeled as order-
less sets of weighted visual features where each visual feature
is associated with a weight factor that may inform re its
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relevance. In this approach, visual saliency maps are used to
determine the relevance weight of a feature.

Zheng et al. [71] argue that for the BoW model used
in information retrieval and document categorization, the
textual word possesses semantics itself and the documents
are well-structured data regulated by grammar, linguistic,
and lexicon rules. However, there appears to be no well-
defined rules in the visual word composition of images. For
instance, the objects of the same class might have arbitrarily
different shapes and visual appearances, while objects of
different classes might share similar local appearances. To
this end, a higher-level visual representation, visual synset
for object recognition is presented. First, an intermediate
visual descriptor, delta visual phrase, is constructed from a
frequently co-occurring visual word-set with similar spatial
context. Second, the delta visual phrases are clustered into
a visual synset based their probabilistic “semantics”, that is,
class probability distribution.

Besides reducing the vector quantization noise, another
severe drawback of the BoW model is its high computational
cost. To address this problem, Moosmann et al. [72] intro-
duce extremely randomized clustering forests based on
ensembles of randomly created clustering trees and show that
more accurate results can be obtained as well as much faster
training and testing.

Recently, Van de Sande et al. [51] proposed two algo-
rithms to combine GPU hardware and a parallel program-
ming model to accelerate the quantization and classification
components of the visual categorization architecture.

On the other hand, Hare et al. [73] show the intensity
inversion characteristics of the SIFT descriptor and local
interest region detectors can be exploited to decrease the time
it takes to create vocabularies of visual terms. In particular,
they show that clustering inverted and noninverted (or min-
imum and maximum) features separate results in the same
retrieval performance when compared to the clustering of all
the features as a single set (with the same overall vocabulary
size).

3.3. Visual Vocabulary Construction. Since related studies,
such as Jegou et al. [74], Marszałek and Schmid [49], Sivic
and Zisserman [14], and Winn et al. [75], have shown that
the commonly generated visual words are still not as expres-
sive as text words, in Zhang et al. [76], images are represented
as visual documents composed of repeatable and distinctive
visual elements, which are comparable to text words. They
propose descriptive visual words (DVWs) and descriptive
visual phrases (DVPs) as the visual correspondences to
text words and phrases, where visual phrases refer to the
frequently co-occurring visual word pairs.

Gavves et al. [77] focus on identifying pairs of indepen-
dent, distant words—the visual synonyms—that are likely
to host image patches of similar visual reality. Specifically,
landmark images are considered, where the image geometry
guides the detection of synonym pairs. Image geometry is
used to find those image features that lie in a nearly identical
physical location, yet are assigned to different words of the
visual vocabulary.

On the other hand, López-Sastre et al. [78] present a
novel method for constructing a visual vocabulary that
takes into account the class labels of images. It consists of
two stages: Cluster Precision Maximisation (CPM) and
Adaptive Refinement. In the first stage, a Reciprocal Nearest
Neighbours (RNN) clustering algorithm is guided towards
class representative visual words by maximizing a new cluster
precision criterion. Next, an adaptive threshold refinement
scheme is proposed with the aim of increasing vocabulary
compactness, while at the same time improving the recogni-
tion rate and further increasing the representativeness of the
visual words for category-level object recognition. In other
words, this is a correlation clustering based approach, which
works as a kind of metaclustering and optimizes the cut-off
threshold for each cluster separately.

Constructing visual codebook ensembles is another
approach to improve image annotation accuracy. In Luo et al.
[18], three methods for constructing visual codebook ensem-
bles are presented. The first one is based on diverse individual
visual codebooks by randomly choosing interesting points.
The second one uses a random subtraining image dataset
with random interesting points. The third one directly
utilizes different patch information for constructing an
ensemble with high diversity. Consequently, different types
of image presentations are obtained. Then, a classification
ensemble is learned by the different expression datasets from
the same training set.

Bae and Juang [79] apply the idea of linguistic parsing
to generate the BoW feature for image annotation. That is,
images are represented by a number of variable-size patches
by a multidimensional incremental parsing algorithm. Then,
the occurrence pattern of these parsed visual patches is fed
into the LSA framework.

Since one major challenge in object categorization is to
find class models that are “invariant” enough to incorporate
naturally-occurring intraclass variations and yet “discrim-
inative” enough to distinguish between different classes,
Winn et al. [75] proposed a supervised learning algorithm,
which automatically finds such models. In particular, it clas-
sifies a region according to the proportions of different visual
words. The specific visual words and the typical proportions
in each object are learned from a segmented training set.

Kesorn and Poslad [80] propose a framework to enhance
the visual word quality. First of all, visual words from rep-
resentative keypoints are constructed by reducing similar
keypoints. Second, domain specific noninformative visual
words are detected, which are useless for representing the
content of visual data but which can degrade the catego-
rization capability. A noninformative visual word is defined
as having a high document frequency and a small statistical
association with all the concepts in the image collection.
Third, the vector space model of visual words is restructured
with respect to a structural ontology model in order to solve
visual synonym and polysemy problems.

Tirlly et al. [81] present a new image representation called
visual sentences that allows us to “read” visual words in a
certain order, as in the case of text. Particularly, simple spatial
relations between visual words are considered. In addition,
pLSA is used to eliminate the noisiest visual words.
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3.4. Image Segmentation. Effective image segmentation can
be an important factor affecting the BoW feature generation.
Uijlings et al. [43] study the role of context in the BoW
approach. They observe that using the precise localization of
object patches based on image segmentation is likely to yield
a better performance than the dense sampling strategy, which
sample patches of 8 ∗ 8 pixels at every 4th pixel.

Besides point detection, an image can be segmented into
several or a fixed number of regions or blocks. However, very
few compared the effect of image segmentation on generat-
ing the BoW feature. In Cheng and Wang [82], 20–50 regions
per image are segmented, and each region is represented by a
HSV histogram and cooccurrence texture features. By using
contextual Bayesian networks to model spatial relationship
between local regions and integrating multiattributes to infer
high-level semantics of an image, this approach performs
better and is comparable with a number of works using SIFT
descriptors and pLSA for image annotation.

Similarly, Wu et al. [46] extract a texture histogram from
the 8 ∗ 8 blocks/patches per image based on their proposed
visual language modeling method utilizing the spatial cor-
relation of visual words. This representation is compared
with the BoW model including pLSA and LDA using the
SIFT descriptor. They show that neither image segmentation
nor interest point detection is used in the visual language
modeling method, which makes the method not only very
efficient, but also very effective over the Caltech 7 dataset.

In addition to using the BoW feature for image anno-
tation, Larlus et al. [83] combine BoW with random fields
and some generative models, such as a Dirichlet processes for
more effective object segmentation.

3.5. Others

3.5.1. BoW Applications. Although the BoW model has been
extensively studied for general object and scene categoriza-
tion, it has also been considered in some domain specific
applications, such as human action recognition [84], facial
expression recognition [85], medical images [86], robot,
sport image analysis [80], 3D image retrieval and classifica-
tion [87, 88], image quality assessment [89], and so forth.

3.5.2. Describing Objects/Scenes for Recognition. Farhadi et al.
[90] propose shifting the goal of recognition from naming
to describing. That is, they focus on describing objects by
their attributes, which is not only to name familiar objects,
but also to report unusual aspects of a familiar object, such
as “spotty dog”, not just “dog”, and to say something about
unfamiliar objects, such as “hairy and four-legged”, not just
“unknown”.

On the other hand, Sudderth et al. [91] develop hierar-
chical, probabilistic models for objects, the parts composing
them, and the visual scenes surrounding them. These models
share information between object categories in three distinct
ways. First, parts define distributions over a common low-
level feature vocabulary. Second, objects are defined using a
common set of parts. Finally, object appearance information
is shared between the many scenes in which that object is
found.

3.5.3. Query Expansion. Chum et al. [52] adopt the BoW
architecture with spatial information for query expansion,
which has proven successful in achieving high precision at
low recall. On the other hand, Philbin et al. [92] quantize a
keypoint to the k-nearest visual words as a form of query
expansion.

3.5.4. Similarity Measure. Based on the BoW feature repre-
sentation, Jegou et al. [74] introduce a contextual dissimilar-
ity measure (CDM), which is iteratively obtained by regular-
izing the average distance of each point to its neighborhood.
In addition, CDM is learned in an unsupervised manner,
which does not need to learn the distance measure from a
set of training images.

3.5.5. Large Scale Image Databases. Since the aim of image
annotation is to support very large scale keyword-based
image search, such as web image retrieval, it is very critical
to assess existing approaches over some large scale dataset(s).
Chum et al. [52], Hörster and Lienhart [21], and Lienhart
and Slaney [93] used datasets composed of 100000 to 250000
images belonging to 12 categories, which were downloaded
from Flickr.

Moreover, Philbin et al. [45] use over 1000000 images
from Flickr for experiments and Zhang et al. [94] use about
370000 images collected from Google belonging to 1506
object or scene categories.

On the other hand, Torralba and Efros [95] study some
bias issues of object recognition datasets. They provide some
suggestions for creating a new and high quality dataset to
minimize the selection bias, capture bias, and negative set
bias. Furthermore, they claim that in the state of today’s
datasets there are virtually no studies demonstrating cross-
dataset generalization, for example, training on ImageNet,
while testing on PASCAL VOC. This could be considered as
an additional experimental setup for future works.

3.5.6. Integration of Feature Selection and/or (Spatial) Fea-
ture Extraction. Although modeling the spatial relationship
between visual words can improve the recognition perfor-
mance, the spatial features are expensive to compute. Liu
et al. [96] propose a method that simultaneously performs
feature selection and (spatial) feature extraction based on
higher-order spatial features for speed and storage improve-
ments.

For the dimensionality reduction purpose, Elfiky et al.
[97] present a novel framework for obtaining a compact
pyramid representation. In particular, the divisive informa-
tion theoretic feature clustering (DITC) algorithm is used to
create a compact pyramid representation.

Bosch et al. [98] investigate whether dimensionality
reduction using a latent generative model is beneficial for
the task of weakly supervised scene classification. In their
approach, latent “topics” using pLSA are first of all discov-
ered, and a generative model is then applied to the BoW
representation for each image.

In contrast to reducing the dimensionality of the feature
representation, selecting more discriminative features (e.g.,
SIFT descriptors) from a given set of training images has
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been considered. Shang and Xiao [99] introduce a pairwise
image matching scheme to select the discriminative features.
Specifically, the feature weights are updated by the labeled
information from the training set. As a result, the selected
features corresponding to the foreground content of the
images can highlight the information category of the images.

3.5.7. Integration of Segmentation, Classification, and/or Ret-
rieval. Simultaneously learning object/scene category mod-
els and performing segmentation on the detected objects
were studied in Cao and Fei-Fei [44]. They propose a spatially
coherent latent topic model (Spatial-LTM), which represents
an image containing objects in a hierarchical way by over-
segmented image regions of homogeneous appearances and
the salient image patches within the regions. It can provide
a unified representation for spatially coherent BoW topic
models and can simultaneously segment and classify objects.

On the other hand, Tong et al. [100] propose a statistical
framework for large-scale near duplicate image retrieval
which unifies the step of generating a BoW representation
and the step of image retrieval. In this approach, each image
is represented by a kernel density function, and the similarity
between the query image and a database image is then
estimated as the query likelihood.

Shotton et al. [101] utilize semantic texton forests, which
are ensembles of decision trees that act directly on image
pixels, where the nodes in the trees provide an implicit
hierarchical clustering into semantic textons and an explicit
local classification estimate. In addition, the bag of semantic
textons combines a histogram of semantic textons over an
image region with a region prior category distribution, and
the bag of semantic textons is computed over the whole
image for categorization and over local rectangular regions
for segmentation.

3.5.8. Discriminative Learning Models. Romberg et al. [102]
extend the standard single-layer pLSA to multiple layers,
where the multiple layers handle multiple modalities and
a hierarchy of abstractions. In particular, the multilayer
multimodal pLSA (mm-pLSA) model is based on a two leaf-
pLSAs and a single top-level pLSA node merging the two
leaf-pLSAs. In addition, SIFT features and image annotations
(tags) as well as the combination of SIFT and HOG features
are considered as two pairs of different modalities.

3.5.9. Novel Category Discovery. In their study, Lee and Grau-
man [103] discover new categories by knowing some cate-
gories. That is, previously learned categories are used to dis-
cover their familiarity in unsegmented, unlabeled images. In
their approach, two variants of a novel object-graph descrip-
tor to encode 2D and 3D spatial layout of object-level cooc-
currence patterns relative to an unfamiliar region, and they
are used to model the interaction between an image’s known
and unknown objects for detecting new visual categories.

3.5.10. Interest Point Detection. Since interest point detection
is an important step for extracting the BoW feature, Stot-
tinger et al. [104] propose color interest points for sparse

image representation. Particularly, light-invariant interest
points are introduced to reduce the sensitivity to varying
imaging conditions. Color statistics based on occurrence
probability lead to color boosted points, which are obtained
through saliency-based feature selection.

4. Comparisons of Related Work

This section compares related work in terms of the ways the
BoW feature and experimental setup are structured. These
comparisons allow us to figure out the most suitable interest
point detector(s), clustering algorithm(s), and so forth used
to extract the BoW feature from images. In addition, we
are able to realize the most widely used dataset(s) and
experimental settings for image annotation by BoW.

4.1. Methodology of BoW Feature Generation. Table 1 com-
pares related work for the methodology of extracting the
BoW feature. Note that we leave a blank if the information in
our comparisons is not clearly described in these related
works.

From Table 1 we can observe that the most widely used
interest point detector for generating the BoW feature is
DoG, and the second and third most popular detectors
are Harris-Laplace and Hessian-Laplace, respectively. Besides
extracting sparse BoW features, many related studies have
focused on dense BoW features.

On the other hand, several studies used some region
segmentation algorithms, such as NCuts [116] and Mean-
shift [117], to segment an image into several regions to
represent keypoints.

For the local feature descriptor to describe interest points,
most studies used a 128 dimensional SIFT feature, in which
some considered using PCA to reduce the dimensionality of
SIFT, but some “fuse” the color feature and SIFT resulting in
longer dimensional features than SIFT. Except for extracting
SIFT related features, some studies considered conventional
color and texture features to represent local regions or points.

About vector quantization, we can see that k-means is the
most widely used clustering algorithm to generate the code-
book or visual vocabularies. However, in order to solve the
limitations of k-means, for example, clustering accuracy and
computational cost, some studies used hierarchical k-means,
approximate k-means, accelerated k-means, and so forth.

For the number of visual words, related works have
considered various amounts of clusters during vector quanti-
zation. This may be because the datasets used in these works
are different. In Jiang et al. [17], different numbers of visual
words were studied, and their results show that 1000 is a
reasonable choice. Some related studies also used similar
numbers of visual words to generate their BoW features.

On the other hand, the most and second most widely
used weighting schemes are TF and TF-IDF. This is consistent
with Jiang et al. [17], who concluded that these two weighting
schemes perform better than the other weighting schemes.

Finally, SVM is no doubt the most popular classification
technique as the learning model for image annotation. In
particular, one of the most widely used kernel functions for
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Table 1: Comparisons of interest point detection, visual words generation, and learning models.

Work
Region/point

detection
Local descriptor

Clustering
algorithm

No. of visual
words

Weighting
scheme

Learning model

2012

de Campos et al. [70] DoG SIFT
Logistic

regression

Elfiky et al. [97] Harris-Laplace
SIFT/HSV

color + SIFT
k-means SVM

Fernando et al. [68] Harris-Laplace
PCA-

SIFT/SIFT/SURF1 k-means 2000 SVM

Gavves et al. [77] SIFT/SURF 200000

Kesorn and Poslad [80] DoG SIFT SLAC2 Binary/TF/
TF-IDF

Naı̈ve bayes/
SVM-linear/
SVM-RBF

Lee and Grauman [103] NCuts3 Texton
histogram

k-means 400 SVM

Qin and Yung [64] Color SIFT k-means
SVM-linear/
SVM-poly/
SVM-RBF

Romberg et al. [102] SIFT k-means mm-pLSA4

Shang and Xiao [99] SIFT k-means 1000 SVM

Stottinger et al. [104] Harris-Laplace
RGB Harris with
Laplacian scale

selection
k-means 4000 SVM

Tong et al. [100] Harris-Laplace SIFT AKM5

2011

Hare et al. [73] DoG/MSER SIFT AKM 1000–100000 IDF

López-Sastre et al. [78] Hessian-Laplace SIFT
CPM and
Adaptive

Refinement
3818 SVM

Luo et al. [18] DoG SIFT k-means 500 TF SVM

Van Gemert [65]
Harris and

Hessian-Laplace
SIFT k-means 2000

Yang et al. [37] SIFT k-means 1000 SVM

Zhang et al. [76] DoG SIFT HKM6 32357 TF-IDF

Zhang et al. [38] DoG SIFT HKM 32400 TF-IDF

2010

Bae and Juang [79] Dense sampling 171329

Chen et al. [62] Hessian-Laplace SIFT GMM-BIC7 3500 TF

Cheng and Wang [82] Mean-shift8
HSV color histogram

and co-occurrence
matrix

SVM

Ding et al. [105] DoG PCA-SIFT k-means 2000 SVM

Jégou et al. [22] Hessian-Laplace SIFT k-means 200000 TF-IDF

Jiang et al. [17] DoG SIFT k-means 500–10000
Binary/TF/

TF-IDF/soft-
weighting

SVM

Li and Godil [87] DoG SIFT k-means 500/700/800 TF pLSA

Qin and Yung [106] PCA-SIFT
Accelerated

k-means
32/128/2048/

4096
SVM

Tirilly et al. [107] Hessian-Laplace SIFT HKM
6556 to
117151

Uijlings et al. [33] PCA-SIFT
k-means/

random forest
4096 SVM

Wu et al. [69] SIFT k-means 2500–4500
Naı̈ve Bayes/

SVM
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Table 1: Continued.

Work
Region/point

detection
Local descriptor

Clustering
algorithm

No. of visual
words

Weighting
scheme

Learning model

2009

Chen et al. [39] DoG SIFT k-means 1000
Spatial

weighting

Lu and Ip [41] Dense sampling
HSV color + Gabor

txture
k-means 100/200 SVM

Lu and Ip [42] Dense sampling
HSV color + Gabor

txture
k-means 100/200

LLP9/GLP10/
SVM

S. Kim and D. Kim [40] Dense sampling SIFT/SURF k-means 500/1500/3000 TF pLSA/SVM

Uijlings et al. [43] Dense sampling SIFT k-means 4096 SVM

Xiang et al. [108] NCuts 36 region features11 MRFA12

Zhang et al. [94] SIFT HKM 32357 TF-IDF

2008

Bosch et al. [98] Harris-Laplace Color SIFT k-means 1500 k-NN/SVM

Liu et al. [96] Harris-Laplace SIFT k-means 1000 SVM-linear

Marszałek and Schmid
[109]

Harris-Laplace SIFT k-means 8000 SVM

Rasiwasia and
Vasconcelos [66]

DCT13 coefficients
Hierarchical

Dirichlet
models/SVM

Tirilly et al. [81] SIFT HKM 6556/61687 TF-IDF SVM

Van de Sande et al. [110] Harris-Laplace Color SIFT k-means 4000 SVM

Zheng et al. [71]
DoG +

Hessian-Laplace
SIFT + Spin14 k-means 1010 SVM

2007

Bosch et al. [24] Dense sampling
HSV color +

co-occurrence +
edge

k-means 700 pLSA

Chum et al. [52] Hessian-Laplace SIFT k-means TF-IDF

Gökalp and Aksoy [28] Dense sampling HSV color k-means
Bayesian
classifier

Hörster and Lienhart [21]
DoG/dense
sampling

Color SIFT k-means LDA

Jegou et al. [74] SIFT k-means 30000

Li and Fei-Fei [111] Dense sampling SIFT k-means 300 TF LDA

Lienhart and Slaney [93] SIFT k-means TF pLSA

Philbin et al. [45] Hessian-Laplace SIFT AKM 1 M

Quelhas et al. [13] DoG SIFT k-means 1000 SVM/pLSA

Wu et al. [46] Dense sampling Texture histogram
Unigram/

bigram/trigram
models

Junsong et al. [112] DoG PCA-SIFT k-means 160/500

2006

Agarwal and Triggs [47] Dense sampling SIFT EM15 LDA/SVM

Bosch et al. [29] Dense sampling Color SIFT k-means 1500 k-NN/pLSA

Lazebnik et al. [48] Dense sampling SIFT k-means 200/400 SVM

Marszałek and Schmid
[49]

Harris-Laplace SIFT k-means 1000 TF SVM
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Table 1: Continued.

Work
Region/point

detection
Local descriptor

Clustering
algorithm

No. of visual
words

Weighting
scheme

Learning model

Monay et al. [50] DoG SIFT k-means 1000 TF pLSA

Moosmann et al. [72]
Dense

sampling/DoG
HSV color + wavelet/

SIFT

Extremely
randomized

trees
SVM

Perronnin et al. [113] DoG PCA-SIFT 1024 SVM-linear
1
Speeded up robust features [114].

2Search ant and labor ant clustering algorithm [115].
3Normalized cuts [116].
4Multilayer modality pLSA.
5Approximate k-means.
6Hierarchical k-means.
7Gaussian mixture model with Bayesian information criterion.
8Mean shift region segmentation algorithm [117].
9Local label propagation on the k-NN graph.
10Global label propagation on the complete graph.
11Region color and standard deviation, region average orientation energy (12 filters), region size, location, convexity, first moment, and ratio of region area
to boundary length squared [118].
12Multiple Markov random fields.
13Discrete cosine transform.
14A rotation-invariant two-dimensional histogram of intensities within an image region [71].
15Expectation maximization.

constructing the SVM classifier is the Gaussian radial basis
function. However, some other SVM classifiers, such as linear
SVM and SVM with a polynomial kernel have also been
considered in the literature.

4.2. Experimental Design. Table 2 compares related work for
the experimental design. That is, the chosen dataset(s) and
baseline(s) are examined.

According to Table 2, most studies considered more than
one single dataset for their experiments, and many of them
contained object and scene categories. This is very important
for image annotation that the annotated keywords should be
broadened for users to perform keyword-based queries for
image retrieval.

Specifically, the PASCAL, Caltech, and Corel datasets are
the three most widely used benchmarks for image classifi-
cation. However, the datasets used in most studies usually
contain a small number of categories and images, except for
the studies focusing on retrieval rather than classification.
That is, similar based queries are used to retrieve relevant
images instead of training a learning model to classify
unknown images into one specific category.

For the chosen baselines, most studies compared BoW
and/or spatial pyramid matching based BoW since their
aims were to propose novel approaches to improve these
two feature representations. Specifically, Lazebnik et al. [48]
proposed spatial pyramid matching based BoW as the most
popular baseline.

Besides improving the feature representation per se,
some studies focused on improving the performance of
LDA and/or pLSA discriminative learning models. Another
popular baseline is that of Fei-Fei and Perona [31], who
proposed a Bayesian hierarchical model to represent each
region as part of a “theme.”

4.3. Discussion. The above comparisons indicate several
issues that were not examined in the literature. Since the
local features can be represented using object-based regions
by region segmentation [143, 144] or point-based regions by
point detection (c.f. Section 2.1), regarding the BoW feature
based on tokenizing, it is unknown which local feature is
more appropriate for large scale image annotation (For large
scale image annotation, this means that the number of
annotated keywords is certainly large and their meanings are
very broad, containing object and scene concepts.)

In addition, the local feature descriptor is the key com-
ponent to the success of better image annotation; it is a fact
that the number of visual words (i.e., clusters) is another
factor affecting image annotation performance. Although
Jiang et al. [17] conducted a comprehensive study of using
various amounts of visual words, they only used one dataset,
that is, TRECVID, containing 20 concepts. Therefore, one
important issue is to provide the guidelines for determining
the number of visual words over different kinds of image
datasets having different image contents.

The learning techniques can be divided into generative
and discriminative models, but there are very few studies
which assess their annotation performance over different
kinds of image datasets which is necessary in order to fully
understand the value of these two kinds of learning models.
On the other hand, a combination of generative and dis-
criminative learning techniques [145] or hybrid models are
considered for the image annotation task.

For the experimental setup, the target of most studies was
not image retrieval. In other words, the performance evalu-
ation was usually for small scale problems based on datasets
containing a small number of categories, say 10. However,
image retrieval users will not be satisfied with a system
providing only 10 keyword-based queries to search relevant
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Table 2: Comparisons of datasets used and annotation performance.

Work
Categories Dataset No. of categories No. of images Baseline

Scene Object

2012

de Campos et al. [70] v PASCAL′07/′0816 20 9292

Elfiky et al. [97] v v
Sport event/15
scene/butterflies17/
PASCAL′07/′09

15/20
6000/21000/

2000/160k/ 4194k
Spatial pyramid

Fernando et al. [68] v
PASCAL′06/ Caltech
1018 10/10/11 5304/3044 BoW

Gavves et al. [77] v Oxford 5k19 11 5062

Kesorn and Poslad [80] v
Olympic organization
website + Google
images

8 16000 pLSA

Lee and Grauman [103] v v
MSRC-v020/-v2/
PASCAL′08/
Corel/Gould′09

21/20/7/14
3457/591/1023/

100/715
LDA

Qin and Yung [64] v SCENE-8/-15 8/15 2688/4485 BoW

Romberg et al. [102] v v Flickr-10M >300 10080251 pLSA

Shang and Xiao [99] v Caltech 256/ MSRC 20/20 BoW

Stottinger et al. [104] PASCAL′07 20 9963

Tong et al. [100] v v
Tattoo dataset
/Oxford/Flickr

101745/5062/
1002805

RS21/HKM/AKM

2011

Hare et al. [73] v v
UK Bench/MIR
Flickr-2500022 BoW

López-Sastre et al. [78] v Caltech 101 10 890

Mikolajczyk et al.
[25];
Stark and Schiele
[119]

Luo et al. [18] v Caltech 4/Graz-0223 5/2 400/200
Li and Perona [31];
Moosmann et al. [72]

Van Gemert [65] v v Corel/PASCAL′09 20 2000/7054 BoW/spatial pyramid

Yang et al. [37] v PASCAL′08 20 8445
Divvala et al. [120];
Zhong et al. [109]

Zhang et al. [76] v v
Google images/
Caltech 101and256

15 376500 BoW

Zhang et al. [38] v v ImageNet24 15 queries 1.5 million
Nister and Stewenius
[121];
Zhong et al. [61]

2010

Bae and Juang [79] v Corel 15 20000 LSA

Chen et al. [62] v
Oxford buildings/
Flickr 1k

11 (55
queries)/7

(56 queries)
5062/11282

Sivic and Zisserman
[14];
Philbin et al. [45];
Lazebnik et al. [48]

Cheng and Wang [82] v 6-scene dataset 6 700

Vogel and Schiele
[122]; Bosch et al.
[98];
Quelhas et al. [13];
Boutell et al. [123]

Ding et al. [105] v TRECVID′0625 20 61901
Binary/TF/TF-IDF
weighting

Jégou et al. [22] v v
Holidays26/Oxford
5k/U. of Kentucky
object recognition27

500/11 (55
queries)

1491/5062/6376 BoW by HE28/



ISRN Artificial Intelligence 13

Table 2: Continued.

Work
Categories Dataset No. of categories No. of images Baseline

Scene Object

Jiang et al. [17] v TRECVID′06 20 79484

Li and Godli [87] v v Corel 50 5000

Duygulu et al. [118];
Jeon et al. [124];
Lavrenko et al. [125];
Monay and
Gatica-Perez, 2007
[126]

Qin and Yung [106] v v 8/13/15 2688/3759/ 4485

Siagian and Itti
[127, 128];
Bosch et al. [29];
Li and Perona [31];
Quelhas et al. [60];
Lazebnik et al. [48]

Tirilly et al. [107] v v
U. of Kentucky object
recognition/Oxford
5k/ Caltech 6 & 101

300/55/200
queries

10200/5062/ 8197 TF-IDF weighting

Uijlings et al. [33] v
PASCAL′07/
TRECVID′05/
Caltech 101

20/101/15 9963/12914/4485 BoW

Wu et al. [69] v
LabelMe29/
PASCAL′06

495/10

BoW; Bar-Hillel et al.
[129];
Davis et al. [130];
Goldberger et al.
[131];
Perronnin et al. [113];
Weinberger et al.
[132]

2009

Chen et al. [39] v LabelMe 8 (448 queries) 2689 Yang et al. [133]

Lu and Ip (a) [41] v
LabelMe + Web
images

3 1239 k-NN; LDA

Lu and Ip (b) [42] v v
Corel/histological
images

10/5 1000 pLSA/SVM

S. Kim and D. Kim [40] v v
Corel/histological
images

10/5 1000 LLP/GLP/SVM/pLSA

Uijlings et al. [43] v PASCAL′07 20 9963 BoW

Xiang et al. [108] v Corel/TRECVID′05 50/39 5000 Feng et al. [134]

Zhang et al. [94] v v
Google images/
Corel/Caltech 101
and 256

1506 queries/
50/15

376500/500/ 2250 BoW

2008

Bosch et al. [98] v 6-/8-/13-/15-scene 6/8/13/15 2688/702 BoW

Liu et al. [96] v
PASCAL′06/Caltech
4/MSRC-v2

20/5/15 Savarese et al. [135]

Marszalek and
Schmid [109]

v v Caltech 256 256
Lazebnik et al.[48];
Zhang et al. [35]

Rasiwasia and
Vasconcelos [66]

v
15-natural scene/
Corel

15/50

Bosch et al. [29];
Lazebnik et al. [48];
Li and Perona [31];
Liu and Shah [136]

Tirilly et al. [81] v Caltech 6 and 101 6/101 5435/8697 SVM

Van de Sande et al. [110] v v
PASCAL′07/
TRECVID′05

20

Zheng et al. [71] v
Caltech 101/
PASCAL′05

12/4 BoW
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Table 2: Continued.

Work
Categories Dataset No. of categories No. of images Baseline

Scene Object

2007

Bosch et al. [24] v Corel 6 700

Global and
block-based features
+ k-NN; Vogel and
Schiele [122]

Chum et al. [52] v v Oxford + Flickr 104844 BoW

Gökalp and Aksoy
[28]

v LabelMe 7 1050
Bag of individual
regions/ bag of region
pairs

Hörster and
Lienhart [21]

v Flickr 12 (60 queries) 246348
BoW/color based
BoW

Jegou et al. [74] v v
Object recognition
benchmark30 10200

Object recognition
benchmark

Li and Fei-Fei
[111]

v 8 events 8 240 LDA

Lienhart and
Slaney [93]

v Flickr 12 (60 queries) 253460 LSA

Philbin et al. [45] v v
Oxford 5 k/Flickr 1
and 2

11/145 and 450
tags

5062/99782/
1040801

BoW

Quelhas et al. [13] v Corel + Web images 5
6680/3805/
9457/6364

BoW; Vailaya et al.
[137]

Wu et al. [46] v v Caltech 7/Corel 8/6 600 LDA/pLSA

Yuan et al. [112] v Caltech 101 2 558 BoW

2006

Agarwal and Triggs
[47]

v
Caltech 7 + Graz/
KTH-TIPS31/
Cal-IPNP32

4/10/2 1337/810/360 LDA

Bosch et al. [29] v 6-/8-/13-scene 6/8/13 2688/702/1071 BoW

Lazebnik et al. [48] v v
15-scene/Caltech
101/Graz

15/101/2
Zhang et al. [138];
Opelt et al. [139]

Marszalek and
Schmid [49]

v PASCAL′05 Wang et al. [20]

Monay et al. [50] v Corel 4 6600

Moosmann et al.
[72]

v Graz-02/ PASCAL′05 3/4 BoW

Perronnin et al.
[113]

v v Corel 10 1000
BoW; Farquhar et al.
[140];
Deselaers et al. [141]

16
http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

17http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/.
18http://www.vision.caltech.edu/Image Datasets/Caltech101/.
19http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/.
20http://www.cs.utexas.edu/∼grauman/research/datasets.html.
21Random seed [142].
22http://press.liacs.nl/mirflickr/.
23http://lear.inrialpes.fr/people/marszalek/data/ig02/.
24http://www.image-net.org/.
25http://www-nlpir.nist.gov/projects/tv2006/tv2006.html.
26http://lear.inrialpes.fr/∼jegou/data.php.
27http://vis.uky.edu/.
28Hamming embedding.
29http://labelme.csail.mit.edu/.
30http://vis.uky.edu/%7Estewe/ukbench/.
31http://www.nada.kth.se/cvap/databases/kth-tips/.
32http://crl.ucsd.edu/.
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images. Some benchmarks are much more suitable for
larger scale image annotation, such as the Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012) by ImageNet
(http://www.image-net.org/challenges/LSVRC/2012/index)
and Photo Annotation and Retrieval 2012 by ImageCLEF
(http://www.imageclef.org/2012/photo). In particular, the
ImageNet dataset contains over 10000 categories and
10000000 labeled images and ImageCLEF uses a subset of
the MIRFLICKR collection (http://press.liacs.nl/mirflickr/),
which contains 25 thousand images and 94 concepts.

However, it is also possible that some smaller scale
datasets composed of a relatively small number of images
and/or categories can be combined into larger datasets. For
example, the combination of Caltech 256 and Corel could be
regarded as a benchmark that is more close to the real world
problem.

5. Conclusion

In this paper, a number of recent related works using BoW
for image annotation are reviewed. We can observe that this
topic has been extensively studied recently. For example,
there are many issues for improving the discriminative power
of BoW feature representations by such techniques as image
segmentation, vector quantization, and visual vocabulary
construction. In addition, there are other directions for
integrating the BoW feature for different applications, such
as face detection, medical image analysis, 3D image retrieval,
and so forth.

From comparisons of related work, we can find the most
widely used methodology to extract the BoW feature which
can be regarded as a baseline for future research. That is,
DoG is used as the kepoint detector and each keypoint is
represented by the SIFT feature. The vector quantization
step is based on the k-means clustering algorithm with 1000
visual words. However, the number of visual words (i.e.,
the k values) is dependent on the dataset used. Finally, the
weighting scheme can be either TF or TF-IDF.

On the other hand, for the dataset issue in the experi-
mental design, which can affect the contribution and final
conclusion, the PASCAL, Caltech, and/or Corel datasets can
be used as the initial study.

According to the comparative results, there are some
future research directions. First, the local feature descriptor
for vector quantization usually by point-based SIFT feature
can be compared with other descriptors, such as a region-
based feature or a combination of different features. Second,
a guideline for determining the number of visual words over
what kind of datasets should be provided. The third issue is
to assess the performance of generative and discriminative
learning models over different kinds of datasets, such as
different dataset sizes and different image contents, for
example, a single object per image and multiple objects per
image. Finally, it is worth examining the scalability of BoW
feature representation for large scale image annotation.
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