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This study examines the potential of two soft computing techniques, namely, support vector machines (SVMs) and genetic
programming (GP), to predict ultimate bearing capacity of cohesionless soils beneath shallow foundations. The width of footing
(B), depth of footing (D), the length-to-width ratio (L/B) of footings, density of soil (y or "), angle of internal friction (®), and so
forth were used as model input parameters to predict ultimate bearing capacity (g,). The results of present models were compared
with those obtained by three theoretical approaches, artificial neural networks (ANNs), and fuzzy inference system (FIS) reported
in the literature. The statistical evaluation of results shows that the presently applied paradigms are better than the theoretical
approaches and are competing well with the other soft computing techniques. The performance evaluation of GP model results
based on multiple error criteria confirms that GP is very efficient in accurate prediction of ultimate bearing capacity cohesionless

soils when compared with other models considered in this study.

1. Introduction

Design of foundations is performed based on two criteria:
ultimate bearing capacity and limiting settlement. The
ultimate bearing capacity is governed by shear strength of the
soil and is estimated by theories proposed by Terzaghi [1],
Meyerhof [2], Hansen [3], Vesic [4], and others. However,
the different bearing capacity formulae shows wide degree of
variability while estimating bearing capacity of dense sand on
cohesionless soils. Also the bearing capacities are validated
through laboratory studies performed on small-scale models.
Due to the “scale effect” for the large-scale foundations on
dense sand, shearing strain show that considerable variation
along the slip line and the average mobilized angle of
shearing resistance along the slip line are smaller than
the maximum value (@) obtained by plane shear tests
[5]. Thus, the use of @, may lead to an overestimated
bearing capacity value for the calculations based on different
formulae [1-4].

In the recent past, the use of soft computing techniques
has attracted many researchers and applied quite successfully

for solving many complex geotechnical engineering prob-
lems. Artificial neural networks (ANNs) may probably be the
most popular among these tools, applied for prediction of
bearing capacity of cohesionless soils [5], bearing capacity of
piles, settlement predictions, liquefaction, and slope stability
problems [6]. Support vector machines (SVMs) are recent
addition to the soft computing family that uses statistical
learning theory as the working principle. SVM and its vari-
ants are applied for geotechnical problems such as prediction
of pile load capacity [7], settlement of foundations [8], slope
stability [9], and liquefaction potential [10].

The evolutionary computational techniques may be a
better alternative for solving regression problems as they fol-
low an optimization strategy with progressive improvement
towards the global optima. They start with possible trial
solutions within a decision space, and the search is guided by
genetic operators and the principle of “survival of the fittest”
[11]. Genetic Algorithm (GA) is one of the most popular and
powerful evolutionary optimization technique [11] explored
by [12], but it cannot be used to evolve complex models



such as equations. This limitation is overcome by Genetic
Programming (GP) introduced by Koza [13], which works
on the principle of GA. GP writes expressions or computer
programs instead of strings in GA. In this paper, SVM
and GP are used as alternate paradigms to predict bearing
capacity of cohesionless soils under shallow foundations.

2. Support Vector Machine

Support vector machine (SVM) is a relatively recent addition
to the family of soft computing techniques evolved from
the concept of statistical learning theory explored by Boser
et al. [14]. SVM performs the regression by using a set of
nonlinear functions that are defined in a high-dimensional
space. SVM has been used to solve nonlinear regression
problems by the principle of structural risk minimization
(SRM), where the risk is measured using Vapnik’s accuracy
intensive loss function (¢) [15]. SVM uses a risk function
consisting of the empirical error and a regularization term.
More details on SRM can be found in Cortes and Vapnik
[16]. Considering a set of input-output pairs as training
dataset, [(x1, 1), (x2, ¥2) - - - (x5, y1)]x € RN, y € r, where
x is the input, y is the output, RV is the N-dimensional
vector space, and r is the one-dimensional vector space. In
this problem, the width of footing (B), depth of footing (D),
the length-to-width ratio (L/B) of footings, density of soil (y
or y') angle of internal friction (®), and so forth were used as
model input parameters to predict ultimate bearing capacity
(qu). Hence, for this problem, x = [B, D, (L/B), y, ®] and
Y= [%]-

The intension of SVM is to fit a function that can approx-
imately predict the value of output on supplying a new
set of predictors (input variables).

The e-intensive loss function can be described as follows:

Li(y) =0 for |f(x)—y| <¢ (1)

otherwise,

L(y) = [ f(x) —y| —= )

This defines an e-tube so that if the predicted value is within
the tube, the loss is zero; otherwise the loss is equal to the
absolute value of the deviation minus e. This concept is
depicted in Figure 1.

SVM attempts to find that a function f(x) that gives the

deviation of “€” from the actual output is as flat as possible.
Consider a linear function of the form,

fx)=(w-x)+b, weRN, ber, (3)

where w is an adjustable weight vector and b is the scalar
threshold. Fitness means the search for a small value of “w”.
It can be represented as a minimization problem with an

objective function comprising the Euclidian norm as follows:
C . 1
Minimize : 3 lw]|?
Subjectto  y; —[(w-x;)+b] <e, i=1,2,3,...,],

i=1,23,...,L
(4)

[(w-xi)+b]l—yi<e
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F1GURE 1: The e-tube and slack variable (¢) in SVM.

Some allowance for errors (&) may also be introduced. Two
slack parameters & and £* have been introduced to penalize
the samples with error more than “¢”. Thus the infeasible
constraints of the optimization problem are eliminated. The
modified formulation takes the following form:

I
Minimize : %||W||2+CZ(51‘+51‘*)
i=1
Subject to  y; — [(w-x;)+b] <e+&, i=1,23,...,],
[(w-x)+b] —yi<e+&™, i=1,23,...,L
=0, &' =0, i=1,23,...,L
(5)

The constant 0 < C < oo determines the tradeoff between the
flatness of f(x) and the amount up to which the deviations
larger than “e” are tolerated [17]. The above optimization
problem is solved by Vapnik [15] using Lagrange multiplier

method. The solution is given by

M
Flx) =D (i —a*)(xi - %) + b,
= (6)

where b= —(%)W - (o + x5),

where x; and x, are known as support vectors and M is the
number of support vectors.

Some Lagrange multipliers («;, a;*) will be zero, which
implies that these training solutions are irrelevant to the final
solution (known as sparseness of the solution). The training
objects with nonzero Lagrange multipliers are called support
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FIGURE 2: Concept of nonlinear regression using SVM.

vectors. When linear regression is not appropriate, input data
have to be mapped into a high-dimensional feature space
through nonlinear mapping and the linear regression needs
to be performed in the high-dimensional feature space [14].
Kernel function K is used to transform nonlinear data from
the input to the feature space in linear form. Then linear
fitting in new space will be equal to nonlinear fitting in
original space:

K(xi,xj> = ¢(x;) - gb(xj), (7)

where K is the kernel function, x; and x; are inputs, and
¢(x:) - ¢(x;) is the dot product in the high-dimensional space.
Thus, (6) can be replaced by

M

fx) = (e — oK (% - x7) +b. (8)

i=1

The concept of nonlinear mapping is depicted in Figure 2.
The functions which satisfy Mercer’s theorem can be used

for fitting the data [14]. Polynomial functions, radial basis

function (RBF), and splines are the most commonly used

kernel functions for data fitting using SVM. The mathemat-
ical forms of some popular kernel functions can be found
in [18].

3. Genetic Programming

Genetic Programming (GP) is an automatic programming
technique for evolving computer programs to solve, or
approximately solve, problems introduced by Koza [13].
GP is basically an optimization paradigm that can also be
effectively applied to the genetic symbolic regression (GSR).
GSR involves finding a mathematical expression in symbolic
form relating finite values of set of independent variables
(x;) and a set of dependent variables (y;) [19]. GP works on
Darwin’s natural selection theory in evolution. Here, a pop-
ulation is progressively improved by selectively discarding
the not-so-fit population and breeding new children to form
better populations. Like other evolutionary algorithms, the
solution is started with a random population of individuals
(equations or computer programs). Each possible solution
set can be visualized as a “parse tree” comprising the terminal
set (input variables) and functions (general operators such
as +, —, *, /, logarithmic or trigonometric). The “fitness” is
a measure of how closely a trial solution solves the problem.
The objective function—the minimization of error between
estimated and observed values—is the fitness function. The
solution set in a population associated with the “best fit”
individuals will be reproduced more often than the less
fit solution sets. It iteratively transforms a population of
computer programs into a new generation of programs by
applying analogs to naturally occurring genetic operators
like reproduction, mutation, and crossover. The different
genetic operations can be found in detail in [13]. The basic
procedure of GP is presented as a flow chart in Figure 3.

In the recent past, GP is effectively applied to solve a wide
range of geotechnical engineering problems [20-22]. GP can
evolve an explicit equation or equivalent computer program
relating the input and output variables which is a more
understandable depiction of the cause-effect process. Some
literature suggests that the program-based GP approach (i.e.,
the GP algorithms which give a computer program which
helps for estimating the predictant value for a given set of
predictors) can perform equally well with an equation-based
approach and other soft computing tools like ANN [23-26].
A program-based GP approach is adopted for the present
study.

4. Model Development and Results

The primary step in model development for the estimation
of bearing capacity of cohesionless soils underneath shallow
foundations is identification of parameters that affect the
bearing capacity. The basic form of equation for bearing
capacity of cohesionless soil is [5]

qu = yDNqSqdq + 0.5ByN,S,d,, 9)

where B is the width of foundation, D is the depth of
foundation, y is the unit weight of sand, Ny, N, is the bearing
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Generate an initial population comprising of computer programs

|

Evaluate each program (symbolic expressions), and assign it

fitness according to how best it solves the problem

From temporary population, select the programs according to
their fitness

Create new population by performing genetic operators such as
reproduction, crossover, and mutation

Evaluate the performance of new population

Is termination criteria

satisfied?

Report the best computer program appeared so far as

the result

F1GuUrE 3: Flow chart of Genetic Programming.

capacity factors, Sy, S, is the shape factors, and d,, d, the
depth factors. These factors primarily depend on the angle
of shearing resistance, unit weight of the sand, and the
geometry of the foundation.

The main factors affecting the bearing capacity are its
width (least lateral dimension, B), length of footing (L),
shape (square, rectangular, and circular), and depth of
embedment (D). The depth of foundation has the greatest
effect on the bearing capacity of all the physical properties
of the foundation. There are some other factors such as
compressibility and thickness of the soil layer beneath the
foundation that contribute to a lesser degree [5]. The effect
of compressibility is small, except for loose densities, and is
generally less important in bearing capacity computation [5].
Moreover, there are insufficient data to consider compress-
ibility as well as thickness of soil stratum. Therefore, they are
not considered in this study.

4.1. Database. The data used in the present study has been
adopted from Padmini et al. [5]. The five input parameters
used for the model development in this study are width of
footing (B), depth of footing (D), footing geometry (L/B),
unit weight of sand (y), and angle of shearing resistance
(®). Ultimate bearing capacity (q,) is the single output. The

data thus compiled comprises a total of 97 data sets, which
consists of results of load test data of square, rectangular, and
strip footings of different sizes tested in sand beds of various
densities. Out of the total 97 sets of data, 78 are used for
training and 19 are used for validation in all the experiments
considered in this study. The data division is done in such a
way that the same 19 sets of data used by Padmini et al. [5]
are kept as the validation dataset to enable a comparison of
results of the present study with those obtained by ANN and
FIS by Padmini et al. [5].

4.2. Development of SVM Model. The data mining software
WEKA 3.6.1 proposed by Witten and Frank [27] is used
for developing SVM model. In this study an e-variant of
SVM (e-SVM) is used for support vector regression, and
the loss function (¢) is fixed as 0.001. Initially, a polynomial
kernel of degree (d) 2 is used to fit a nonlinear model. The
selection of regularization parameter C and kernel-specific
parameters (d and o for polynomial and RBF kernel, resp.)
may influence the results. A large value of C indicates that
the objective function is only to minimize the empirical risk,
which makes the learning machine more complex. On the
other hand, a smaller C may cause learning errors with poor
approximation [28].
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FIGURE 4: Scatter plot of SVM model with polykernel for training
dataset.
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FIGURE 5: Scatter plot of SVM model with RBF Kernel for training
dataset.

A trial and error approach is followed to find the optimal
value of C for model with polynomial kernel. The C parame-
ter of 100 is found to be quite successful in giving satisfactory
performance. Then a radial basis function (RBF) kernel is
used to fit a nonlinear model in the present study to build
an SVM model. The combination of control parameters such
as C = 250 and ¢ = 3 gives very good training per-
formance. The plot between observed and predicted values
of training dataset is shown in Figure 4 (polykernel) and
Figure 5 (RBF kernel). These plots indicate that the model
is well trained.

4.3. Development of GP Model. The genetic programming
software DISCIPULUS [29] is used for developing GP model.
The models are created in the form of “evolved” computer
programs as GP uses Darwinian natural selection to create
them. Using this model, the output of statistically similar
input data can be predicted with very much accuracy. The
initial control parameters used for the problem are popu-
lation size: 500, crossover probability: 0.95, and mutation
probability: 0.5. The basic arithmetical functions (such as
addition, multiplication, subtraction, and division (+, *,
—, /) constitute the function set. The fitness function is
selected as the root-mean-square error between the measure
and predicted values of ultimate bearing capacity. The best
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FIGURE 6: Scatter plot of GP model for training dataset.

program generated by GP software for predicting the UBC of
cohesionless soils is given in the appendix. The plot between
observed and predicted values of training dataset is shown in
Figure 6. This plot indicates that the model is well trained.

5. Results and Discussions

The efficiency of the developed models is analyzed by
different statistical performance evaluation criteria such as
correlation coefficient (R), coefficient of efficiency (E), root-
mean-square error (RMSE), mean bias error (MBE), and
mean absolute relative error (MARE). The equations of
different performance evaluation measures were presented in
Table 1, in which y, stands for the observed output value,
yc represents the computed output value, y° is the mean of
observed values, y¢ represents the mean of computed values,
and n represents the number of data points. The differ-
ent performance evaluation criteria estimated for training
dataset are presented in Table 2. The predictions for testing
dataset using different models are presented in Table 3, and
the performance evaluation for these predictions is presented
in Table 4. However, it is to be noted that the ANN and
FIS results presented in Table 4 are deduced based on the
relative error (RE) values reported by Padmini et al. [5].
From Table 4 it can be inferred that the correlation coefficient
and coefficient of efficiency are the highest (0.997 and 0.996)
and the error criteria such as RMSE, MBE, and MARE are
the least (44.967, 4.01, and 7.69) for the GP-based modeling.

Further the scatter plots between observed and predicted
values of UBC for SVM models are presented in Figure 7
(polykernel) and Figure 8 (RBF kernel). The 5% error bar
lines are plotted along with these scatter plots. Such a plot
can be used to indicate the range of standard deviation and to
determine whether the differences are statistically significant
[8]. A perusal of plots shows that, for GP-based predictions,
all points lie within the specified confidence interval of 95%.
Thus, it can be inferred that all the soft computing methods
outperform the theoretical approaches in the prediction of
bearing capacity. Similar plot for predictions with GP model
is presented in Figure 9. Also from Table 4, it is seen that the
R value and E value are closer to unity and different error
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TaBLE 1: Performance evaluation criteria.

Evaluation criteria

Equation

Coefficient of correlation (R)

Coefficient of efficiency (E)

Root-mean-square error (RMSE)
Mean bias error (MBE)
Percentage relative error (RE)

Percentage mean absolute relative error (MARE)

S (! =) =59

R= n —\2 n —\2
VI (0F = T E (5 - 7°)
n 0 _ ¢ 2
E=1-— Z;:1 (yi )’7;)2
i (=0
n 0 _ ¢ 2
RMSE = 2 07 =)

n
1 n
MBE = 1 (¢ - y0)
RE = P2 =29, 109
}’01 .,
MARE = 3 [RE|
i=1

TABLE 2: Performance evaluation of different models for training dataset.

SVM* GP*
Performance Meyerhof [2] Hansen [3] Vesic (4] Polykernel RBF kernel
index (C=100;d=2) (C=250;0=3)
R 0.9307 0.9295 0.9408 0.9742 0.9977 0.9923
E 0.7387 0.6908 0.7208 0.9408 0.9948 0.9900
RMSE (kPa) 260.0015 282.8295 268.7726 123.7923 36.8280 65.0650
MBE (kPa) —78.3587 -95.8701 —103.2620 —-9.5919 —-3.5807 —0.8618
MARE 19.6545 20.9268 25.6619 19.3968 1.8036 12.9030
*Present study.

TaBLE 3: Predicted bearing capacity of different models for testing dataset.
Observed .
Slno.  bearing Mey(ekr;‘;))f (2] Ha?ﬁ;;” ] V‘Ei‘;a[)‘” ANN (kPa)  FIS (kPa) SVM (kPa) (1<sz :
capacity (kPa)
RBF Kernel Polykernel
(C=250;0=3) (C=100;d=2)

1 1760 1174.892 1230.649  1194.571 1753.048 1888.48 2137.096 2005.19 1794.292
2 214 163.54 164.0827  117.9378 221.1134 195.1252 257.952 165.809 211.9048
3 681 353.1485 3225613 372.5071 579.7285 651.3084 999.874 676.838 639.0338
4 137 114.1407 124.0721  94.67636 161.6463 100.6128 125.435 143.271 152.3006
5 322 372.0038 365.65 329.434 226.6236 150.2774 304.729 240.232 311.4622
6 2033 1757.721 1641.436  1510.498 2047.19 2164.129 1863.654 2012.747 2077.698
7 464 560.7228 530.9029  542.3884  475.0664 657.024 540.622 816.999 572.9832
8 461 270 295.4085  214.7597 348.0043 274.1106 409.256 368.095 484.8436
9 1140 865.35 841.3887  780.5128 1064.874 1097.022 1023.901 1059.188 1118.019
10 630 516.9667 565.6161  411.1984  512.1459 541.044 667.666 632.805 498.9244
11 1540 697.3765 608.3824  664.3541 1626.086 1683.99 1691.924 1271.259 1558.777
12 180.5 139.4636 134.7036 115.906 269.2338 241.4368 188.525 175.087 217.0617
13 91.5 101.6777 88.88982  80.81764 99.8448 107.0916 93.131 77.511 88.75574
14 244.6 290.428 279.7286  249.5037  233.3973 230.3643 242.907 250.901 250.7569
15 143.3 138.7347 138.3666  119.3544 108.4208 151.7547 139.657 138.799 127.4984
16 131.5 144.9232 135.2796  162.6324 130.6124 156.5113 129.475 109.495 153.612
17 253.6 283.7822 270.4981  333.1746 226.1098 275.0038 251.614 255.153 266.6882
18 135.2 125.613 121.5267  136.3814 128.8321 178.5992 135.021 131.044 133.1664
19 264.5 329.4678 314.9475  383.6036 198.7189 347.2885 272.425 386.591 245.1108
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TABLE 4: Performance evaluation of different models for testing dataset.
P erformance  Meyerhof [2] Hansen [3]  Vesic [4] ANN [5] FIS [5] SVM* GP*
index Polykernel RBF Kernel
(C=100;d=2) (C=250;0=3)
R 0.9410 0.9366 0.9456 0.9951 0.9899 0.9775 0.9806 0.9972
E 0.7863 0.7583 0.7321 0.9942 0.9858 0.9541 0.9504 0.9965
RMSE (kPa) 269.947 287.099 302.269 62.620 98.002 125.087 130.102 44.967
MBE (kPa) —127.724 -139.611 —158.552 -21.89 13.92 34.11 4.75 4.019
MARE 22.0679 20.0152 28.515 13.314 19.456 14.7278 9.4528 7.6817
*Present study.
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FIGURE 7: Scatter plot and 5% error bar lines for SVM model with
polykernel (testing dataset).

criteria are much lesser for any of the applied soft computing
tools when compared with theoretical models.

A statistical evaluation of the predictions by the different
soft computing models for the testing dataset is performed
and presented in Table 5. The standard deviation, average
deviation, and coefficient of variation values of GP model
results (607.91, 454.59, and 1.059) show close agreement
with that of observed values (600.02, 459.48, and 1.052)
followed by that of SVM (RBF) model. This confirms the
robustness of the newly applied paradigms.

The different performance evaluation measures of SVM-
based modelling (in Tables 4 and 5) show that the perfor-
mance of RBF-based SVM is competent with ANN and FIS
results. Also SVM involves only lesser number of control
parameters (such as C and o¢), and ANN involves large
number of such parameters and their optimal combination
is a tedious process. Thus, the SVM approach is quite
simple to implement. Further, the performance evaluation
of GP-based results (Tables 4 and 5) shows that the R, E
and different error criteria are better for the GP model
when compared with the theoretical methods, the SVM, and

Observed bearing capacity (kPa)

FIGURE 8: Scatter plot and 5% error bar lines for SVM model with
RBF Kernel (testing dataset).
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FIGURE 9: Scatter plot and 5% error bar lines for GP model (testing
dataset).
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TABLE 5: Statistical properties of values predicted by different models.

Statistical Measure Observed ANN FIS SVM (Poly)* SVM (RBF)* GP*

Maximum 2033 2047.19 2164.13 2137.1 2077.7 2077.7
Minimum 91.5 99.84 100.61 93.13 77.51 88.75
Average 569.83 547.93 583.7 603.9 574.58 573.84
Average deviation 459.48 455.92 488.4 501.1 468.73 454.59
Standard deviation 600.02 609.3 645.8 641.0 608.60 607.91
S;?ﬁicolﬁnt of 1.052 1112 1.106 1.059 1.059 1.059

*Present study.

interpreted results of ANN and FIS. Thus, GP is proven to be
areliable alternative soft computing technique for prediction
of ultimate bearing capacity of shallow foundation on
cohesionless soil.

6. Conclusions

In this paper the application of two relatively recent soft com-
puting techniques—SVM and GP—is investigated for the
prediction of ultimate bearing capacity of cohesionless soils
beneath shallow foundations. SVM results are competent
and demand the optimal selection of only a few number of
control parameters when compared with ANN. Performance
evaluation based on multiple error criteria shows that error
is the least and correlation coefficient (R) and coefficient
of efficiency (E) are the highest for the GP-based modeling
than SVMs, ANN, FIS, and the different theoretical models
considered in this study. The GP-based modeling is found to
be superior in terms of quality, and it gives the output in the
form of computer programs which enables the user to apply
for a new set of input data to predict the ultimate bearing
capacity. Thus, GP can be recommended as a robust soft
computing paradigm to predict the ultimate bearing capacity
of soil.

Appendices
A. Note

The C++ Program to predict the ultimate bearing capacity
of cohesionless soils is given here. V[0] to V[4] represent the
input parameters width of footing (B), the depth of footing
(D), the length-to-width ratio (L/B), the field density (y), the
angle of shearing resistance (®). f[0], f[1], and so forth, are
the temporary computation variables that the programs GP
software creates. The output of these programs is the value
remaining in f[0] after the program executes. This program
needs to be run in the DISCIPULUS software environment
to get the predictant value for a new set of predictors.

B. Best Program

#define TRUNC(x)(((x)>=0) ? floor(x): ceil(x))
#define C_FPREM (_finite(f[0]/f[1]) ?
f{0]-(TRUNC(f[0]/f[1])

*f[1]): f[0]/f[1])

#define C_F2XM1 (((fabs(f[0])<=1) &&
(I_isnan(f[0]))) ? (pow(2,f[0])-1):
((!_finite(f[0]) && !_isnan(f[0]) &&
(f[0]<0)) ? -1: £[0]))

float DiscipulusCFunction(float v[])
{

long double {[8];
long double tmp = 0;
int cflag = 0;

£10]=f[1]=f[2]=f[3]=f[4]=f[5] =f[6]=F[7]=0;
L0: f[0]/=-1.364008665084839f;

[0]

L1: fl0]+=f[1];
L2: fl[0]=—f[0];
L3: f[0]—=v[0];
L4: f[0]+=v[4];
L5: f[0]+=v[4];
L6: f[0]=cos(f[0]);
L7: f{0]+=f[0];
L8: f[0]+=f[0];
L9: f[0]+=f[0];
L10: f[0]*=v[1];

L14: cflag=(f[0] < {[1]);

L15: f[0]=sqrt(f[0]);

L16: f[0]*=0.2877938747406006f;
L17: tmp=£[1]; f[1]=£[0]; f[0]=tmp;
L18: f[0]—=v[3];

L19: f[0]*=—0.494312047958374f;
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L20: f{0]*=0.7790718078613281f;
L21: fl[o]*=f[1];

L22: f[0]=fabs(f[0]);

L23: f[0]=cos(f[0]);

L24: f[0]=—f[0];

L25: f[0]=sqrt(f[0]);

L26: if (cflag) f[0] = {[1];

L27: f[0]+=v[4];

L28: f{0]*=0.9955191612243652f;
L29: f{0]*=0.4281637668609619f;
L30: f[0]—=f[0];

L31: f[0] —=v[3];

L32: f[0]/=v[0];

L33: f{0]—=0.9955191612243652f;
L34: f[0]+=v[4];

L35: cflag=(f[0] < {[1]);

L36: £{0]—=f[1];

L37: f[0]/=f[0];

L38: f[0]*=pow(2,TRUNC(f[1]));
L39: f[0]—=f[1];

L40: f[0]=—£[0];

L41: f[0]=fabs(f[0]);

L42: f[0]=—f[0];

L43: f{0]*=0.4281637668609619f;
L44: f[0]*=f[0];

L45: f[0]*=f[0];

L4e6: f[0]/=£[0];

L47: f{0]*=—0.7297487258911133f;
L48: {{0]/=1.084159851074219f;
L49: f[0]+=v[4];

L50: tmp=f[0]; f[0]=f[0]; f[0]=tmp;
L51: f[0]/=f[1];

L52: f{0]4+=0.7790718078613281f;
L53: f[0]+=v[4];

L54: f[0]—=f[1];

L55: f[0]*=f[1];

L56: f{0]*=0.4281637668609619f;
L57: f[0] —=v[3];

L58: f[0]—=—-0.9486191272735596f;

L59: if (cflag) f[0] = f[1];
L60: f[0]/=v[2];

Le6l:
L62:
L63:
L64:
L65:
L66:
Le67:
L68:
L69:
L70:
L71:
L72:
L73:
L74:
L75:
L76:
L77:
L78:
L79:
L80:
L81:
L82:
L83:

1.84:
L85:
L86:

L87:
L88:

L89:
L90:
L91: f
L92:
L93:1
L94: f|
L95: f
L96: f
L97:f

OO

fl
il
fl
fl
fl
fl
fl
fl
il
fl
fl
fl
fl
f('cﬂag)f[O] f{1];
£[0]—=1.987620830535889f;
fl0] —=v[4];
£[0]—=1.987620830535889f;
fl0] —=v[4];

fl0]—=v[4];
f[0]-=0.7361507415771484f;
fl

fl

il

fl

fl

il

fl

fl

if

]-
I
Uks
]-
]-
1=
0]—=1.987620830535889f;
]-
]-
1=
]-
]
]-
]-

0

0

0]—=v[4];
0]—=1.987620830535889f;
0]—=v[4];
0]—=1.501374244689941f;
0]+=v([2];

0]—=v[4];

0 1.530829906463623f;
(Icflag) 0] = f[1];
0]+=v[3];

0] —=v[4];

fl

[
f[0]+=—1.907608032226563f;
f

(Icflag) f[0] = f[1];
+=v[3

>

+=v[3];

+=v[3];

IE
]
+=v[3];
]
I;
IE

0]+=v[3];

L100: f[0]+=v[3];
L101: f[0]+=v[3];
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L102: f[0]+=v[3];
L103: f[0]+=v[3];
L104: f[0]+=v[3];
L105: f[0]+=v[3];
L106: f[0]+=v[3];
L107: f[0]+=v[3];
L108: f[0]+=v[2];
L109: f[0]+=v[3];
L110:

if (!_finite(f[0])) £[0]=0;

return f[0];

).
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