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In the area of greenhouse operation, yield prediction still relies heavily on human expertise. This paper proposes an automatic
tomato yield predictor to assist the human operators in anticipating more effectively weekly fluctuations and avoid problems of
both overdemand and overproduction if the yield cannot be predicted accurately. The parameters used by the predictor consist of
environmental variables inside the greenhouse, namely, temperature, CO

2
, vapour pressure deficit (VPD), and radiation, as well as

past yield. Greenhouse environment data and crop records from a large scale commercial operation,Wight Salads Group (WSG) in
the Isle of Wight, United Kingdom, collected during the period 2004 to 2008, were used to model tomato yield using an Intelligent
System called “Evolving Fuzzy Neural Network” (EFuNN). Our results show that the EFuNNmodel predicted weekly fluctuations
of the yield with an average accuracy of 90%. The contribution suggests that the multiple EFUNNs can be mapped to respective
task-oriented rule-sets giving rise to adaptive knowledge bases that could assist growers in the control of tomato supplies and more
generally could inform the decision making concerning overall crop management practices.

1. Introduction

Greenhouse production systems require implementing
computer-based climate control systems, including carbon
dioxide (CO

2
) supplementation. The sort of systems we are

concerned with here are normally in use all year-round so
as to maximize product and thus are typically applied in
scenarios where the greenhouse crops have a long growing
cycle. The technological advances and the sophistication
of greenhouse crop production control systems do not
mean that greenhouse operation does not rely on human
expertise to decide on the optimum values for yield
weekly amount. Practiced greenhouse tomato growers and
researchers evaluate plant responses and growth mode by
observations of the plant morphology. Tomato growers use
this information in decision making depending on climate
conditions and crop management practices to shift the plant
growth toward a “balanced” growth mode, or to be able to
accurately predict regular crops amounts each year.

One of the dynamic and complex systems is tomato
crop growth, and few models have studied it previously.
Two of the dynamic growth models are TOMGRO [1, 2]
and TOMSIM [3, 4]. Both models depend on physiological

processes, and they model biomass dividing, crop growth,
and yield as a function of several climate and physiological
parameters.Their use is limited, especially for practical appli-
cation by growers, by their complexity, and by the difficulty
in obtaining the initial condition parameters required for
implementation [3]. Moreover, critical measurements are
required for calibration and validation for each application.

Tompousse [5] predicts yields in terms of the weight of
harvested fruits. Their model was developed in France for
heated greenhouses and required that the linear relationships
of both flowering rate and fruit growth period were in
an appropriately warm environment; when the system was
implemented in unheated plastic greenhouses, in Portugal,
for example, themodel performed poorly and was only tested
for short production cycles of less than 15 weeks.

Adams [6] proposed a greenhouse tomato model and
implemented it in the form of a graphical simulation tool
(HIPPO). A key objective of the model was to explain the
weekly fluctuations of greenhouse tomato yields as charac-
terized by fruit size and harvest rates. This model required
hourly climate data in order to determine the rates of growth
of leaf truss and flower production.
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Although the seasonal fluctuations of yield in greenhouse
crops is generally understood to be influenced by the periodic
variation of solar radiation and air temperature, greenhouse
growers are also interested in the short- and long-term
fluctuations of yield. There are a number of useful tools that
can help growers when they are making short- and long-
term decisions. For example, there are crop models that
predict yield rates and produce quality in defining climate
control strategies, in synchronizing crop production with
market demands, in handling the labour force, in emerging
marketing strategies, and in maintaining a consistent year-
round produce quality.

As we will show, EFuNN offers the advantage that it is
able to model nonlinear system relationships and has been
shown in other applications to be very robust when applied to
data which is relatively imprecise, incomplete, and uncertain.
EFuNN has been successfully applied in applications such
as forecasting, control, optimization, and pattern recognition
[7]. Intelligence is added to the process by computing the
degree of uncertainty and computing with linguistic terms
(fuzzy variables). More accuracy is obtained compared to
mechanistic models.

Numerous studies have applied either neural networks
(NNs) or fuzzy logic in greenhouse production systems.
However, most of them have focused on modeling the air
temperature in greenhouse environments [8–11] or optimal
control of CO

2
with NN. Recent techniques have included

modeling the greenhouse environment with hierarchical
fuzzy modeling [12] or controlling the environment with
optimized fuzzy control [13, 14]. Other studies concerning
plant modeling have been reported: [15] implemented a
hybrid neurofuzzy approach in terms of the system identi-
fication and modeling of the total dry weight yield of tomato
and lettuce [16] and developed a fuzzy model to predict
net photosynthesis of tomato crop canopies, and the results
obtained correlated well with the results. TOMGRO [1] was
used to model the prediction processes.

The objective of this study is to investigate how an IS
technique such as EFuNN performs when applied to current
crop and climate records from greenhouse growers, weekly
prediction of greenhouse tomato yield from environmental
and crop-related variables. Yield was characterized by yield
per unit area (Yield, kg/m2).

The rest of this paper is organized as follows. In Section 2,
we discuss the methodology introduction and materials and
methods. Section 3 is results, and finally Section 4 presents
the conclusions.

2. Background to Rule Extraction

A wide variety of methods are now available, recently
reviewed in [1, 17, 18]. Reference [17] revisits the Andrews
classification of rule extraction methods and emphasizes
distinction between decompositional and pedagogical
approaches. Rule extraction methods usually start by finding
a minimal network, in terms of number of hidden units and
overall connectivity. The next simplification, the key feature
of the method, is to cluster the hidden unit activations, then

extract combinations of inputs, which will activate each
hidden unit, singly or together, and thus the output generates
rules as the general form of rules shown as follows:

If (𝑥1 ≤ 𝑡1) AND ⋅ ⋅ ⋅AND (𝑥𝑝 ≥ 𝑡𝑝)Then 𝐶𝑖. (1)

Taha and Ghosh [19] suggest binary inputs generating
a truth table from the inputs and simplifying the resultant
Boolean function. The growth of computational time with
number of attributes makes minimizing the size of the neural
network essential and somemethods evolve minimal topolo-
gies. The pedagogical approaches treat the neural network as
a black box [20] and use the neural network only to generate
test data for the rule generation algorithm.

2.1. Taxonomy of Rule Extraction Algorithms. It is now
becoming apparent that algorithms can be designed which
extract understandable representations from trained neural
networks, enabling them to be used for decision-making. In
this section, we use a taxonomy presented in [21] which uses
three criteria for classification of rule extraction algorithms:
scope of use, type of dependency with themethod of solution
of the type “black box,” and format of the extracted rules.The
algorithms can be a regression or classification algorithms.
There are some algorithms that can be applied to both cases,
such as theG-REX [21].On the second criterion, an algorithm
is considered independent if it is totally independent of the
model type black box used (such as ANN and Support Vector
Machines).The algorithms that use information of the black-
box methods are called dependent methods. Regarding the
format of the extracted rules, the methods can be classified
into descriptive and predictive. The predictive algorithms
perform extraction of rules that allow the expert to make
an easy prediction for each possible observation from input
space. If this analysis cannot be made directly, the algorithms
are known only as descriptive.

3. Materials and Methods

3.1. EFuNN Evolving Fuzzy Neural Networks and
the EFuNN Algorithm

3.1.1. Fuzzy Background. Fuzzy inference systems (FISs) are
very useful for inference and handling uncertainty. The basic
models presented are [14]. Some important issues that must
be considered when building an FIS are identification of
structure and estimation of parameters. Efficient structure
identification optimizes the number of fuzzy rules and yields
better convergence [22]. Different membership functions
(MFs) can be attached to the neurons (triangular, Gaussian,
etc.). The number of rules and the membership functions
were estimated by the designers in early implementations
of FIS [14]. A more efficient structure is then employed to
optimize the number of rules in adaptive techniques which
are appropriate for learning parameters that change slowly;
handle complex systems with speedily changing characteris-
tics, considering the fact that it takes a long time after every
important change in the system to relearn model parameters
[23, 24].
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Figure 1: FuNN architecture.

References [14, 25] describe some techniques to learn
fuzzy structure and parameters. In recent years, several evolv-
ing neurofuzzy systems (ENFSs) have been simulated, and
these systems use online learning algorithms that can extract
knowledge from data and perform a high-level adaptation of
the network structure, as well as learning of parameters.

3.1.2.TheGeneral Fuzzy Neural Network (FuNN) Architecture.
The fuzzy neural network (FuNN) (Figure 1) is connectionist
feed-forward architecture with five layers of neurons and four
layers of connections [26]. The first layer of neurons receives
input information. The second layer calculates the fuzzy
membership degrees of the input values which belong to
predefined fuzzy membership functions, for example, small,
medium, and large. The third layer of neurons represents
associations between the input and the output variables, fuzzy
If-Then rules.The fourth layer calculates the degrees to which
output membership functions are matched by the input data,
and the fifth layer does defuzzification and calculates values
for the output variables. An FuNN has both the features of
a neural network and a fuzzy inference machine. Several
training algorithms have been developed for FuNN [26]: a
modified back-propagation algorithm; a genetic algorithm;
structural learning with forgetting; training and zeroing;
combinedmodes. Several algorithms for rule extraction from
FuNN have also been developed and applied. Each of them
represents each rule node of a trained FuNN as an If-Then
fuzzy rule.

3.2. EFUNN Architecture. EFuNNs are FuNN structures that
evolve according to the Evolving Connectionist Systems
(ECOS) principles. That is, all nodes in an EFuNN are gen-
erated through learning.Thenodes representingmembership
functions can bemodified during learning. As in FuNN, each
input variable is represented here by a group of spatially
arranged neurons to represent different fuzzy domain areas
of this variable. Different membership functions can be
attached to these neurons (triangular, Gaussian, etc.). New
neurons evolve in this layer if for a given input vector the
corresponding variable value does not belong to any of

the existing membership functions to a membership degree
greater than a membership threshold, and this means that
new fuzzy label neuron or an input variable neuron can be
created during the adaptation phase of an EFuNN.

3.3. Yield Records and Climate Data. Crop records and clim-
ate data from a tomato greenhouse operation inWSG (Wight
Salads Group) in the Isle of Wight, United Kingdom, were
used to design and train evolving fuzzy neural networks for
yield prediction. We used fuzzy inference system for imp-
lementing input parameter characterization. The data in-
cludes six datasets from two production cycles (S1: 2004
to 2007 and S2: 2008) and one greenhouse section (New
Site). The total number of records is 1286, and each record
included 14 parameters characterizing the weekly greenhouse
environment and the crop features.

The environmental parameters which are to be controlled
are the vapor pressure deficit (VPD) and the differential
temperature between the daytime to nighttime (𝑇

𝑑
− 𝑇
𝑛
).

The setpoints for each environmental treatment were VPD =
2.0 kPa, 0.6 kPa, and uncontrolled; 𝑇

𝑑
/𝑇
𝑛
= 26∘C/18∘C, 20∘C/

20∘C, and 22∘C/18∘C, respectively, for each compartment.The
date when they were planted and the period over which the
crops were allowed to grow in the case of both datasets are
summarized in Table 1.

The tomatoes were grown in greenhouses on a high-
wire system with hydroponic, CO

2
supplementation, and

computer climate/irrigation control. The greenhouses were
equipped with hot-water heating pipes and roof vents for
passive cooling.

The crop records consisted of 12 plant samples per green-
house section that were randomly selected and continuously
measured during the production cycle. The crop record data
were collected by direct observation and by manually mea-
suring or counting each of the morphological features. This
system included an electronic sensor unit which measured
the air temperature, humidity, andCO

2
concentration in each

of the greenhouse sections. Outside weather conditions were
determined via a weather station. Daytime, nighttime, and
24 h averages of daily climate data from outside and inside
of the greenhouse section were also obtained by the grower;
weekly averages were computed to match the weekly crop
records.

3.4. Modeling the Parameters. Yield (𝑌
𝑎
, kgm−2 week−1) is of

interest to greenhouse growers as a means via which they
can develop short-term crop management strategies; it is
also useful for labour management strategies. Greenhouse
tomato cumulative yield can be described, either as fresh
weight (Cockshull, 1988) or as dry mass [27]. Both of these
studies were performed in northern latitudes, without CO

2

enrichment, for short production periods (<100 days), and
the plants were cultivated in soil, not hydroponically. These
are not currently standard cultivation methods because most
of the greenhouse growers make use of high-technology
production facilities.

Yield development is influencedmainly by fruit tempera-
ture. This parameter is inversely related to fruit development
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Table 1: Summary of datasets. Crop records include samples per week in New House Sites.

Season (years) Greenhouse Transplanted on WOYa and date Crop durationb (weeks) Cultivar
Commercial DS

1 New h21 (26) June 24, 2004 42 Campari
(2004-2005) New h22 (28) July 8, 2004 47 Campari

2 New h21 (31) July 28, 2005 43 Campari
(2004–2007) New h22 (25) June 16, 2005 44 Campari

New h22 (33) Aug. 11, 2006 36 Cherry
New h22 (41) Oct. 6, 2007 39 Cherry

a, bWOY: week of the year number.

for each evolving layer neuron h do
Create a new rule r
for each input neuron i do

Find the condition neuron c with the largest
weight𝑊

𝑐,ℎ

Add an antecedent to r of the form “i is c
𝑊
𝑐,ℎ
” where𝑊

𝑐,𝑡
is the confidence factor for

that antecedent
end for
for each output neuron o do

Find the action neuron a with the largest weight
𝑊
ℎ,𝑎

Add a consequent to r of the form “o is a
𝑊
ℎ,𝑎
” where𝑊

ℎ,𝑎
is the confidence factor for

that consequent
end for

end for

Algorithm 1: EFuNN algorithm steps.

rate and shows a linear relationship with air temperature
[28, 29]. This relationship is shown in Algorithm 1 for all
the datasets, which show the relation between yield and air
temperature (𝑇𝑖

𝑛
24).

3.4.1. Data Processing. The steps of the preprocessing include
making average through a certain amount of the certain
point of some data records.We preprocessed 5 environmental
variables (CO

2
, temperature, vapor pressure deficit (VPD),

yield, and radiation) for different tomato cultivars, from
different greenhouses inWSG area, which were not ready for
processing but had to be pre-processed. For instance, some
values in some tomato records were missing and we had to
replace them with 0, being not ready to be fed to an artificial
neural network for processing. Thus, three preprocessing
steps were taken.

(1) Edit each data file and group same tomato cultivar and
type in one filewith all environmental variables of that
cultivar gathered from different greenhouses.

(2) For each cultivar, store values in a Microsoft Excel
spreadsheet. Next, in the spreadsheet, 0 replaced null
values. For some VPD and radiation missing values
are averaged.

(3) The Excel spreadsheet content was converted to.dat
file input to be fed into Matlab and EFUNN applica-
tion.

3.5. Neural NetworkModel. ComputationalNNs have proven
to be a powerful tool to solve several types of problems
in various real life fields where approximation of nonlinear
functions, classification, identification, and pattern recogni-
tion are required. NNs are mathematical representations of
biological neurons in the way that they process information
as parallel computing units. In general, there are two types
of neural network architecture: (1) static (feedforward), in
which no feedback or time delays exist, and (2) dynamic
neural networks, whose outputs depend on the current or
previous inputs, outputs, or states of the network (Demuth
et al. [30]).

We consider a neural network that consists of an input
layer with 𝑛þ1 nodes, a hidden layer with h units, and an
output layer with l units as follows:

𝑦
𝑖
= 𝑔(

ℎ

∑
𝑗=1

𝑤𝑖𝑗𝑓(

𝑛+1

∑
𝑘=1

V𝑗𝑘𝑋𝑘)) , 𝑖 = 1, 2, . . . , 𝑙, (2)

where xk indicates the kth input value, 𝑦𝑖 the 𝑖th output
value, vjk a weight connecting the kth input node with
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the jth hidden unit, and wij a weight between the jth
hidden unit and the 𝑖th output unit. We start learning with
one hidden layer, which would be updating the weights
and thresholds to minimize the objective function by any
optimization algorithm then terminate the network training
with this number of hidden units when a local minimum
of the objective function has been reached. If the desired
accuracy is not reached, increase the number of hidden units
with random weights and thresholds and repeat updating;
otherwise, finish training and stop.

3.6. The EFuNN Algorithm. EFuNN consists of a five-layer
structure, which begins with the input layer representing
input variables, and each input variable is a presentation of
group of arranged neurons representing a fuzzy quantization
of this variable, which is then presented to the second
layer of nodes. Different membership functions (MFs) can
be attached to these neurons (triangular, Gaussian, etc.),
where continuing modifications of nodes with a membership
functions can be applied during learning.

Through node creation and consecutive aggregation, an
EFuNN system can adjust over time to changes in the data
stream and at the same time preserve its generalization
capabilities. If EFuNNs use linear equations to calculate
the activation of the rule nodes (instead of using Gaussian
functions and exponential functions), the EFuNN learning
procedure is faster. EFuNN also produces a better online
generalization, which is a result of more accurate node
allocation during the learning process. As Algorithm 1 shows,
EFuNN allows for continuous training on new data, further
testing, and also training of the EFuNN on the test data in
an online mode, leading to a significant improvement of the
accuracy.

The third layer contains rule nodes that evolve through
hybrid-supervised learning. These rule nodes present proto-
types of input-output data associations, where each rule node
is defined by two vectors of connection weights 𝑊1(𝑟) and
𝑊2(𝑟); also, W2 is adjusted through learning depending on
output error, andW1 is modified based on similarity measure
within input space in the local area.

The fourth layer of neurons represents fuzzy quantifica-
tion of the output variables, similar to the input fuzzy neurons
representation. The fifth layer represents the real values for
the output variables. In the case of a “one-of-n”mode, EFuNN

transmits the maximum activation of the rule to the next
level. In the case of a “many-of-n”mode, the activation values
ofm (𝑚 > 1) rule nodes that are above an activation threshold
are transmitted further in the connectionist structure.

In this paper, EFuNN’s: Figure 2 shows the evolving
algorithm is based on the principle that rule nodes only exist
if they are needed. As each training example is presented, the
activation values of the nodes, the rule and action layers, and
the error over the action nodes are examined; if themaximum
rule node activation is below a set threshold, then a rule node
is added. If the action node error is above a threshold value, a
rule node is added. Finally, if the radius of the updated node
is larger than a radius threshold, then the updating process is
undone and a rule node is added.

EFuNN has several parameters to be optimized and they
are

(1) number of input and output;
(2) learning rate forW1 andW2;
(3) pruning control;
(4) aggregation control;
(5) number of membership functions;
(6) shape of membership functions;
(7) initial sensitivity threshold;
(8) maximum radius;
(9) M-of-n value.

3.7. Input/Output Parameters. The architecture and training
mode of EFuNNdepends on the input and output parameters
as determined by the problem being solved. The tomato crop
data includes biological entities that show nonlinear dynamic
behaviour and whose response depends not only on several
environmental factors but also on the current and previous
crop conditions. Greenhouse tomatoes have long production
cycles, and the total yield is determined by these parameters.
The effects of several environmental factors (light, CO

2
, air

humidity, and air temperature) have both short- and long-
term impacts on tomato plants. Air temperature directly
affects fruit growth, and according to [28], it is the influential
parameter on the growth process Figure 3.

Greenhouse tomatoes have a variable fruit growth period,
ranging from 40 to 67 days. This deviation results from the
changing 24-hour average air temperature in the greenhouse.
Here the objective was to design an EFuNN that is simple
enough and accurate enough to predict the variables of
interest, since for many practical problems variables have

𝐷
𝑛
=
(1/2) (∑

𝑐

𝑖=1

󵄨󵄨󵄨󵄨𝐼𝑖 −𝑊𝑖,𝑛
󵄨󵄨󵄨󵄨)

∑
𝑐

𝑖=1
𝑊
𝑖,𝑛

(3)

different levels of importance and make different contribu-
tions to the output. Also, it is necessary to find an optimal
normalization and assign proper importance factors to the
variables, reduce the size of input vectors, and keep only the
most important variables.This dynamic network architecture
was chosen because of its memory association and learning
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capability with sequential and time-varying patterns, which
is most likely the biological situation for tomato plants.

4. Experiments Setup: Training and
Performance Evaluation

The training process implies iterative adjustment of the biases
of the network by minimizing a performance function when
presenting input and target vectors to the network.Themean
square error (MSE), selected as the performance function
(Table 2), was calculated as the difference between the target
output and the network output.

The supervised learning in EFuNN is built on the
previously explained principles, so that when a new data
example is presented, the EFuNN creates a new rule node
to memorize the two input and output fuzzy vectors and/or
adjusts the winning rule node. After a certain number of
examples are applied, some neurons and connections may be
pruned or aggregated and only the best are chosen. Different
pruning rules can be applied in order to realize the most
successful pruning of unnecessary nodes and connections.
Although there are several options for growing the EFuNN,
we restricted the learning algorithm to the 1-of-n algorithm.

Using Gaussian functions and exponential functions, the
EFuNN learning procedure produces a better online gener-
alization, which is a result of more accurate node allocation
during the learning process. EFuNN allowed continuous
training on new data; we did further testing and also training
of the EFuNN on the test data in an online mode, which
led to a significant improvement in accuracy. A significant
advantage of EFuNNs is the local learning which allowed a
fast adaptive learning where only few connections and nodes
are changed or created after the entry of each new data item.
This is in contrast to the global learning algorithmswhere, for
each input vector, all connection weights changed.

Tomato plants were included in the training, testing,
and validation process. The initial datasets were randomly
divided so that 60% (771) of the records were assigned to the
training set, 20% (257) to the validation set, and 20% (257)
to the test set. The generalization in each of the networks

Table 2: Test results and performance comparison of demand
forecasting.

EFuNN ANN
(Multilayer perceptron)

Learning epochs 1 2500
Training error
(RMSE) 0.0013 0.116

Testing error
(RMSE) 0.0092 0.118

Computational load
(in billion flops) 0.536 87.2

Table 3: Results from 4 runs of the EFuNN.

RMS (training) No. of rule nodes Accuracy (%)
0.0045 77 82.95
0.0023 48 86.00
0.0029 75 84.91
0.0028 81 80.79

was improved by implementing the early stopping method
through the validation set. After training each of the networks
to a satisfactory performance, the independent validation
set was used to evaluate the prediction performance and to
present the results.

We initialized 𝑥(𝑡), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), 𝑥(𝑡 − 𝑛) in order
to predict the 𝑥(𝑡 + 1), and the training was replicated three
times using three different samples of training data and
different combinations of network parameters. We used four
GaussianMFs for each input variable, as well as the following
evolving parameters: number of membership functions = 3;
sensitivity threshold 𝑆𝑡ℎ𝑟 = 0.99; learning rate = 0.25; error
threshold 𝐸𝑟𝑟𝑡ℎ𝑟 = 0.001; learning rates for first and second
layer = 0.05. EFuNN uses a one-pass training approach.
The network parameters were determined using a trial and
error approach. The training was repeated three times after
reinitializing the network and the worst errors were reported
in Figure 5. Online learning in EFuNN resulted in creating
2122 rule nodes as depicted in Figure 6. We illustrate the
EFuNN training results, and the training performance is
summarized in Table 3.

An investigation of the extracted rule set shown in
Figure 4 from run 2 indicates that different compartments
from the mentioned environmental variables affected yield
prediction. Rules can be obtained from three different kinds
of sources: human experts, numerical data, and neural net-
works. All the obtained rules can be used in rule selection
method to obtain a smaller linguistic rule-based system
with a higher performance. We explain the fuzzy arithmetic-
based [31] approach to linguistic rule extraction from trained
EFuNN for modeling problems using some computer simu-
lations. Assume that our training output was five rules; for the
nonlinear function realized by the trained neural network, we
assume that the five terms (rules) are given for each of the two
input variables. We also assume that the same five terms are
given for the output variable.
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Figure 4: Some rules extracted from EFuNN simulation.

The number of combinations of terms is 25. Each com-
bination is presented to the trained neural network as a
linguistic input vector𝐴𝑞 = {𝐴𝑞𝑖, . . . , 𝐴𝑞2). The correspond-
ing fuzzy output Oq is calculated by fuzzy arithmetic. This
calculation is numerically performed for the h-level sets of
Aq for ℎ = 0.1, 0.2, . . . , 1.0. The fuzzy output Oq is compared
with each of the five linguistic terms.The linguistic term with
the minimum difference from the fuzzy output Oq is chosen
as the consequent part Bq of the linguistic rule Rq with the
antecedent partAq. For example, let us consider the following
linguistic rule.

Rule Rq: If X1 is medium and X2 is small Then y is Bq.
To determine the consequent part Bq, the antecedent part

of the linguistic rule Rq is presented to the trained neural
network as the linguistic input vector. The corresponding
fuzzy output, Oq is calculated.

As a result, the rules shown in Table 3 will be shrinked
into the range of [5–10] rules, which make it more efficient
for operators to work with.

The results obtained from this study indicated that the
EFuNN had successfully learnt the input variables and was
then able to use these variables as a means of identifying the
estimated yield amount.

From the results obtained from testing the EFuNN and
its relative performance against Multilayer Perceptron, it is
evident that the EFuNN models this task far better than any
of the other models. In addition, the rules extracted from
the EFuNN reflect the nature of the training data set and
confirm the original hypothesis thatmore ruleswould need to
be evolved to get better predictions. Accounting for the poor
performance of theMultilayer Perceptron could be explained
by examining the nature of this connectionist model. Having
a fixed number of hidden nodes limits the number of
hyperplanes these models can use to separate the complex
feature space. Selection of the optimal number of hidden
nodes becomes a case of trial and error. If these are too large,
then the ability for the Multilayer Perceptron to generalize
for new instances of records is reduced due to the possibility
of overlearning the training examples. This work has sought

Table 4: Accuracy results for different algorithms.

Classifier C-week Week + 1 Week + 2
MLP 81.108 81.309 78.531
RBF 77.44 80.371 78.885
EFuNN 79.557 86.257 83.992

to describe a problematic area within horticulture produce
management, that of predicting yields in greenhouses. The
EFuNN has clearly stood out as an appropriate mechanism
for this problem and has performed comparably well against
other methods. But the most beneficial aspect of EFuNN
architecture is the rule extraction ability. By extracting the
rules from the EFuNN, we can analyse why the EFuNN
made it more clear and identified deficiencies in its ability to
generalize to new unseen data instances.

In terms of the size of the architecture for the Multilayer
Perceptron, this was extremely large. This was because of
the length of the input vector. Input vectors of this size
require a significant amount of presentations of the training
data for the Multilayer Perceptron to successfully learn the
mapping between the input vectors and the output vectors.
In addition, the small numbers of hidden nodes contained
in the Multilayer Perceptron were unable to represent the
mapping between the inputs and outputs. Raising the number
of hidden nodes increased the ability for the Multilayer
Perceptron to learn but created a structure that was an
order of magnitude larger and thus took even longer to
train. In conclusion it can be seen from the results of this
experiment that the advantages of the EFuNN are twofold.
One, the time taken to train the EFuNN was far less than
Multilayer Perceptron. And two, the EFuNN in Table 4 was
able to successfully predict yield for a given period of time in
Figure 5.This indicates that the EFuNNhas the ability to store
a better representation of the temporal nature of the data and,
to this end, generalize better than the other methods.

Results shown in Table 4 show the accuracy of our
method compared to other classifiers like Bayesian, RBF
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Figure 5: Training result with EFuNN.

Network, and so forth. Results for those classifiers were
constructed using Weka experimenter; Weka is a collec-
tion of machine learning algorithms for data mining tasks,
and the algorithms can either be applied directly to a
data set or called from your own Java code. Weka con-
tains tools for data pre-processing, classification, regression,
clustering, association rules, and visualization. It is also
well suited for developing new machine learning schemes
(http://www.cs.waikato.ac.nz/ml/weka/).

Performance of the learning algorithm is evaluated by the
accuracy (%) onCherry andCampari tomato data in different
greenhouses, for four years (2004–2007).

In this paper, we have described how EFuNN can be
applied in the domain of horticulture, especially in the
challenging area of deciding support for yield prediction,
which leads to the production of well-determined amounts.
These results do not provide a mechanistic explanation of
the factors influencing these fluctuations. However, knowing
this information in advance could be valuable for growers for
making decisions on climate and crop management. Some
of the advantages of the neural network model implemented
in this study include the following: (1)The input parameters
of the model are currently recorded by most growers, which
makes the model easy to implement; (2) the model can
“learn” from datasets with new scenarios (new cultivars,
different control strategies, improved climate control, etc.);
(3) less-experienced growers could use the system because
the decision-making process of themost experienced growers
is captured by the data used in the trained networks, and
production could thereby become more consistent.

5. Conclusion

It is feasible to implement Intelligent System (IS) techniques,
including NN and fuzzy logic, for modeling and predicting
of a greenhouse tomato production system. Data from exper-
imental trials and from a commercial operation for complete
production cycles allowed the modeling of tomato yields. IS
techniques were robust in dealing with imprecise data, and
they have a learning capability when presented with new
scenarios and need to be tested on different tomato cultivars.
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Figure 6: Test results and performance comparison of demand
forecasts.

Experimentation results show that EFuNN performed
better than other techniques like ANN in terms of low RMSE
error and less computational loads (performance time). As
showed in Figure 6, ANN training needsmore epochs (longer
training time) to achieve a better performance. EFuNN
makes use of the knowledge of FIS and the learning done
by NN. Hence, the neurofuzzy system is able to precisely
model the uncertainty and imprecision within the data as
well as to incorporate the learning ability of NN. Even though
the performance of neurofuzzy systems is dependent on the
problems domain, very often the results are better while
compared to a pure neural network approach. Compared
to NN, an important advantage of neurofuzzy systems is its
reasoning ability (If-Then rules) within any particular state.
A fully trained EFuNN could be replaced by a set of If-Then
rules.

As EFuNN adopts a single pass training (1 epoch), it is
more adaptable and easy for further online training which
might be highly useful for online forecasting. However, an
important disadvantage of EFuNN is the determination of
the network parameters like number and type of MF for each
input variable, sensitivity threshold, error threshold, and the
learning rates.

Similar procedures might be used to automatically adapt
the optimal combination of network parameters for the
EFuNN.
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