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The effect of radiative heat-loss function and finite ion Larmor radius (FLR) corrections on the self-gravitational instability of
infinite homogeneous viscous plasma has been investigated incorporating the effects of thermal conductivity and finite electrical
resistivity for the formation of a star in astrophysical plasma. The general dispersion relation is derived using the normal mode
analysis method with the help of relevant linearized perturbation equations of the problem. Furthermore the wave propagation
along and perpendicular to the direction of external magnetic field has been discussed. Stability of the medium is discussed by
applying Routh Hurwitz’s criterion. We find that the presence of radiative heat-loss function and thermal conductivity modify the
fundamental Jeans criterion of gravitational instability into radiative instability criterion. From the curves we see that temperature
dependent heat-loss function, FLR corrections and viscosity have stabilizing effect, while density dependent heat-loss function
has destabilizing effect on the growth rate of self-gravitational instability. Our result shows that the FLR corrections and radiative

heat-loss functions affect the star formation.

1. Introduction

The problem of self-gravitational instability is widely investi-
gated due to its relevance to the fragmentation of interstellar
medium and its role in star formation. Also, the self-
gravitational instability of molecular clouds is connected to
the cloud collapse and star formation. Hayashi [1] has dis-
cussed the problem of evolution of protostars and discusses
the different phase of formation of protostar in connection
with variation of temperature and density. Shu et al. [2]
have investigated the problem of star formation in molecular
clouds and concluded that the star formation occurs mainly
in four phases. In this problem, the self-gravitational insta-
bility of dust and gas plays important role. Draine and Mckee
[3] have studied the theory of interstellar shocks. Mckee and
Ostriker [4] have discussed the theory of star formation.
They concluded that the key dynamical processes involved
in star formation are turbulence, magnetic fields, and self-
gravity. In this connection, the gravitational instability

of infinite homogeneous self-gravitating magnetized and
rotating plasma is also discussed by Chandrasekhar [5].
Several authors (Pacholczyk and Stodolkiewicz [6], Nayyar
[7], and Shaikh et al. [8]) have investigated the problem
of gravitational instability of plasma with different physical
parameters such as viscosity, finite electrical conductivity,
Hall current, thermal conductivity, magnetic field, and rota-
tion. Yang et al. [9] have investigated the problem of large-
scale gravitational instability and star formation. Borah and
Sen [10] have investigated the gravitational instability of
partially ionized molecular clouds considering the effects of
electrons, ions, and charged dust grains. Avinash et al. [11]
have studied the dynamics of self-gravitating dust clouds
and the formation of planetesimals. Thus we find that a
large number of problems are discussed for self-gravitating
dusty and nondusty plasma with different parameters under
various assumptions due to its importance in star formation
and in many astrophysical situations.



Along with this, in above discussed problems, the effect
of finite ion Larmor radius is not considered. In many astro-
physical situations such as in interstellar and interplanetary
plasmas the approximation of zero Larmor radius is not
valid. Several authors (Roberts and Taylor [12], Jeffery and
Taniuti [13], Jukes [14], and Vandakurov [15]) have point-
ed out the importance of finite ion Larmor radius (FLR)
effects in the form of magnetic resistivity, on the plasma
instability. Sharma [16] has shown the stabilizing effect of
FLR on gravitational instability of rotating plasma. Bhatia
and Chhonkar [17] have investigated the stabilizing effect
of FLR on the instability of a rotating and self-gravitating
plasma. Herrnegger [18] has studied the effects of collision
and gyroviscosity on gravitational instability in a two-com-
ponent plasma and concluded that the critical wave number
becomes smaller with increasing gyroviscosity for finite
Alfven numbers and showed that Jeans criterion is changed
by FLR for wave propagating perpendicular to magnetic field.
Vaghela and Chhajlani [19] have investigated the stabilizing
effect of FLR on magneto-gravitational stability of resistive
plasma through porous medium with thermal conduction,
but they neglect the effect of radiative heat-loss function on
gravitational instability. Chhajlani and Parihar [20] have car-
ried out the stabilizing effect of FLR on magnetogravitational
instability of anisotropic plasma with generalized polytrope
laws. Ferraro [21] has shown the stabilizing effect of FLR on
magneto-rotational instability. Recently Sandberg et al. [22]
have investigated the stabilizing effect of FLR on the coupled
trapped electron and ion temperature-gradient modes. More
recently Devlen and Pekiinlii [23] have studied the effect of
FLR on weakly magnetized, dilute plasma. Thus FLR effect
is an important factor in discussion of self-gravitational
instability and other hydrodynamic instability.

In addition to this it is well known that thermal and
radiative effects do play an important role in the stability
investigations. The thermal instability arising due to various
heat-loss mechanisms may be the cause of astrophysical con-
densation and the formation of large and small objects.
Several authors (Field [24], Hunter [25], Ibanez [26], Kim
and Narayan [27], Radwan [28], Menou et al. [29], and
Inutsuka et al. [30]) have investigated the phenomenon of
thermal instability arising due to heat-loss mechanism in
plasma. Shadmehri and Dib [31] have discussed the thermal
instability in magnetized partially ionized plasma with
charged dust particles and radiative cooling function. Shaikh
et al. [32] have investigated the Jeans gravitational instability
of thermally conducting plasma in a variable magnetic field
with Hall current, finite conductivity, and viscosity, but they
neglect the effect of FLR corrections and radiative heat-loss
function on gravitational instability. Aggarwal and Talwar
[33] have discussed magnetothermal instability in a rotating
gravitating fluid, but they neglect the effect of FLR correction
on radiative instability. Bora and Talwar [34] have inves-
tigated the magnetothermal instability with finite electrical
resistivity and Hall current, but they neglect the effect of FLR
corrections and viscosity on radiative instability. Recently El-
Sayed and Mohamed [35] have discussed the gravitational
instability of rotating viscoelastic partially ionized plasma in
the presence of oblique magnetic field and Hall current.
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More recently Kaothekar and Chhajlani [36] have carried out
the problem of gravitational instability of radiative plasma
with FLR corrections.

In the light of above work, we find that all these authors
have studied the problem of gravitational instability with
different combinations of these parameters, but none studied
the joint effect of all the parameters together with radiative
effects. We also find that none of the above authors has tried
to explore Jeans condition for viscous and nonviscous plasma
with FLR corrections, radiative heat-loss function, and ther-
mal conductivity. The problem given by Kaothekar and
Chhajlani [36] is briefly discussed with permeability param-
eter, but in present paper we have made a detailed analysis
of the problem of self-gravitational instability with all the
considered physical parameters, without including the effect
of permeability to give a better insight in real problem.
Therefore in the present work self-gravitational instability of
magnetized plasma with FLR corrections, radiative heat-loss
function, viscosity, thermal conductivity, and finite electrical
resistivity for self-gravitating configuration is studied. We
also wish to explore the importance of viscous and non-
viscous system and its impact on the self-gravitational
instability of plasma in connection with FLR correction,
radiative heat-loss function, thermal conductivity, and finite
electrical resistivity. The stability of the system is discussed
by applying Routh-Hurwitz criterion. The above work is
applicable to formation of stars in astrophysical plasma.

2. Basic Equations of
the Problem and Perturbation

Let us consider an infinite homogeneous, self-gravitating,
radiating, thermally conducting, and viscous plasma of
finite electrical resistivity, including the effect of finite ion
Larmor radius (FLR) corrections in the presence of magnetic
field H(0,0, H). The equations of the problem with these
effects are written as

du 1 V-P 1 5
I pr+VU +47TP(VXH)XH+UV u,
1 dp__y pdp _
1 y_lpdt+pL vV.-(AVT) =0,
p=pRT,

dp

Eﬂ-pv-ufo,

V2U = — 4nGp,
aa—I;I=Vx(u><H)+17V2H,

V-H=0,
(1)

where p,p,v, T, n,A, U, G, R, and y denote the fluid pressure,
density, kinematic viscosity, temperature, electrical resis-
tivity, thermal conductivity, gravitational potential, gravi-
tational constant, gas constant, and ratio of two specific
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heats respectively. L(p, T), the radiative heat-loss function,
depends on local values of density and temperature of the
fluid. The operator (d/dt) is the substantial derivative given
as (d/dt) = (0/ot+u - V).

The components of pressure tensor P, considering the
finite ion gyration radius for the magnetic field along z-axis
as given by Roberts and Taylor [12], are

auy aux _ auy Bux
Paor = ‘P“O(ax+ ay)> Pyy —P“O(ax+ 3y )

ou,y auy>

Pzzzoy ny:Pyx:PUO<ax ay

Jou, du
sz:sz:_2 aed £ >
PUO(BZ * )

ay
ou, Ouy
Py, =P, = 2pv0< o + Py )

(2)

The parameter vy has the dimensions of the kinematic
viscosity and defined as vy = QLR%/AL, where Ry is the ion-
Larmor radius, and g is the ion gyration frequency.
The perturbation in fluid pressure, density, temperature,
velocity, magnetic field, heat-loss function, and gravitational
potential is given as 6 p, 0p, 8T, u(ux, uy, u), h(hy, hy, h,), L,
and 6 U, respectively. The perturbation state is given as

p=po+dp,  p=potp,
T=Ty+ 6T, u=up+u (withug=0),
H=Ho+h, L=Ly+L (withLy=0), )
U=Uy+4dU.

Suffix “0” represents the initial equilibrium state, which is
independent of space and time.

3. Dispersion Relation

We linearize the basic set of MHD equations by substituting
(3) in (1)-(2), and we assume the variation of perturbed
quantities as

exp(ikyx + ik,z + iot), (4)

where ¢ is the frequency, and k., and k, are the wave
numbers of the perturbations along x and z axes. Using
(4) in linearized perturbed form of (1) with (2), we get
four equations governing the perturbations of velocity and

the condensation of medium. These four equations can be
written in the following determinant form:

ik,
P F 0 0%
-F Q —2vokk, 0
0 2uokek mo ey
V2k2
ik"T ikyvo (k2 + 4k2) 0 —R (5)
Uy
X Zy =0.

We have made following substitutions:

ic = w, R = 0? + wvk? + O3,
F = vy (k2 +2k2), d = (w+nk?),
22
M:w+vk2) P:M+de 5
V2k2 oL
Q:M+ Za L,= () >
d ’ op)r
2 2
poo B , _ 07 +00] (6)
4mp’ T w+B ’

QF = k> - 4nGp, Qf = kA — 4nGpB,

oL AT
Lt = (ﬁ)}), A= ()/ - 1) (TLT _pLP + ),
2
B=(y- l)<T;;LT +)Lka))

where ¢ = (yp/p)"?

medium, ¢ = (p/p)’* is the isothermal velocity of sound
in the medium, and s = Jp/p is the condensation of the
medium.

The general dispersion relation can be obtained from the
determinant of matrix of (5) is

2 2
V2k2 :| (a)z + wUk2 + M)

is the adiabatic velocity of sound in the
12

w + nk? w+B

21.21.2 2 2 Vzkg
X {41}0ka2+ (w+vk ) X |:w+vk w+11k2:|}

[a) +0k? +

V2k2
(12 2 2
(ks + 4kZ) [w+vk + w+;1k2}

" 203Kk2K2\ [ Qf + Q3
k2 w+B

+v3 (k2 + 2k§)2 [a)z + wvk? +

O + wQ;

B }(w+uk2)



Q%-}-(UQ? V2 21.21.2 (1.2 2
+< Py ><w+’7k2>x200kxkz(kx+2kz)

U(Z,kf (Q% + C()Q?

— (w + vk?)

e )(kg £ 2K2) (K2 + 4k2)

— (w + vk?)

2, VR VR (QF+ w0
lere +a)+11k2 w + nk? w+B

V2 Q2 + 00?2
42142 i) _
4vokxkz(w+11k2>( w+B 0.

The dispersion relation (7) represents the simultaneous
inclusion of FLR corrections, radiative heat-loss function,
thermal conductivity, viscosity, magnetic field, and finite
electrical conductivity on self-gravitational instability of
plasma. In absence of radiative heat-loss function, the general
dispersion relation (7) is identical to that of Vaghela and
Chhajlani [19] for (¢ = 1 and K; = o) in their case. In
absence of radiative heat-loss function, thermal conductivity,
finite electrical resistivity, and viscosity the general dispersion

(7)

V2k?
w + nk?

(w + vk?) X «{4v3k4 + [a) +vk? +
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relation (7) is identical to Sharma [16] for nonrotational
case. In absence of FLR corrections and radiative heat-
loss function the general dispersion relation (7) is identical
to Shaikh et al. [32] neglecting Hall current in their
case. In absence of FLR corrections and viscosity dispersion
relation (7) is identical to Bora and Talwar [34] neglecting
Hall current and electron inertia in their case. Also in
absence of FLR corrections, viscosity and finite conductivity
dispersion relation (7) reduces to that obtained by Field [24]
for nongravitating medium. The dispersion relation (7) is
different from (9) of Kaothekar and Chhajlani [36].

Thus we have obtained the modified dispersion relation
of self-gravitational instability including the combined effect
of FLR corrections, radiative heat-loss function, viscosity,
thermal conductivity, finite electrical resistivity, and mag-
netic field. Now we discuss the general dispersion relation (7)
for longitudinal and transverse wave propagation.

4. Discussion

4.1. Longitudinal Propagation (k, = 0, k; = k). For this
case, we assume all the perturbations are longitudinal to
the direction of magnetic field (i.e., k;, = k, k, = 0). The
dispersion relation (7) reduces to

I

w(c2k? — 4nGp)

X {wz + wok? +

+

w+ (y—1)(TpLy/p + Ak2T/p)

(8)

(y = 1){k2(TLr — pL, + MT/p) — 4nGp(TpLz/p +Ak2T/p)}} .

w+ (y = 1)(TpLr/p + Ak2T/p)

The above dispersion relation shows the combined effect
of FLR corrections, radiative heat-loss function, thermal
conductivity, viscosity, magnetic field strength, and finite
electrical resistivity on self-gravitation instability of plasma.
On multiplying all the components of (8), we get the
dispersion relation, which is an equation of degree eight in
w, and it is cumbersome to write such a lengthy equation.
If we remove the effect of FLR corrections and viscosity in
the above relation, then we recover the relation given by
Bora and Talwar [34] excluding Hall current and electron
inertia in their case. Hence the above dispersion relation is
the modified form of equation (21) of Bora and Talwar [34]
due to the inclusion of FLR corrections and viscosity in our
case and by neglecting Hall current and electron inertia in
their case for longitudinal propagation in dimensional form.
But the condition of instability is unaffected by the presence
of FLR correction and viscosity. Thus we conclude that FLR
corrections and viscosity have no effect on the condition
of instability, but presence of these parameters modifies the
growth rate of instability in the present case. Hence these are
the new findings in our case than that of Bora and Talwar

[34]. Also on comparing our dispersion relation (8) with
dispersion relation (20) of Vaghela and Chhajlani [19] we
find that two factors are the same, but the third factor is
different and gets modified because of radiative terms.

The dispersion relation (8) has three different compo-
nents, and our aim is to take out the physics involved in each
component. So we discuss each component separately. The
first component of the dispersion relation (8) gives

w+vk?* = 0. 9)

This represents a damped mode modified by the presence
of viscosity of the medium. Thus viscous force is capable
of stabilizing the growth rate of the considered system. The
above mode is unaffected by the presence of FLR correction,
magnetic field strength, finite electrical resistivity, ther-
mal conductivity, radiative heat-loss function, and self-
gravitation.
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The second factor of (8) on simplification gives
w* +2(vk* + nk?) w?

+ [ (0k? + 1K) + 2(V2IE + nkPuk?) + 403kt |?
(10)
+ [2(vk? + nk?) x (V2K* + nk*vk?) + 8nk*vik* |w

+ (V22 + qk*vk?)” + 42kt v2k* = 0.

The above dispersion relation represents the Alfven mode
modified by the presence of FLR corrections, viscosity,
and finite electrical resistivity. But it is independent of
thermal conductivity, radiative heat-loss function, and self-
gravitation. Equation (10) is a four-degree equation in
power of w having its all coefficients positive which is a
necessary condition for the stability of the system. To achieve
the sufficient condition the principal diagonal minors of
Hurwitz matrix must be positive. On calculating we get all
the principal diagonal minors positive. Hence (10) always
represents stability.

The third component of the dispersion relation (8) on
simplifying gives

TpLr , AkZT)}wz
p p

2
T) vk? + (2k?* - 471Gp)} w

w3+[vk2+(y—l)<

[
+ {kz(y— 1) (TLT —pL, +

2
— 4nGp(y — 1)(Tf;LT + Aka)} =0.

)Lk2T)

(11)

Ay =

The above equation represents the combined influence
of radiative heat-loss function, thermal conductivity, and vis-
cosity on the self-gravitational instability of plasma. But there
is no effect of FLR corrections, finite electrical conductivity,
and magnetic field on the self-gravitational instability of the
considered system. If the constant term of cubic equation
(11) is less than zero, this allows at least one positive real
root which corresponds to the instability of the system. The
condition of instability obtained from constant term of (11)
is given as

2 2
k2<TLT —pL, + Ak T) < 47'[Gp(TPLT + M)
P (12)

p p

This condition of instability is modified form of Jeans
condition by inclusion of thermal conductivity and radiative
heat-loss functions. The above condition of instability is
independent of FLR corrections, finite electrical conduc-
tivity, magnetic field strength, and viscosity. The above
inequality (12) is same as obtained by Bora and Talwar [34],
and by Kaothekar and Chhajlani [36]. But Kaothekar and
Chhajlani [36] have also considered the effect of permeability
in their analysis. Here in the present problem we neglect the
effect of permeability to give better insight in real problem.
Thus in this mode the dispersion relation and the growth
rate is modified due to FLR corrections and viscosity, but the
condition of radiative instability is unaffected by the presence
of FLR corrections and viscosity. The condition of instability
(12) can be solved to yield the following modified critical
Jeans wavelength:

172

The medium is unstable for wave length A > A;;. Here
it may be noted that the modified critical wave length
involves the derivatives of temperature-dependent, density-
dependent heat-loss functions and thermal conductivity of
the medium.

In dispersion relation (8) first and second factors show
wave propagation, but third factor shows instability. Thus
to discuss the effect of each parameter on the growth rate
of instability, we solve (11) numerically by introducing the
following dimensionless quantities:

ke

W
L
(4Gp) (4Gp)
o = v(4nGp) "

>

c2

12
{(4Gp/c’2 +p2Ly/mAT — pLT/ﬂA) + [(4Gp/c'2 +p2Ly/mAT — pLT/ﬂA)2 + (16Gp2/71/1c’2)LT] }

(13)
e = DpTLr % (y = 1pL,
= 12 P, 12>
p(4nGp) c(4nGp)
b r=1)TA(4nGp)"”
pec
(14)

The nondimensional form of (11) in terms of self-gravitation
is given as

0 + (VK2 + L + V¥ k*2) 0*?

X k2 (1% * 1%k2 *2 *
+ [0*K*2 (L + M k**) + k 1w (15)

+{k*2 B (L +A* k) —L;‘} — +)L*k*2)} -0,
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FIGURE 1: Growth rate (positive values of w*) against wave number
k* for three values of parameter L7 = 0.0, 2.0, 5.0, keeping the other
parameters fixed L; =1.0, A* = 1.0, v* = 1.0.

Here for calculations we take the numerical values cor-
responding to the conditions in interstellar molecular clouds
for star formation as

p=17x10"*kgm™’

G =6.658 x 107! (kg) 'm’s2

2 =2.25%x 108 m?s~? (16)

V2 =5.0x 108 m?s~2.

And the parameters are taken as nondimensional.
Numerical calculations were performed to determine the
roots of w* from dispersion relation (15), as a function of
wave number k* for several values of the different parameters
involved taking y = 5/3. Out of the three modes only one
mode is unstable for which the calculations are presented in
Figures 1-3, where the growth rate w* (positive real value
of w, after multiplying by 10'®) has been plotted against
the wave number k* (after multiplying by 10%°) to show
the dependence of the growth rate on the different physical
parameters such as temperature-dependent heat-loss func-
tion L7 (after multiplying by 10®), density-dependent heat-
loss function L (after multiplying by 10°), and viscosity v*
(after multiplying by 10%4).

It is clear from Figure 1 that growth rate decreases with
increasing temperature-dependent heat-loss function. Thus
the effect of temperature-dependent heat-loss function is
stabilizing. From Figure 2 we conclude that growth rate
increases with increasing density-dependent heat-loss func-
tion. Thus the effect of density-dependent heat-loss function
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FIGURE 3: Growth rate (positive values of w*) against wave number
k* for three values of parameter v* = 0.0, 2.0, 5.0, keeping the other
parameters fixed Ly =10, A* =1.0, Ly = 1.0.

is destabilizing. From Figure 3 we conclude that growth rate
decreases with increasing viscosity of the medium. Thus the
effect of viscosity is stabilizing.

To discuss the stability of the system, if constant term
of cubic equation (11) is greater than zero, then all the
coefficients of (11) must be positive. Equation (11) is a third-
degree equation in the power of w having its coefficients
positive, which is a necessary condition for the stability of
the system. To achieve the sufficient condition the principal
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diagonal minors of Hurwitz matrix must be positive. The
principal diagonal minors are

TpLy = AK*T
N e _1<+)}>o,
1 { -T2

2
A = {vkz [Al(y -1) (TI;LT + )Lka) + 2k - 471Gp}

+(y - l)kZpLP} >0,

A; = Ag{kz(y - 1) (TLT —pr +

2
—4nGp(y - 1) (T/;LT + M)} > 0.

p
(17)

Asz)

Since Q? >0, Qf >0and y > 1, it is clear that all the As are
positive hence system represented by (11) is stable system.
Now we wish to examine the effect of radiative heat-loss
function in the considered system with some simplifications,
and at the same time we wish to investigate the physics
involved in such simplifications in the present problem.

4.1.1. For Viscous Medium

(1) Effect of Radiative Heat-Loss Function

For nonradiative medium (L, = 0, v = 1 #0) (11) be-
comes

Ak? Ak?
w+ (vk2 + Y)wz + (vkzyk + 2k - 471Gp)w
PCp pep
2 (18)
Ak
+ L(c'zkz - 47'[Gp) =0.
PEp
The condition of instability from constant term of (18) is
(¢'*k? — 47Gp) < 0, or

k2 < 7GP (19)
CI
if
12
4nG, o7
ki = szp’ or A]22C|:Gp:| . (20)

The medium is unstable for wave length A > Ajp,
where A, is the modified Jeans wave length for thermally
conducting medium. On comparing (18) and (11) we see
that there is no new mode coming due to inclusion of
radiative heat-loss functions, but the condition of instability
gets modified in form of (11). Also it is interesting to
note that the thermal conductivity term is separated from
condition of instability when we neglect the effect of heat-
loss function in (11).

For nonthermal and nonradiating medium (A = L7, =
0, v # 0) the condition of instability obtained from (11) is

(c’k* — 4nGp) < 0, (21)

- 1/2
A] = C|:GP:| . (22)

The medium is unstable for wave length A > A;, where
As is the Jeans wave length. The condition of Jeans insta-
bility given by (21) is identical to Chandrasekhar [5]. On
comparing (12) and (21) it is clear that due to the presence
of radiative heat-loss functions and thermal conductivity
the fundamental criterion of Jeans gravitational instability
changes into radiative instability criterion. Also, we conclude
that one mode is increased because of inclusion of radiative
heat-loss functions.

4.1.2. For Nonviscous Medium

(1) Effect of Radiative Heat-Loss Function

For inviscid and nonradiating medium (v = Lr, = 0,
A=#0) (11) becomes

2
W + )?Tsz + (*k* — 4nGp)w
p
. (23)
+ YPT (c'zk2 - 471Gp) =0.
p

The condition of instability is (c?k? - 47Gp) < 0, it is
discussed in (19) and (20). On comparing (23) and (11)
we see that there is no new mode which comes due to
inclusion of radiative heat-loss functions, but the condition
of instability gets modified in form of (12). In both the cases
whether the medium is viscous or nonviscous, the condition
of instability is the same; hence, we conclude that viscosity of
the medium has no effect on the condition of instability, and
it only modifies the growth rate of the instability for viscous
case.

For inviscid, thermally nonconducting and nonradiating
medium (v = A = Ly, = 0) the condition of instability
obtained from (11) is (c?k? — 47Gp) < 0, and it is discussed
in (21) and (22). We see that inclusion of viscosity cannot
change the condition of instability, but it modifies the growth
rate of instability.

Thus we conclude that for longitudinal wave propagation
as given by (8) the system is unstable only for modified
Jeans condition, and else it is stable. Also the modified Jeans
criterion remains unaffected by FLR corrections, viscosity,
magnetic field, and finite electrical resistivity, but radiative
heat-loss function and thermal conductivity modifies the
Jeans expression and the fundamental Jeans instability
criterion becomes radiative instability criterion. The growth
rate of the system is modified by the presence of radiative
heat-loss functions, thermal conductivity, and viscosity. The
growth rate of Alfven mode is modified by the presence
of viscosity, finite electrical resistivity, and FLR corrections.



From the curves we find that temperature-dependent heat-
loss function and viscosity have stabilizing influence, whereas
density-dependent heat-loss function has a destabilizing
influence on the self-gravitational instability of plasma.

wV?k?
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4.2. Transverse Propagation (ky = k,k, = 0). For this case,
we assume that all the perturbations are transverse to the
direction of magnetic field (i.e., ky = k,k, = 0). The
dispersion relation (7) reduces to

w(c?k? — 4nGp)

(w+ ukz)z{wvék4 + (w + vk?) {wz + wvk? +

+

w+11k2Jr

w+ (y—1)(TpLy/p +Ak2T/p)

(24)

w+ (y—1)(TpLy/p + Ak*T/p)

We find that for transverse mode of propagation the dis-
persion relation is modified due to the presence of FLR cor-
rections, radiative heat-loss function, thermal conductivity,
viscosity, finite electrical resistivity, and magnetic field. The
dispersion relation (24) has two different components. The
first component of the dispersion relation (24) represents a
damped mode modified by the presence of viscosity of the
medium and is discussed in (9).

The second component of the dispersion relation (24) on
simplifying gives

TpLr )‘szﬂw‘*
p p

TpLy = AK*T
+ 2k2[ K2+ —1(+>]
{ vk?| nk* + (y - 1) ) ’

TpLr , Asz)
P p

W+ [20k2+11k2+ (y- 1)(

+ 0k K (y - 1)(
+V22 + ikt + Pk - 47'er}0.)3
+ {anzvkz(y -1) x (

2
+ [nkz +(y-1) (TI;LT + Aka>] (v*k* + vik*)

2
+V2k2[v K+ (y—1) x <T+T>]

+ (*k* — 4nGp) (vk?* + nk?)

TpLr , AkZT)
P P

2
+(y-1) [k2<TLT —pL, + Aka> —47Gp

y (TPLT+ W)sz
P

(y = )|k (TLr — pL, + \*T/p) — 4nGp(TpLr/p + AK*T/p) } ] } .

2
+ {uk2 [ﬂkzvkz(y -1) (T/;LT + KT T)

p
+ V2 (y-1)
2
X (T‘L‘)DLT + Aka> +nk* (32K - 471Gp)}

2
+nk*vikt (y — 1) (T'DLT + AT T)

p
)Lsz)

+(y-1) [k2<TLT —pL, +
2
—4nGp (T/;LT + Aka> ] k> +1k?) }w

+nk*vk?

X [kz(y -1) <TLT —pL, +

TpLy Aszﬂ
—4nGp(y—1)| —+—— | | =0.
p(y )( ) ’

AkZT)

(25)

The above fifth degree equation in w represents the
combined influence of FLR corrections, radiative heat-loss
function, thermal conductivity, finite electrical resistivity,
viscosity, and magnetic field on self-gravitational instability
of plasma. When constant term of (25) is less than zero,
this allows at least one positive real root which corresponds
to the instability of the system. The condition of instability
obtained from constant term of (25) is given as

Ak2T>

(y—1) [kz (TLT —pL, +

2
it 1222 T

The above condition of instability is independent of FLR
correction, finite electrical resistivity, viscosity, and magnetic
field strength and is discussed in (12). Thus from (25), we

(26)
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find that the modified Jeans condition of instability remains
the same whether we consider the effect of FLR corrections
or not, but, owing to the presence of FLR corrections, the
growth rate of radiative instability is modified. This result
can be easily explained by graphical representation as shown
in Figure 6; by increasing values of FLR, we see that the
growth rate of radiative instability decreases. Hence FLR
shows stabilizing influence on the growth rate of radiative
instability.

In several astrophysical plasma situations, such as in
interstellar molecular clouds the formation of objects is
mainly due to the unstable modes. Thus to discuss the effect
of each parameter on the growth rate of unstable modes, we
solve (25) numerically by using the relation given in (14)
with the following additional dimensionless quantities:

1/2

V2= 12 * _ ’7(47TGP)
e’ B 2 ’
(27)
L wolanGp)”
Uy = T

For calculations we take the numerical values corre-
sponding to the conditions in interstellar molecular clouds
which are shown in (16), and the rest of values are taken
as nondimensional. Numerical calculations were performed
to determine the roots of w* as a function of wave number
k* for several values of the different parameters involved
taking y = 5/3. Out of the five modes, only one mode is
unstable for which the calculations are presented in Figures
4-6, where the growth rate w* (positive real value of w,
after multiplying by 10'°) has been plotted against the wave
number k* (after multiplying by 10%°) to show the depen-
dence of the growth rate on the different physical parameters
such as temperature-dependent heat-loss function L} (after
multiplying by 108), density-dependent heat-loss function
Ly (after multiplying by 10%), viscosity v* (after multiplying
by 10%#), and FLR corrections v{ (after multiplying by 10%4).

It is clear from Figure 4 that growth rate decreases with
increasing temperature-dependent heat-loss function. Thus
the effect of temperature-dependent heat-loss function is
stabilizing. From Figure 5 we conclude that growth rate
increases with increasing density-dependent heat-loss func-
tion. Thus the effect of density-dependent heat-loss function
is destabilizing. One can observe from Figure 6 that the
growth rate decreases with increasing FLR corrections. Thus
the effect of FLR corrections is stabilizing. If the viscous
effect of plasma is removed, then the stabilizing rate of FLR
corrections increases and the peak value of the curve also
increases. Hence we conclude that both FLR corrections and
viscosity stabilize the system.

To discuss the stability of the system given by dispersion
relation (25), if constant term of equation (25) is greater than
zero, then all the coefficients of the equation (25) must be
positive. Equation (25) is a fifth degree equation in the power
of w; hence, it will involve a lengthy algebra to calculate the
principal diagonal minors of Hurwitz matrix. Since (25) has
positive real coefficients, having Q? >0, Q% >0andy >1,s0
it is sufficient to show that alternate As are positive; hence,
system represented by (25) is a stable system.
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FIGURE 4: Growth rate (positive values of w*) against wave number
k* for three values of parameter L7 = 0.0, 1.5, 3.0, keeping the other
parameters fixed v* = 0.5, L;‘ = 0.0, A* = 1.0, v§ = 1.0, V* =
1.0, #* = 0.5.
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FIGURE 5: Growth rate (positive values of w*) against wave number
k* for three values of parameter L;‘ = 0.0, 1.5, 3.0, keeping the other
parameters fixed v = 1.0, A* = 1.0, v* = 0.5, V* = 1.0, n* =

0.5, L = 0.5.

Now we wish to examine the effect of FLR corrections
and radiative heat-loss function on the considered system
with some simplifications such as viscous and nonviscous
medium, and at the same time we wish to investigate
the physics involved in such simplifications in the present
problem.
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FIGURE 6: Growth rate (positive values of w*) against wave number
k* for several values of parameter v keeping the other parameters
fixed L;,* =05, L7 =05, A* = 1.0, V* = 1.0, * = 0.5. v* = 0.0:
(1) vy = 0.0, (2) v§ = 1.5(3) vg =3.0. v* =0.9: (4) v5 = 1.5, (5)
vy = 3.0.

4.2.1. For Viscous Medium

(1) Effect of Radiative Heat-Loss Function with FLR Cor-
rections

For nonradiative medium, but in the presence of FLR
corrections (L, = 0,v = A = V = 5 = vy # 0) the condition
of instability obtained from the constant term of (25) is given
as

(¢?k* - anGp) <. (28)

The above (28) is identical to that of Vaghela and
Chhajlani [19]. We see that there is no new mode due to
inclusion of radiative heat-loss function, but the growth rate
of instability gets modified due to inclusion of radiative heat-
loss functions and FLR corrections. Also it is interesting to
note that, on neglecting the effect of radiative heat-loss func-
tion in (25), the thermal conductivity parameter (i.e., A) is
separated from instability condition as shown in (28). So we
conclude that on neglecting the effect of radiative heat-loss
function the condition of instability is independent of both
the radiative heat-loss function and thermal conductivity of
the medium, but the growth rate of instability is affected by
thermal conductivity and FLR corrections.

For nonradiative and nonthermal medium, but in pres-
ence of FLR corrections (Lt, =1 =0, v =V =5 = v9#0)
the condition of instability obtained from (25) is given as

(c®k* — 4nGp) < 0. (29)

We find that one mode is increased due to inclusion
of radiative heat-loss functions. On comparing (26) and
(29), it is clear that owing to the presence of thermal
conductivity and radiative heat-loss functions the funda-
mental criterion of Jeans gravitational instability changes
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into radiative instability criterion. In case of transverse mode
of propagation, for viscous medium, FLR corrections have
no effect on the condition of instability for radiating or
nonradiating medium, but the growth rate of instability
is modified by FLR corrections; that is, FLR stabilizes the
system in all the cases. The joint stabilizing effect of FLR
corrections and viscosity decreases the peak value of growth
rate of the system shown in Figure 6.

4.2.2. For Nonviscous Medium

(1) Effect of FLR Corrections

For inviscid medium, but in presence of FLR corrections
(v=0,n=Lr, =V =A1=up#0) (25) becomes

TpLy =~ AK*T
w4+[k2+ —1<+>]w3
nk*+(y — 1) » ’

2
+ [qkz(y -1) (T’;LT + T) + V22
+uik* + k* — 471Gp} w?

2
rlso-ofrge )

+ V2 (y-1)

TpLT AT 2/ 212
><< ’ +—p >+f1k (c*k* — 4nGp) (30)

+ [kz(y -1) (TLT —pL, +

2
—4nGp(y - 1) (T/;LT + /\ka>]}w

/\sz>

2
+11k2{v(2)k4(y - 1)<TPLT LT T) +k*(y—-1)
2
X (TLT—pLP-i-Ak T)
TpLy /\kZT)}
—4nGp(y - 1) L=—=+=— |t =0
p(y )( » ’

The above equation (30) is a modified form of Chhajlani
and Parihar [20] by inclusion of radiative heat-loss function,
thermal conductivity, and finite electrical resistivity. The
condition of instability obtained from constant term of (30)
is given as

{kz (TLT —pL, +

2
— (4nGp — vik*) <TI;LT + Aka)} <0.

Ak2T>

(31)
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From the above condition of instability given by (31) we
conclude that FLR correction tries to stabilize the radiative
instability. Also on comparing (25) and (30) we see that
inclusion of viscosity removes the effects of FLR correction
from condition of instability. So in both the cases either the
system is viscous or nonviscous, FLR correction stabilizes
the growth rate of radiative instability, as shown in Figure 6.
Thus in presence of FLR correction the condition of insta-
bility given by Bora and Talwar [34] is modified as given by
(31). In absence of FLR corrections (30) is identical to Bora
and Talwar [34]; thus, the dispersion relation is modified
due to the inclusion of effects of FLR in the present system.
Thus we find that due to the presence of FLR corrections
Jeans criterion of instability is modified, and also the growth
rate of instability in this case is modified with the inclusion
of FLR correction in the present MHD set of equations.
The above condition of instability (31) can be written in
nondimensional form as

*2
{(A*k*z +L%) [vg‘zk*4 + k7 - 1] - k*zL;‘} <0. (32)

In absence of FLR corrections the above condition of
instability is the same as given by Bora and Talwar [34]
and by Hunter [25] for an electrically nonconducting gas.
We conclude that condition of instability given by Bora and
Talwar [34] is modified by inclusion of FLR corrections in
our case. Also the condition of instability given by (31)
is the modified form of Field [24] by inclusion of FLR
correction and self-gravitation. Thus the present result is
the improvement of Field [24], Hunter [25], and Bora and
Talwar [34]. Condition (32) involves the derivatives L} and
L} of the heat-loss function with respect of local temperature
and density, and v{ is FLR correction factor in the system.
It may be noted that for a density-independent heat-loss
function Ly =0), which increases with temperature (L >
0), condition (32) gives instability if k*? < ( y — l/yv(’)“z).
However if instead, the heat-loss function decreases with
temperature (L} < 0), and the instability comes to k** lying
between (y — l/yvé‘z) and {|L5|/A*}.

For a purely density-dependent heat-loss function (L} =
0), condition (32) gives instability if

2 w12
, 1 1 4 L 1
il ) )| -G
YYo Vo YYo

(33)

The above equation (33) applies for Ly > 0 or |LJ] < A*
if the heat-loss function, respectively, increases or decreases
with increase in density.

(2) Effect of Radiative Heat-Loss Function with FLR
Corrections

For nonradiating and inviscid medium, but in presence
of FLR (L1, =v =0, § = A = vy = V #0) the condition of
instability obtained from (25) is given as

k? (c'2 + v(z)k2> < 4nGp. (34)

11

The critical Jeans wave number and critical Jeans wave length
are given as

12

{—c’z + (c’4 + 1671Gpv(2)) } (35)

k]23 = 2U(2) .

Or
- 12
8n°v
Ajs = . . (36)
[{—c’z + (¢ + 167tGpv(2))1/2}

Condition (34) is identical of Vaghela and Chhajlani [19]
for (¢ = 1) in their case. From (34) we conclude that FLR
have stabilizing effect on the instability of the system. We
find that one mode is increased due to inclusion of viscosity,
and we conclude that inclusion of viscosity removes the effect
of FLR corrections from the condition of instability. Also
on comparing (31) and (34), we conclude that condition of
instability given by Vaghela and Chhajlani [19] is modified by
inclusion of radiative effects and the growth rate of instability
given by (31) is modified by radiative heat-loss function and
FLR corrections.

For inviscid, nonradiating and thermally nonconducting
medium, but in presence of FIR (v = Ly, = 1 = 0, 51 =
vo #0), the condition of instability obtained from (25) is
given as

{(? + v3k*)k* — 4nGp} < 0. (37)

The critical Jeans wave number or critical Jeans wave length
is given as

{—cz + (c*+ 167[GpU(2))1/2}

K = - (38)
Or
- 12
8mv
Ajg = 0 . (39)
! {{—cz + (ct+ 167erv(2,)1/2}}

From (37) we find that Jeans condition of gravitational
instability gets modified by FLR corrections. On comparing
(37) and (31) we conclude that inclusion of thermal con-
ductivity and radiative heat-loss function modifies both the
Jeans condition of instability and growth rate of instability
in presence of FLR corrections. Hence the fundamental
Jeans criterion of gravitational instability gets modified
into radiative instability criterion by inclusion of thermal
conductivity and radiative heat-loss functions in the presence
of FLR corrections.

(3) Effect of Electrical Conductivity with FLR Correc-
tions

For inviscid and infinitely conducting medium, but in
presence of FLR (v = # = 0,Lr, = V = A = vy #0), the
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condition of instability obtained from constant term of (25)
is given as

2
e (o, + 1)

(40)

2
—(4nGp — vik* — V?K?) (T/;LT + Aka>} <0.

From the above condition of instability given by (40) we
conclude that FLR correction and magnetic field strength try
to stabilize the radiative instability. Also on comparing (26)
and (40) we see that inclusion of viscosity and finite conduc-
tivity removes the effect of FLR correction and magnetic field
from condition of instability. So in both the cases whether
the system is finitely conducting or infinitely conducting
magnetic field and FLR correction stabilizes the growth rate
of radiative instability. The above condition of instability is
identical to Kaothekar and Chhajlani [36]. Kaothekar and
Chhajlani [36] have considered the effect of permeability,
but, in the present problem, we have not considered the
effect of permeability, so we conclude that the conditions
of instability for permeable or nonpermeable medium are
same, but the growth rate of the system is modified by the
presence of permeability. The above condition of instability
(40) can be written in nondimensional form as

{(A*k*z +L%) [v@kzk*4 +k*? ()1) + V*2> - 1]

(41)
—k*zL;"} <0.

In absence of FLR corrections the above condition of
instability is identical to Bora and Talwar [34] excluding
electron inertia in that case. We conclude that condition of
instability given by Bora and Talwar [34] is modified by
inclusion of FLR corrections in our case. Thus the present
results are the improvement of Bora and Talwar [34] due to
FLR corrections.

From condition of instability (41) it may be noted that
for a density-independent heat-loss function (L; = 0),
which increases with temperature (L7 > 0), it gives instability
if k*2 < (1/v5%){1 = [(1/y) + V**]}. However if instead, the
heat-loss function decreases with temperature (L} < 0), the
instability comes to k** lying between (1/v5°){1 — [(1/y) +
V*21} and {|L§|/A*}.

For a purely density-dependent heat-loss function (L} =
0), condition (41) gives instability if

1 1 (1 Py 1"
*2 - N *2 * e
k <3 i[vg4<y+V ) +v5‘2<1+l*>]

()
() )’

The above equation (42) applies for L;‘ > 0 or |L;‘| < A*,
if the heat-loss function, respectively, increases or decreases
with increase in density.

(42)
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(4) Effect of Nongravitation and FLR Corrections

For inviscid, nongravitating, infinitely conducting, radi-
ating, thermally conducting, magnetized medium with FLR
corrections (v =y = G =0, v9 =V = Lr, = 1#0) (25)
becomes

2

W+ [(y— 1) (TPLT + M)}wz
p p
+ [ V2K + vik* + Pk w
+(y - l)kz[(V2 + vik?)

2 2
x(TpLT + Akp T)+<TLT —pL,+ A—kp T)] =0.

p
(43)

The condition of instability obtained from constant term of
(43) is given as

[(vékz +V?) (Ti)“ "

p
AT )}
—pL < 0.
) PLp

From above equation (44) we see that FLR correction
and magnetic field strength try to stabilize the system. If
we neglect the effect of FLR and magnetic field the above
dispersion relation (43) is identical to Field [24]. In the
present case we have considered the effects of FLR correction
and magnetic field, but Field [24] has not considered these
effects. Thus in the present analysis both the dispersion
relation and the condition of instability get modified due to
the presence of FLR corrections and magnetic field strength.
On comparing (40) and (44) we see that consideration of
self-gravitation modifies the thermal instability criterion into
radiative instability criterion. Also from (25) it is clear that
the growth rate of the dispersion relation given by Field
[24] is modified due to the presence of FLR correction,
viscosity, magnetic field, finite electrical conductivity, and
self-gravitation in our present case. Hence these are the new
results in our present problem than that of Field [24].

Thus we conclude that for transverse wave propagation
the Jeans criterion is affected by FLR corrections, radiative
heat-loss functions, thermal conductivity, viscosity, magnetic
field strength, and finite electrical resistivity. From curves we
find that FLR corrections, temperature-dependent heat-loss
function, and viscosity have stabilizing influence, whereas
density-dependent heat-loss function has destabilizing influ-
ence on the self-gravitational instability of plasma.

Ale)

(44)

+<TLT +

5. Conclusion

We have dealt with the self-gravitation instability of an
infinite homogeneous viscous electrically and thermally
conducting fluid including the effects of FLR corrections and
radiative heat-loss function for star formation. The general
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dispersion relation is obtained, which is modified due to the
presence of considered physical parameters. This dispersion
relation is reduced for longitudinal and transverse mode
of propagation to the direction of the magnetic field. We
find that Jeans criterion remains valid and gets modified
because of FLR corrections, radiative heat-loss function,
thermal conductivity, and magnetic field. We also find that
the presence of thermal conductivity and radiative heat-
loss function modifies the fundamental Jeans criterion of
gravitational instability into radiative instability criterion.
The effect of viscosity parameter is found to stabilize the
system in both the longitudinal and transverse mode of
propagation. For longitudinal wave propagation magnetic
field, viscosity, finite electrical resistivity, and FLR correction
have no effect on Jeans criterion, but FLR corrections,
viscosity, and finite electrical resistivity modify the growth
rate of Alfven mode. For transverse wave propagation FLR
corrections stabilize the growth rate of the system in all the
cases, but it modifies the condition of instability only for the
case of nonviscous medium. Also, magnetic field stabilizes
the system but finite conductivity removes the effect of
magnetic field there by destabilizing the system. Numer-
ical calculation shows stabilizing effect of temperature-
dependent heat-loss function, FLR corrections, and viscosity,
where as destabilizing effect of density-dependent heat-loss
function is on the self-gravitational instability.
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