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A vacuumspacetimewith a centralmass is derived as a stationary solution to Einstein’s equations.The vacuummetric has a geodesic,
shear-free, expanding, and twisting null congruence k and thus is algebraically special. The properties of the metric are calculated.
In particular, it is shown that the spacetime has an event horizon inside which there is a black hole.Themetric is neither spherically
nor axially symmetric. It is therefore in interesting contrast with the majority of metrics featuring a central mass which have one
or more of these symmetry properties. The metric reduces to the Schwarzschild case when a certain parameter is set to zero.

1. Introduction

In this paper, we present a special solution of Einstein’s equa-
tions which can be described as a stationary vacuum space-
timewith a central mass singularity without spherical or axial
symmetry. Apart from the mass 𝑚, the metric will depend
on a single parameter 𝑎, and it reduces to the Schwarzschild
solution when 𝑎 is set to zero.

The character of this spacetime will be such that theWeyl
tensor has a multiple null eigenvector 𝑘 forming a geodesic,
shear-free, and diverging twisting congruence.Thus, in terms
of the Newman-Penrose spin coefficients, we can write as
properties of 𝑘 the following:

𝜅 = 𝜎 = 0, 𝜌 = − (Θ + 𝑖𝜔) ̸= 0, (1)

Θ being the divergence and 𝜔 the twist. Since the solution
to be derived is vacuum, the previous properties mean that
the metric will be algebraically special, so that of the Weyl
complex coefficients we have

𝜓
0
= 𝜓
1
= 0. (2)

Reference to the spacetime will be via a complex null
tetrad𝑚,𝑚bar, 𝑛, and 𝑘with labels 1, 2, 3, and 4, respectively,
k being the vector described earlier. The field equations for
a vacuum metric that admits a geodesic, shear-free, and

diverging null congruence 𝑘 were obtained by Kerr [1] and
I. Robinson and J. R. Robinson [2] and further developed by
Debney et al. [3]. A different approach to obtaining vacuum
solutions was made by Kinnersley [4]. Here we followmainly
the methods of [5] and finally derive our solution in the
specific form of (16).

Since the central mass will be without spherical or axial
symmetry, in contrast with the well-known GR vacuum
solutions with mass singularity, it is believed that the derived
spacetime in its final form (16) is of significant interest.

2. Basic Equations

In relation to the null tetrad, we will employ coordinates
𝑥
𝑖
= 𝑥, 𝑦, 𝑟, and 𝑢 for 𝑖 = 1, 2, 3, and 4, respectively. The

spacelike coordinate 𝑥 is complex, 𝑦 being its conjugate, 𝑟 an
affine parameter along the 𝑘 lines, and 𝑢 a retarded time. We
will use the notation of [5, chapters 29 and 30]. The metric
signature will be taken to be +2 and the speed of light and
the Einstein gravitational constant to be unity.The spacetime
metric, in terms of 1-forms relating the null tetrad to the 𝑥𝑖
system, is [2, 3, 5]

𝑑𝑠
2
= 2𝜔
1
𝜔
2
− 2𝜔
3
𝜔
4
, (3)
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where

𝜔
1
= −

𝑑𝑥

(𝑃𝜌)

, 𝜔
2
= −

𝑑𝑦

(𝑃𝜌)

,

𝜔
3
= 𝑑𝑢 + 𝐿𝑑𝑥 + 𝐿𝑑𝑦,

𝜔
4
= 𝑑𝑟 +𝑊𝑑𝑥 +𝑊𝑑𝑦 + 𝐻𝜔

3
.

(4)

In the 𝑥𝑖 system, we then have

𝑚
𝑖
= (−𝑃𝜌, 0, 𝑃𝑊𝜌, 𝑃𝐿𝜌) ,

𝑚
𝑖
= (0, −𝑃𝜌, 𝑃𝑊𝜌, 𝑃𝐿𝜌) ,

𝑛
𝑖
= (0, 0, −𝐻, 1) ,

𝑘
𝑖
= (0, 0, 1, 0) .

(5)

Here, for the case of a stationary solution,

𝜌 = −

1

(𝑟 + 𝑖Σ)

,

Σ = −

𝑖𝑃
2
(𝜕𝐿 − 𝜕𝐿)

2

,

𝑊 = 𝑖𝜕Σ,

𝜕 = 𝜕
𝑥
.

(6)

The coefficient of 𝑑𝑢2 is −2𝐻, where

𝐻 =

𝐾

2

−

(𝑚𝑟 +𝑀Σ)

(𝑟
2
+ Σ
2
)

,

𝐾 = 2𝑃
2 Re (𝜕𝜕 ln𝑃) ,

𝑀 = Σ𝐾 + 𝑃
2 Re (𝜕𝜕Σ) .

(7)

Here 𝑃, 𝐾, and 𝑀 are real functions and 𝐿 a complex
function, of 𝑥 and 𝑦. 𝐻 is a real function and𝑊 a complex
function, of 𝑥, 𝑦, and 𝑟. 𝑚 is a constant (>0). A subscripted
comma indicates partial differentiation. For a stationary
vacuum spacetime, the equations are

𝑀 = constant,

(𝜕 + 2𝑃
−1
𝜕𝑃) 𝜕𝐶 = 0,

(8)

where

𝐶 = 𝜕 (𝑃
−1
𝜕𝑃) + (𝑃

1
𝜕𝑃)

2

. (9)

Calculations will be made in the tetrad frame whose
metric coefficients are

𝑔
𝑎𝑏
=

[

[

[

[

0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

]

]

]

]

. (10)

3. A Stationary Vacuum Spacetime

We take 𝐿 and 𝑃 to be

𝑃 =

𝑥𝑦

2

+ 1,

𝐿 = −

𝑖𝑎

𝑃
2

(𝑎 = real const > 0) .
(11)

Referring to (7), we find that

𝑀 = 0, 𝐾 = 1, (12)

𝐻 =

𝑎
2
(𝑥 + 𝑦)

2
+ (𝑟
2
− 2𝑚𝑟) (𝑥𝑦 + 2)

2

2 [𝑎
2
(𝑥 + 𝑦)

2
+ 𝑟
2
(𝑥𝑦 + 2)

2
]

. (13)

Calculation of the Riemann tensor showed that all compo-
nents vanish when 𝑟 → ∞. The metric is therefore flat
at infinity. It was verified that 𝜓

0
= 𝜓
1
= 0, and in fact

calculation leads to a Petrov type D. The vacuum equations
(8) are evidently satisfied, and indeed all components of the
Ricci tensor vanish confirming a vacuum metric.

For the curvature of the𝑥, 𝑦 2-surface, a function depend-
ing on 𝑥 and 𝑦 as well as 𝑟 was obtained. It follows that
themetric is neither spherically symmetric nor axisymmetric
(see also Section 4).

From the Newman-Penrose spin coefficient 𝜌, we obtain
for the divergence and twist of the 𝑘 lines

Θ =

𝑟(𝑥𝑦 + 2)
2

𝑟
2
(𝑥𝑦 + 2)

2
+ 𝑎
2
(𝑥 + 𝑦)

2
,

𝜔 =

−𝑎 (𝑥 + 𝑦) (𝑥𝑦 + 2)

𝑟
2
(𝑥𝑦 + 2)

2
+ 𝑎
2
(𝑥 + 𝑦)

2
,

(14)

respectively.

4. The Metric in Real Coordinates

If we make the transformation

𝑥 = √2 tan(𝜃
2

) 𝑒
𝑖𝜉
,

𝑦 = √2 tan(𝜃
2

) 𝑒
−𝑖𝜉
,

(15)
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then the metric coefficients can be expressed in terms of real
coordinates 𝜃, 𝜉, and 𝑟, numbered 1, 2, and 3, respectively.
Thus, the transformed metric coefficients 𝑔

𝑖𝑗
become

𝑔
𝜃𝜃
= (4𝑟

4
+ 2𝑎
2
𝑟 (1 + cos 𝜃)

× {𝑟 (1 − cos 𝜃) (1 + cos2𝜉) + 2𝑚 (1 + cos 𝜃) sin2𝜉}

+ 𝑎
4sin4𝜃cos2𝜉)

× (4𝑟
2
+ 2𝑎
2sin2𝜃cos2𝜉)

−1

,

𝑔
𝜃𝜉
=

2𝑎
2
𝑚𝑟 sin 𝜃(1 + cos 𝜃)2 sin 𝜉 cos 𝜉

2𝑟
2
+ 𝑎
2sin2𝜃cos2𝜉

,

𝑔
𝜉𝜉
= (2𝑟

4sin2𝜃 + 𝑎2𝑟 sin2𝜃 (1 + cos 𝜃) cos2𝜉

× {𝑟 (1 − cos 𝜃) + 2𝑚 (1 + cos 𝜃)})

× (2𝑟
2
+ 𝑎
2sin2𝜃cos2𝜉)

−1

,

𝑔
𝜃𝑟
= −

𝑎 (1 + cos 𝜃) sin 𝜉
√2

,

𝑔
𝜉𝑟
= −

𝑎 (1 + cos 𝜃) sin 𝜃 cos 𝜉
√2

,

𝑔
𝜃𝑢
= (𝑎 sin 𝜉 {4𝑚𝑟 (1 + cos 𝜃) − 2𝑟2 cos 𝜃

− 𝑎
2sin2𝜃 cos 𝜃cos2𝜉})

× (√2 {2𝑟
2
+ 𝑎
2sin2𝜃cos2𝜉})

−1

,

𝑔
𝜉𝑢
= −

2𝑎 sin 𝜃 cos 𝜉 {𝑟2− 2𝑚𝑟 (1 + cos 𝜃)}+ 𝑎3sin3𝜃cos3𝜉
√2 (2𝑟

2
+ 𝑎
2sin2𝜃cos2𝜉)

,

𝑔
𝑟𝑟
= 0,

𝑔
𝑟𝑢
= −1,

𝑔
𝑢𝑢
= −

2𝑟
2
− 4𝑚𝑟 + 𝑎

2sin2𝜃cos2𝜉
2𝑟
2
+ 𝑎
2sin2𝜃cos2𝜉

.

(16)

We note that if we set 𝑎 = 0, the metric reduces to the
Schwarzschild spacetime (in Eddington-Finkelstein coordi-
nates). In terms of these coordinates, the divergence and twist
of the 𝑘 lines, given by (14), have the expressions

Θ =

2𝑟

2𝑟
2
+ 𝑎
2sin2𝜃cos2𝜉

,

𝜔 = −

√2𝑎 sin 𝜃 cos 𝜉
2𝑟
2
+ 𝑎
2sin2𝜃cos2𝜉

.

(17)

Also, it may be verified that the component 𝑔
𝑢𝑢

is the
transform of −2𝐻 where𝐻 is given in (13).

The hypersurfaces 𝑟 = 𝑟
+
and 𝑟 = 𝑟

−
which satisfy the

relation

2𝑟
2
− 4𝑚𝑟 + 𝑎

2
= 0 (18)

are null surfaces. They form horizons

𝑟
+
= 𝑚(1 +

√
1 −

𝑎
2

2𝑚
2
) ,

𝑟
−
= 𝑚(1 −

√
1 −

𝑎
2

2𝑚
2
) ,

(19)

and they are real for

0 < 𝑎 < √2𝑚. (20)

In this case, 𝑟 = 𝑟
+
is an event horizon and 𝑟 will be spacelike

in its exterior but timelike in the region 𝑟
−
< 𝑟 < 𝑟

+
(where 𝑢

will be spacelike).
From the metric, we see that a radial light ray (𝑑𝑠 = 𝑑𝜃 =

𝑑𝜉 = 0) which satisfies

−2𝑑𝑟 +

(2𝑟
2
− 4𝑚𝑟 + 𝑎

2sin2𝜃cos2𝜉)
2𝑟
2
+ 𝑎
2sin2𝜃cos2𝜉

𝑑𝑢 = 0 (21)

has 𝑑𝑟/𝑑𝑢 > 0 in the region 𝑟 > 𝑟
+
, where 2𝑟2 − 4𝑚𝑟 +

𝑎
2sin2𝜃 cos2𝜉 > 0. However, in the region 𝑟

−
< 𝑟 < 𝑟

+
where

the factor 2𝑟2 − 4𝑚𝑟 + 𝑎2sin2𝜃 cos2𝜉 < 0, we have 𝑑𝑢/𝑑𝑟 < 0,
so that the light ray, and indeed all timelike particle motions,
can only be inwards and never outwards.Thus, themetric has
a black hole if 0 < 𝑎 < √2𝑚. Setting 𝑎 = 0, we get the familiar
results for the black hole in the Schwarzschild solution.

We may verify in these coordinates that the Riemannian
curvature of the 𝜃, 𝜉 2-space (𝑟 = const; 𝑢 = const) depends
on 𝜃 and 𝜉 as well as 𝑟, so that the metric is not spherically
symmetric or axially symmetric. For the curvature, we derive

𝐾
𝜃𝜉
= (2𝑚 (−3𝑎

2sin2𝜃cos2𝜉 + 2𝑟2)

× {𝑎
2
[2𝑟
2
(5 + 6 cos 𝜃 + cos2𝜃) − 4𝑚𝑟(1 + cos 𝜃)2]

+ 3𝑎
4
(1 + cos 𝜃)2 + 8𝑟4})

× ((2𝑟
2
+ 𝑎
2sin2𝜃cos2𝜉)

3

× {𝑎
2
[𝑟sin2𝜃 + 2𝑚(1 + cos 𝜃)2] + 2𝑟3})

−1

.

(22)

When 𝑎 = 0, this result becomes 2𝑚/𝑟3, as appropriate to the
Schwarzschild spacetime.The only Killing vector, when 𝑎 ̸= 0,
is 𝜕
𝑢
reflecting the stationary character of the solution.

5. Conclusion

In this paper, we have derived and described the properties of
a stationary vacuum metric which has no spatial symmetry
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but reduces to the Schwarzschild spacetime when the param-
eter 𝑎 is set to zero.The spacetime is algebraically special and
possesses a null congruence 𝑘 which is geodesic, shear-free,
and whose divergence and twist are calculated. Subject to the
relation 0 < 𝑎 < √2𝑚, there is shown to be an event horizon
inside which there is a black hole. These features are believed
to be of critical interest since they are in contrast with most
previous discussions which have concerned a central mass in
a spherically or axially symmetric environment.
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