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Seasonal and epidemic influenza continue to cause concern, reinforced by connections between human and avian influenza, and
H1N1 swine influenza. Models summarize ideas about disease mechanisms, help understand contributions of different processes,
and explore interventions. A compartment model of single-city influenza is developed. It is mechanism-based on lower-level
studies, rather than focussing on predictions. It is deterministic, without non-disease-status stratification. Categories represented
are susceptible, infected, sick, hospitalized, asymptomatic, dead from flu, recovered, and one in which recovered individuals lose
immunity. Most categories are represented with sequential pools with first-order kinetics, giving gamma-function progressions
with realistic dynamics. A virus compartment allows representation of environmental effects on virus lifetime, thence affecting
reproductive ratio. The model’s behaviour is explored. It is validated without significant tuning against data on a school outbreak.
Seasonal forcing causes a variety of regular and chaotic behaviours, some being typical of seasonal and epidemic flu. It is suggested
that models use sequential stages for appropriate disease categories because this is biologically realistic, and authentic dynamics is
required if predictions are to be credible. Seasonality is important indicating that control measures might usefully take account of
expected weather.

1. Introduction

1.1. Background and Objectives. Both seasonal influenza
and influenza epidemics continue to cause, despite pro-
phylactic and therapeutic efforts, considerable morbidity,
mortality, and financial loss across the world (e.g., [1,
2]). Further concern is generated by connections between
human influenza with avian influenza ([3]; see below),
which, in its own right, gives rise to economic damage
and distress [4]. Models provide a method of summarizing
current ideas about mechanisms of disease development
and propagation, understanding the contributions from the
different processes, and exploring possible consequences and
interventions [5–7]. Because of the world-wide relevance
of influenza, human and avian, there continue to be many
publications on the topic. The recent outbreak of H1N1
swine influenza, and especially the varied and conflicting
prognoses from experts, reveals how thinly based much of
our knowledge still is.

Our paper is partly a review, partly sets out in detail a
particular approach to influenza modelling, and partly has
some original content on seasonality, forcing, and the result-
ing predictions. The particular objectives are to construct
a model with multiple sequential pools in various disease
categories (Figure 1) so that the underlying biological dy-
namics is realistic, to validate the model by applying it to
data describing an influenza epidemic (Figure 5), to suggest
a possible mechanism for the direct effects of environment
(season) on influenza dynamics (Figure 6), and last to apply
various levels of environmental forcing to demonstrate how
the model, without reparameterization, can give rise to a
wide range of dynamics, ranging from regular (e.g., twice
yearly, annual, biennial, etc.) epidemics to chaos, where
sometimes predictions resemble some of the great influenza
pandemics (Figures 7 and 8).

Before proceeding with this agenda, a brief review of
some of the issues and modelling approaches relevant to
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Figure 1: Model scheme. The 32 state variables are denoted by n + subscript. All pools other than the virus pool (nvir) and the dead-from-
influenza pool (nded) suffer from a natural mortality rate of μ (Table 1, where parameters are listed). Many categories (e.g., “Infected”) consist
of sequential pools. The four infected pools all have (incubation) rate constants of kinf . Similarly, ksic applies to the four nonhospitalized
clinically sick pools, khos to the three hospitalized clinically sick pools, kasy to the seven asymptomatic pools, and kdel to the ten pools in the
loss-of-immunity delay pipe. fasy and fhos are the fractions of the fluxes between ninf1 and ninf2, and nsic1 and nsic2, which are asymptomatic
and hospitalized. μsic and μhos are the death rates (caused by flu) of the clinically sick and hospitalized pools.

influenza is given, and our contribution is discussed in this
wider context.

1.2. Brief Review of Influenza Issues and Modelling Approaches

1.2.1. Avian Influenza. One of the reasons for the ongoing
concern with influenza is the continuing threat from avian
flu. Avian influenza is endemic in many parts of the world
and, from time to time, there are outbreaks of highly
pathogenic strains, such as the recent outbreak of the H5N1
strain of the virus [8]. The virus can be transferred to other
animals, including horses, pigs, and humans, frequently with
fatal consequences [9]. Because of antigenic drift (a high
rate of immunologically significant mutations) and shift
(reassortment between different strains of influenza within
a single host), coupled to other factors such as loss of immu-
nity, there is a continuing threat to the human population
[10, 11]. This threat depends on possible changes in the to-
date limited capacity of the highly pathogenic avian strains
for human-to-human transmission [8, 9]. This risk makes
it important that key factors determining virus evolution,
epidemic occurrence, and cross-species transmission are well
understood, so that effective strategies for containment and
control might be designed [12–14].

There are also models dealing with the avian-human
influenza nexus. For example, [14] presents an ordinary dif-
ferential equation model which combines an SI (susceptible,

infected) avian model with an SIR (susceptible, infected,
resistant) human model. They suggest that measures such as
both extermination (of avians) and quarantine (for humans)
could be needed to avoid a pandemic of influenza.

1.2.2. Two-Strain Influenza and Influenza in a Single Person.
An interesting paper [15] extends what might be called
the complex models of simple influenza by presenting a
simple deterministic model of a more complex situation:
they treat the dynamics of two-strain influenza, focussing
on competition and cross-immunity. Isolation period and
crossimmunity are critical parameters. Some of their results
are similar to those reported here (with variable interepi-
demic periods from 2 to 10–13 years), although the model
and mechanisms are quite different.

At a more detailed level, the cell level in a single person, a
model of the immune response to the influenza virus which
treats innate and adaptive immunity has been proposed
[16]. The model has 10 ordinary differential equations,
representing interferon, T-cells, killer cells, antibodies, and
other states. They explore the impact of initial viral load
on disease progression. When this is small, the disease
progresses asymptomatically. The model builds on [17].

1.2.3. Network Models and Stochastic Simulations. Some
recent influenza models are based on networks and stochastic
simulations [11, 18–22]. The model of [23] is of considerable
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Table 1: State variables, parameters and definitions. Initial values of state variables, principal parameter values and definitions of principal
variables. See Figure 1 for state variables. Relevant equation numbers are given.

State variable initial values (t = 0) Units

nsus = ncity − ninf1 − nrec Susceptibles Persons

ninf1 = 1 Infecteds Persons

nrec = 0 usually, but see Figure 3(c) Recovered (immune) Persons

All other nxxx,nxxxx = 0 (Figure 1) Persons, viruses

Parameters + value Description Units

fasy = 0.9 Asymptomatic fraction (3)

fhos = 0.05 Fraction of sick hospitalized (4)

kasy = 2 Transfer rate (7) Day−1

kdel = 10/1095 (see τimm below) Transfer rate (11) Day−1

khos = 2 Transfer rate (8) Day−1

kinf = 2 Transfer rate (3) Day−1

krec = 0 (or 1) Rate constant (10) Day−1

ksic = 2 Transfer rate (4) Day−1

kvir = 200 Virus production parameter (13) Virus units person−1 day−1

kvir,dnm = 5 Virus natural mortality (15) Day−1

ncity = 106 Population of city (see 1st line of table, paragraph
before (1), and paragraph after (2))

Persons

R0 = 4.78 by (20) Basic reproductive ratio

β = 0.1 Infection transmission rate (2) Persons (virus units)−1 day−1

μ = 1/(60× 365) = 4.566× 10−5 Natural birth/death rate (2) Day−1

μhos = 0.001 Flu-induced death rate (hospital) (8) Day−1

μsic = 0.001 Flu-induced death rate (home) (4) Day−1

τgen = 2.51 ((B.7); see 2nd paragraph after
(22))

Generation time Day−1

τimm = 3× 365 = 1095 Loss of immunity delay (11) Day

Environmental parameters Description Units

qT = 2 Temperature exponent (18)

senv = 0 (1) Environment switch (18)

Tair0 = 13 Temperature threshold (18) ◦C

kTair = 0.1 Scaling factor (18) (◦C)−2 d−1

Variables Description Units

khos Hospital admission rate (5) Persons day−1

kvir,env Environmentally induced death rate ((18), (15)) Day−1

R0 Basic reproductive ratio (20)

sinf Infectious strength (virus production rate) (13) Virus person−1 day−1

interest: it includes an individual level (age, treatment,
vaccination status) as well as a community level (household,
workplace, supermarkets, schools, etc.). Within a city, most
contacts occur in a few locations. Interventions at these
locations can be expected to be more effective than less-
targeted interventions. Isolation and quarantine (e.g., [24])
are possible treatments, as is antiviral use for both prophy-
laxis and therapy. A stochastic calculation with a half-day
time step is applied. Their model gives valuable quantitative
indications of how epidemics/pandemics may be prevented
or controlled. These highly articulated models may be
well suited to predictions of outcomes from interventions
for particular situations. However, stochastic models are

highly demanding, of computing resources, high-resolution
data on populations, contacts, transmission, age-specific
characteristics, and so forth. Moreover, their predictions are
often highly sensitive to initial values and settings.

1.2.4. Deterministic Models. Deterministic models of influ-
enza are also numerous, and the model presented here
is of this type. While biological variability is a reality,
there is a feeling amongst some modellers, especially those
with a background in engineering or physics or applied
mathematics, that a deterministic approach gets closer to the
real science, to understand what is going on, than a stochastic
approach. Reflecting this are many quotations, such as “God
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does not play dice,” and “if you need statistics, then do a
better experiment.” Deterministic models are easier to build,
easier to understand and use, easier to falsify, and easier for
tracing cause and effect. With a deterministic model, a clearly
labelled box diagram tells the reader most of what he needs to
know. In the next two paragraphs, we refer to two examples
of the genre. Although many models have the potential to
represent directly seasonal effects of environment, we have
not found one that actually does this. Some models represent
places where people assemble and interact such as schools
and clinics which affect contact rates: indirectly, these can
represent a seasonality. But here, effects of weather variables
on model parameters are represented directly.

The model of [25] is a typical example of a simple deter-
ministic influenza model. The model has seven significant
state variables and ordinary differential equations. From our
point of view, their use of a single stage to represent each
category (e.g., latent, infectious, asymptomatic, hospitalized,
etc.) gives a biologically unreasonable representation of the
transit time distribution through that category. Since here
we represent day-to-day effects of weather on influenza
dynamics, it is important that the model should represent the
dynamics of influenza realistically. This means using several
serial stages for progress through each disease category.

A typical large deterministic influenza model is in [26].
This comprises over 1000 differential equations and allows
for many demographic and clinical parameters (such as risk,
age, four levels of sickness, treated or untreated at home,
and treated or untreated in hospital) so that it is useful
in planning. Their model does employ multiple stages for
the different disease categories, and therefore the model is
able to be much more dynamically realistic than that of
[25]. The model has been used to explore the consequences
of pharmaceutical and nonpharmaceutical interventions by
[27]. The interested reader might find it useful to start with
[27, Figure 7] and proceed to [26, Tables 2, 3, and 4].
The model has not been applied to direct seasonal effects,
although effects such as school closures giving a decrease
in contact rates are included. There is no mention of chaos
resulting from such forcing.

[28] addresses generally for SIR and SEIR models some
of the issues covered here: the inclusion of more realistic
distributions; the destabilizing consequences of this so that
lower levels of forcing are required to give chaos; the
conclusion that the assumptions made in formulating the
model have a major impact on its dynamical properties.

1.2.5. Simplicity versus Complexity in Influenza Modelling.
There are numerous other examples of models of the
deterministic ordinary differential equation type. Many
parameters of these models are uncertain; predictions can
be highly sensitive to initial conditions. The model may
be applied as a large regression equation, irrespective of
the known biological lacunae and the well-documented
dangers of such procedures [29]. Pertinent to this dilemma,
it has been remarked that “phenomenological approaches are
deficient in their lack of attention to underlying processes;
individual-based models, on the other hand, may obscure
the essential interactions in a sea of detail [30]. The challenge

then is to find ways to bridge these levels of description, . . ..”
Others (e.g., [31]) have argued the importance of modelling
the dynamics of influenza surveillance data, in order to
provide early predictions of epidemic events; to this end,
they apply purely statistical methods. Cogently, it has been
suggested that “as a general policy in preparing for an
outbreak of a disease whose parameters are not yet known,
it would be better to use a general compartment model using
relatively few parameters and not depending critically on the
particular as yet unknown setting” [32]. We concur with this
view. Such models are easier to construct and explore. They
are better suited for elucidating general properties of these
systems, as is done here.

1.2.6. Seasonality. Seasonality has long been implicated in
influenza incidence and severity, although the basis for this
is not understood [33]. Also, it has arguably been given
little detailed attention by epidemiologists. Seasonality is a
significant factor in mortality from several causes including
influenza in temperate countries, with more people dying
in the winter (approximately, November to March in the
northern hemisphere) than in the summer [34, 35]. The con-
tribution of influenza to these excess deaths is disputed [35,
36], as vaccination against influenza protects against deaths
from other conditions [37]. However, [35] summarizes with
“our findings are compatible with the hypothesis that the
cause of winter-season excess mortality is singular and is
most likely to be influenza.” This conclusion agrees with an
earlier European study [38]. Any model which covers many
community levels (e.g., household, workplace, supermarkets,
schools, as in [23]), offers many possibilities for applying
seasonality by altering mixing patterns. Often seasonal
forcing is represented empirically, by adding a sinusoid
to the infection rate parameter [39, 40]. This approach
to forcing leads to annual, biennial, and multiple cycles
including chaos. It has been suggested that large seasonal
oscillations in incidence can result from an amplification of
very small seasonal changes in influenza transmission [41].
Large amplification occurs when the driving frequency is
close to the natural frequency of the unforced system. A
two-state variable SIRS model (S + I + R = constant) is
applied. A two compartment model with linear transfers
(giving rise to negative exponentials) can only give a limited
representation of the biological dynamics. They do not
explore their model other than to support their suggestion
of dynamical resonance and make no mention of chaos.

1.3. Current Model and Its Contributions. Here a simple
model for epidemic influenza in a single city with seasonal
forcing is constructed and evaluated. We are not aware
of existing work which treats directly seasonal effects (but
see [42], where the contact rate is reduced by a factor of
ten for the 6-month nonepidemic season). The focus is
on the essential biology of the problem using traditional
scientific reductionism. The model is of the compartmental
deterministic type with homogeneous mixing (but see [30]),
and is without age or any other non-disease-status stratifi-
cation. Various categories are represented, but, recognizing
the importance of mechanistically realistic dynamics, and at
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variance with usual practice in SIR models, each category
is represented by three or more stages. The reason for
using several sequential stages (spelt out in Appendix A)
to represent a given category is that this allows a more
credible gamma-function progression through the category
[43]. With a single-stage category, the most probable time
a person spends in that category is zero, which is hardly
biologically defensible although it is widely applied. Because
dynamics is so important when considering influenza and
especially its interaction with seasonal forcing, it is necessary
to use the more realistic multistage categories. This adds to
the size of the model, but importantly, it does qualitatively
change the dynamics (Appendix A). Essentially, our model is
of the SIRS (susceptible, infected, resistant, susceptible) type
but with most categories represented by sequential stages: for
example, the I (infected) category in Figure 1 is broken down
into four sequential stages.

There are many ways in which seasonality could impinge
on influenza dynamics. We choose one of the simplest.
A virus compartment allows effects of environment to be
represented on virus lifetime, which might be an important
environmental forcing mechanism. Some simulations are
presented for the unrealistic situation in which recovered
individuals are immune for life, in order to illustrate the
basic characteristics of the model. Also, simulations are given
for the more realistic situation where immunity is lost over
a few years. For this latter situation, seasonal forcing gives
rise to an unexpectedly wide range of pertinent dynamics,
including regularly spaced epidemics from two per year
through one per year to one epidemic every several years
(two or more), sometimes with slightly chaotic spacing but
sometimes regularly spaced but with chaotic amplitudes, and
sometimes quite chaotic in both spacing and amplitude.

Our main objective is to show how, in a mechanistically-
oriented model with credible biological assumptions and
minimal parameter adjustment to obtain specific outcomes,
seasonal forcing functions of different magnitudes can
constrain, entrain, and amplify the natural rhythms of
influenza, giving rise to a wide range of epidemic/pandemic
patterns, from biennial, annual, at intervals of several years,
and chaotic. Our novel contributions are first to suggest
an explicit direct mechanism for the effects of weather on
influenza dynamics and then give simulations that show that
such mechanisms can have a profound but realistic effect
on the dynamics of influenza epidemics. This suggests that
the approach could be an important (but hitherto neglected)
part of influenza models and planning tools.

2. Methods and Modelling

2.1. Model Scheme. The scheme is drawn in Figure 1. State
variables are denoted by n + subscript. There is no age
stratification. There are eight categories of persons: suscep-
tible (sus); infected, which is considered as four sequential
stages (inf j, j = 1, . . . , 4); clinically sick, also considered
as four stages of sickness (sicj, j = 1, . . . , 4); recovered or
immune (rec); asymptomatic (asy), which branches off after
the first infected stage and has seven stages before recovery
is achieved; hospitalized (hos) or isolated, which branches

off after the first clinically sick stage and has three stages
before recovery is achieved; dead from influenza (ded). Note
that clinically sick persons, whether hospitalized or not,
may die from influenza, or recover. There is a delay τimm

(day) during which recovered persons can lose immunity
and return to the susceptible compartment—persons in this
delay pipe, represented by ten sequential stages, are denoted
by ndel1, ndel2, . . ., to ndel10. Infectious persons give rise to
virus particles (nvir), which, while they may be inactivated
or killed, can give rise to further infection events.

We choose, although this is not the usual procedure in
influenza models, to have a virus pool (nvir). The reader
may wonder why? First, we are fairly sure that such a pool
must exist. Second, with a virus pool it becomes easier to
think in concrete terms of the effects of weather variables (air
temperature, relative humidity, wind speed, and radiation)
on the virus, for example, its viability and longevity ((15),
(18)). An alternative to having a virus pool (nvir) would be
to assume that weather affects transmission rate β directly.
In the equations to follow, transmission rate β and virus
pool nvir always appear multiplicatively ((2), first equation of
(3), (20)). Thus, it perhaps makes little difference whether
we have a virus pool which can be modified by weather,
or no virus pool and simply assume that weather affects
transmission coefficient. We take the view that transmission
is a multistage process and that the components of weather
may impinge on different parts of this process. It may
then be helpful to have an explicit virus pool. Note that
our transmission rate β has units of virus−1 day−1 (rather
than the customary day−1) (Table 1). Also, in the expression
for the basic reproductive ratio (20), β is divided by the
virus mortality rate. In fact, the first term on the right side
of (20) can be viewed as a traditional transmission rate
with units of day−1, and the modulation of virus mortality
((15), (18)) may be considered as modulating the traditional
transmission rate.

Initial values and parameters are listed in Table 1,
although some parameters which are only used once are
defined in or after the equation where they appear.

All routes from susceptible to recovered (Figure 1) pass
through eight pools. We have assigned the same value of
2 day−1 to the four rate constants kinf , kasy, khos, and ksic

(Table 1). This gives a mean transit time from susceptible
to recovered of 4 days (8/2) with simple gamma-type
distributions of transit times applying to the whole path
and its components (last paragraph of Methods section;
Appendix A; e.g. [44], pp. 818–822).

Because of the importance of the assumption of sequen-
tial pools for giving biologically realistic dynamics (whereas
the traditional assumption of a single pool gives biologically
unacceptable dynamics [43]), a discussion of sequential
pools in relation to the gamma function is given in
Appendix A. In Appendix A, it is shown that the use of two
sequential pools give qualitatively different dynamics than
a single pool also that three sequential pools gives again a
qualitatively different result than two pools; with three or
more sequential pools, the dynamics only changes quan-
titatively. Although observation and data clearly support
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the existence of a minimum time span being required to
traverse a given clinical category, which can be represented
by sequential pools as is done here, measurements in this area
are extremely difficult. Where the data do not speak clearly,
for example, as to whether one should use 3 or 4 pools, or 7
or 8, we have made simplifying and convenient assumptions
in order that we could proceed with the calculations (see
Section 2.3).

[25] uses a model of similar type but with a simpler
structure. The authors employ least squares to estimate most
of their model’s parameters for the spring and autumn waves
of the 1918 influenza epidemic (their Table 1). They find
substantial differences between some of the parameters for
the spring and autumn epidemics, which may raise questions
about what such parameters describe. Our parameters
(Table 1) are generally compatible with those obtained and
applied in [25], allowing for differences in model structure.

All state variables (Figure 1) and all terms in the differ-
ential equations scale linearly with population size and the
size of the virus pool, so that solutions (expressed propor-
tionately) are independent of population (ncity, Table 1).

2.1.1. Some Definitions. First, define some totals in terms of
the state variables (Figure 1):

ninf = ninf1 + ninf2 + ninf3 + ninf4,

nsic = nsic1 + nsic2 + nsic3 + nsic4,

nhos = nhos2 + nhos3 + nhos4,

nasy = nasy2 + nasy3 + · · · + nasy7 + nasy8,

ndel = ndel1 + ndel2 + · · · + ndel9 + ndel10,

nliv = nsus + ninf + nsic + nhos + nasy + nrec + ndel,

nfer = nliv = ncity, niash = ninf + nasy + nsic + nhos.

(1)

The notation of the first five equations is obvious. Total
live population nliv is given by the sixth equation and
is assumed equal to the fertile population nfer (seventh
equation); both of these are equal to the city population,
ncity ((2) and following paragraph). Finally, total infected
population niash is obtained by adding together the inf, asy,
sic, and hos categories. All the variables in (1) can be turned
into fractions by division by ncity.

State variables are next treated by categories and pools.

2.1.2. Susceptibles. The differential equation for nsus is

dnsus(t)
dt

= μnfer + kdelndel10 + Ided − μnsus − βnsusnvir

nliv
. (2)

The two principal inputs are first from births with the
number of fertile persons nfer given by (1) and second from
the output of compartment 10 of the delay pipe (Figure 1)
where people recovered from influenza are slowly losing their
immunity. μ is the natural birth (and death) rate (Table 1).
It is assumed that all births are free of infection and are
without immunity. A small additional input to the nsus pool
is included, Ided. This is the death rate caused by influenza
(Figure 1). Ided is given by (16). This is done so that the

live person number, nliv (1), remains constant at value ncity

(Table 1). This makes the results easier to check as true steady
states can be obtained. It is of no biological significance as
over an epidemic, deaths from influenza are typically less
than 1% of those from natural mortality (the −μnsus term
in (2)). Also, the instantaneous death rate from influenza,
Ided (16), is transient, and even at its maximum value, is
usually less that the death rate from natural mortality. This
assumption of equal birth and death rates was also made in
[28].

The two outputs (negative terms) are natural death and
infection, the latter giving a transfer to the first infected
pool. The natural death rate μ is assumed to be the same as
the birth rate (Table 1). β is the infection transmission rate
(Table 1). This is multiplied by the number of susceptibles
nsus, the virus quantity nvir and is divided by the number
of live persons nliv (1). All terms in (2) scale equally with
population size.

2.1.3. Infecteds. The differential equations for the four
sequential infected pools are

dninf1

dt
= βnsusnvir

nliv
− kinfninf1 − μninf1,

dninf2

dt
=
(

1− fasy

)
kinfninf1 − kinfninf2 − μninf2,

dninf3

dt
= kinfninf2 − kinfninf3 − μninf3,

dninf4

dt
= kinfninf3 − kinfninf4 − μninf4.

(3)

In the first equation, the input of infecteds is the last term
in (2). All pools suffer equally from natural death at rate
μ. The output term kinfninf1 from the inf1 pool is partly
asymptomatic with fraction fasy (Figure 1, Table 1; (7)), the
remainder entering the inf2 pool (second equation, first
term). The third and fourth equations are straightforward.
Rate constant kinf is 2 day−1, such that with four pools the
mean time from infection to clinical sickness is 4/kinf = 2 days
[45]. This gives a gamma-distributed lag for the overall exit
time from the fourth pool (Appendix A, (A.4), Figure 9.)

2.1.4. Nonhospitalized Clinically Sick. Persons who become
clinically sick enter the sic1 pool (Figure 1). A fraction
fhos (Table 1) of these may be hospitalized or isolated, the
remainder continuing to recover from the illness at home.
Some of the clinically sick (whether in hospital or not) will
die from influenza. The differential equations are

dnsic1

dt
= kinfninf4 − ksicnsic1 −

(
μ + μsic

)
nsic1,

dnsic2

dt
= (1− fhos

)
ksicnsic1 − ksicnsic2 −

(
μ + μsic

)
nsic2,

dnsic3

dt
= ksicnsic2 − ksicnsic3 −

(
μ + μsic

)
nsic3,

dnsic4

dt
= ksicnsic3 − ksicnsic4 −

(
μ + μsic

)
nsic4.

(4)



ISRN Biomathematics 7

These equations are similar to (3), but the natural death rate
μ is augmented by flu-induced deaths at rate μsic (Table 1).
The time between the onset of sickness and recovery
is similarly (to the ninf pools above) gamma-distributed
(Appendix A, Figure 9 , (A.4)).

The rate at which individuals are admitted to hospital,
Ihos2 (Figure 1), is

Ihos2 = fhosksicnsic1, (5)

with units of persons day−1. This is often a recorded statistic.
The total flu-related death flux is (input from all four sick

pools to the dead-from-influenza nded box of Figure 1; units:
persons day−1)

Isic→ded = μsic(nsic1 + nsic2 + nsic3 + nsic4). (6)

2.1.5. Asymptomatic Infecteds. The differential equations for
these seven pools (Figure 1) are

dnasy2

dt
= fasykinfninf1 − kasynasy2 − μnasy2,

dnasy3

dt
= kasynasy2 − kasynasy3 − μnasy3,

. . .

dnasy8

dt
= kasynasy7 − kasynasy8 − μnasy8.

(7)

Asymptomatic infecteds are fed from (3) (first equation, 2nd
term on the right side). Seven pools are employed so that the
path from susceptibles to recovered (Figure 1) traverses eight
pools in total.

2.1.6. Hospitalized Clinically Sick. These represent hospi-
talized or isolated or specially treated clinically sick. The
differential equations are

dnhos2

dt
= fhosksicnsic1 − khosnhos2 −

(
μ + μhos

)
nhos2,

dnhos3

dt
= khosnhos2 − khosnhos3 −

(
μ + μhos

)
nhos3,

dnhos4

dt
= khosnhos3 − khosnhos4 −

(
μ + μhos

)
nhos4.

(8)

The input term fhosksicnsic1 represents hospital admissions
(5), a recorded statistic, which may be useful for comparing
with data. The flu-induced death rate μhos (Table 1) is
assumed to be the same as that for the nonhospitalized
clinically sick, μsic (4). This may be justified in that the
fraction fhos taken into hospital is more ill, but they then
receive better care.

Total flu-related death rate from the three hospitalized
clinically sick pools is

Ihos→ded = μhos(nhos2 + nhos3 + nhos4). (9)

2.1.7. Recovered and Immune. The state variable nrec is gov-
erned by the equation

dnrec

dt
= kasynasy8 + ksicnsic4 + khosnhos4 − μnrec − krecnrec.

(10)

The positive (input) terms are from the last equations of (7),
(4), and (8). Death occurs at its natural rate (μ). The rate
constant krec is set to zero if it is assumed that immunity is
not lost; otherwise it is set to a nonzero value (e.g., 1 day−1,
Table 1, the precise value is unimportant as long as it is of
order of 1 day−1 or more). A non-zero krec causes rapid entry
into the delay sequence of pools (Figure 1) which leads to loss
of immunity.

2.1.8. Delay Pipe Representing Loss of Immunity. Loss of
immunity might arise from loss of immunological memory,
or from drift and shift in the antigenic character of the
virus [11]. This process is represented by ten sequential
compartments giving a gamma function delay (Appendix A;
also e.g., [44], pp. 818–822). If τimm (day) is the time period
during which immunity is lost (three years is assumed;
Table 1), and kdel (day−1) is the rate constant out of each of
the ten compartments, then

kdel = 10
τimm

. (11)

The standard deviation in the exit times is (
√

10)/kdel and the
coefficient of variation is 1/

√
10 (= standard deviation/τimm)

(A.7). The differential equations for the pools are

dndel1

dt
= krecnrec − kdelndel1 − μndel1,

dndel2

dt
= kdelndel1 − kdelndel2 − μndel2,

. . .

dndel9

dt
= kdelndel8 − kdelndel9 − μndel9,

dndel10

dt
= kdelndel9 − kdelndel10 − μndel10;

(12)

The first term on the right of the 1st equation (krec) is the
last term in (10); the second term (kdel) is transfer to the next
compartment; the last term (μ) is the natural death rate. The
2nd term on the right of the last equation (kdel) is transfer
into the susceptible pool (2).
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2.1.9. Virus Pool. It is assumed that virus production, svir,
which is a surrogate for “infectious strength”, is calculated
with

svir(t) = kvir(winf1ninf1 + winf2ninf2 + winf3ninf3

+ winf4ninf 4 + wsic1nsic1 + wsic2nsic2

+ wsic3nsic3 + wsic4nsic4 + wasy2nasy2

+ wasy3nasy3 + . . . + wasy8nasy8

+whos2nhos2 + whos3nhos3 + whos4nhos4).

kvir = 200 virus units
(
weighted infected person

)−1day−1.
(13)

kvir is a production rate constant which is applied to weighted
infected persons. The value above gives a basic reproductive
ratio R0 (20) of 4.78 (see Section 2.3). The weighting factors
w of (13) are (0 ≤ w ≤ 1)

winf1 = 0, winf2 = 0.5, winf3 = 1, winf4 = 1;

wsic1 = 1, wsic2 = 1, wsic3 = 1, wsic4 = 0.5;

wasy2 = 0.2, wasy3 = 0.4, wasy4 = 0.4,

wasy5 = 0.4, wasy6 = 0.4, wasy7 = 0.2,

wasy8 = 0;

whos2 = 0.2, whos3 = 0.2, whos4 = 0.1.
(14)

The precise values do matter but they are not important, so
long as the values are reasonable. In the usual SIR model
there would not be multiple stages as here and any weighting
factor would be implicitly unity. In (14) infectivity increases
a half day after infection, reaches a maximum, and then
decreases as recovery takes place. It is stated in [47], with
reference to [46], that “the standard pattern of an influenza
A virus in adults is characterized by an exponential growth
of virus titre, which peaks 2 to 3 days postinfection (DPI),
followed by an exponential decrease until it is undetectable
after 6 to 8 DPI.” svir of (13) is the input to the virus pool
(15).

The outputs from the virus pool (15) are death by
natural mortality (kvir,dnm, Table 1) and death induced by
a suboptimal environment, represented by rate constant
kvir,env (18). The value of kvir,dnm corresponds to a half-life
of free virus of about 3 h [47]. No extra virus death process
is ascribed to the contact/infection process with persons
(whether susceptible or immune). Thus, when the basic
reproductive ratio is calculated in (20), this is proportional
to β, and there is no β in the denominator. Such virus death
processes are subsumed in the natural mortality term kvir,dnm.
The differential equation for the virus pool nvir is

dnvir

dt
= svir −

(
kvir,dnm + kvir,env

)
nvir. (15)

2.1.10. Flu-Related Dead Pool. The inputs to this pool are
from the sick pools with (6) and (9), so the total input to
the nded pool (Figure 1) is

Ided = Isic→ded + Ihos→ded. (16)

There are no outputs. Therefore,

dnded

dt
= Ided, t = 0, nded = 0. (17)

Note that, in order to maintain the total population constant
as a mathematical convenience, the birth rate of suscep-
tibles is augmented by the death-from-influenza rate (2).
As explained after (2), this has a negligible effect on the
performance of the model.

2.1.11. Environmentally induced Virus Mortality kvir,env and
Seasonal Forcing. The environmentally dependent function
kvir,env in (15) (Figure 1) is assumed here to depend only
on daily mean values of air temperature, Tair. Possible
influences of relative humidity [33], radiation, or wind speed
are ignored but could be similarly treated. In a study of
relative humidity and temperature on virus transmission,
[48] remark that “although the seasonal epidemiology is
well characterized, the underlying reasons for predominant
wintertime spread are not clear.” The rate constant for
environmentally induced death, kvir,eny (d−1; Figure 1) is
written as

kvir,env = senvkTair

[
(Tair − Tair0) + ABS(Tair − Tair0)

2

]qT
,

senv = 0 (or 1), kTair = 0.1( ◦C)−2 d−1,

Tair0 = 13 ◦C, qT = 2.
(18)

senv is used to switch environmental effects off (0) or on (1).
Air temperature Tair above a threshold Tair0 increases virus
mortality according to power qT . Parameter qT is assumed
equal to two giving a quadratic dependence of temperature
above the threshold Tair0 (Table 1). It is usual for the
biological effects of temperature to be nonlinear, sometimes
approximating to exponential, as in the use of a Q10 factor
for the consequences of a 10◦C temperature rise on chemical
reaction rate, or the application of the Arrhenius equation
for chemical reactions (e.g., [44], pp. 103–105). kTair is a rate
parameter. We did not find controlled-environment studies
on the effect of temperature on virus longevity which we
could use, and therefore the values assigned the parameters
are estimates.

In southern Britain, daily mean air temperature Tair

varies from c. 3 (January) to 17◦C (July) ([44], p. 270; [49] p.
142). It is assumed that Tair varies sinusoidally, with

Tair = Tair,mean + Tair,var

{
sin

[
2π
365

(
iJulian − τTair

)]}
;

Tair,mean = 10◦C(varied), Tair,var = 7◦C,

τTair = 115 day.

(19)

Annual mean and seasonal variation are Tair,mean and Tair,vr.
iJulian is the Julian day number (1 on 1 January, leap years
are ignored). τTair (d) is the phase of the sinusoid, which is
maximum on 25 July. Combining equations (19) with (18)
modifies environmentally induced virus death rate, kvir,env,
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and hence reproductive ratio (20). The same seasonal pattern
is applied every year. These equations for temperature are
a good approximation to long-term weather means in the
UK (Note: the study reported in [34] suggests that, on
an annual timescale, cold weather does not predict winter
deaths, but, on a shorter term timescale, cold weather could
be a significant trigger).

2.2. Basic Reproductive Ratio, R0, and the Disease Gen-
eration Time, τgen (Day). Two important epidemiological
parameters are basic reproductive ratio, R0, and the disease
generation time, τgen (day). These are both derived from

the basic parameters of the model. R0 is defined as the
number of infections directly caused by a single infected
individual during its infectious period when in a population
of susceptibles. τgen is the average time it takes the direct
infections which contribute to R0 to arise. τgen is also called
the “serial interval”, the average time between the primary
case and secondary cases.

In the absence of forcing (see previous section, in which
case R0 can only be calculated numerically), R0 can be calcu-
lated analytically [6] by travelling round the infectious loops
in Figure 1 and adding the terms together. This leads to (see
Appendix B for an alternative equivalent statement of R0)

R0 = β

kvir,nm + kvir,env
kvir

kinf

kinf + μ

×
⎧⎨
⎩
winf1

kinf
+
(

1− fasy

)

×
〈

kinf

kinf + μ

winf2

kinf
+

(
kinf

kinf + μ

)2
winf3

kinf
+

(
kinf

kinf + μ

)3

×
�
winf4

kinf
+

ksic

ksic + μ + μsic

×
⎧⎨
⎩
wsic1

ksic
+
(
1− fhos

)
⎡
⎣ ksic

ksic + μ + μsic

wsic2

ksic
+

(
ksic

ksic + μ + μsic

)2
wsic3

ksic
+

(
ksic

ksic + μ + μsic

)3
wsic4

ksic

⎤
⎦

+ fhos

⎡
⎣ khos

khos + μ + μhos

whos2

khos
+

(
khos

khos + μ + μhos

)2
whos3

khos
+

(
khos

khos + μ + μhos

)3
whos4

khos

⎤
⎦
⎫⎬
⎭

�〉

+ fasy
kasy

kasy + μ

⎡
⎣wasy2

kasy
+

(
kasy

kasy + μ

)
wasy3

kasy
+

(
kasy

kasy + μ

)2

wasy4 + · · · +

(
kasy

kasy + μ

)6
wasy8

kasy

⎤
⎦
⎫⎬
⎭.

(20)

If (20) is multiplied out, each term corresponds to one of
the 18 weighting factors in (14) (4(inf) + 4(sic) + 3(hos) +
7(asy) = 18) and represents one complete infective loop
passing through the virus pool in Figure 1 (see Appendix B,
(B.1)– (B.4)). The first term is the simplest loop, passing
from nvir to ninf1 and back to nvir (Figure 1). The first
term is

β

kvir,nm + kvir,env
winf 1

kvir

kinf

kinf

kinf + μ
. (21)

Start with a single virus particle in the nvir box (we could
equally well start with a single person in the inf1 first-
infected compartment). The first factor of (21), with units
of persons per virus particle, is the probable number of
persons infected by a virus particle during its life; the
mean lifetime of a virus particle is 1/(kvir,dnm + kvir,env). It is
assumed that there is no additional virus death process due
to exposure. winf1 is a dimensionless weighting factor (14).
The third factor (kvir/kinf ) is the number of virus particles
produced per person in the inf1 state during his life: 1/kinf

is the average lifetime of a person in the inf1 state. The last
factor, with kinf + μ in the denominator, is the probability

that this lifetime (of 1/kinf ) is actually achieved. We can
continue in this way via all the compartments which can give
rise to infection (i.e., produce virus particles (13)), adding
up the terms. (20) for R0 can be written out as a sum of
the 18 (potentially) contributing terms (Appendix B)—
an equivalent formulation which is sometimes
useful.

Equation (20) can be (and was) checked numerically
by placing a single infected individual into the ninf1 box
and diverting the (primary) infected individuals into an
accumulator, rather than allowing them to enter the ninf1 box,
where they can lead to secondary infections. The algebraic
and numerical methods agree to six decimal digits, giving a
basic reproductive ratio R0 = 4.78 for the default parameters
without forcing.

A “dynamic” reproductive ratio, Rdyn, can be calculated
when the total population is not entirely susceptible by
means of

Rdyn = R0
nsus

nliv
. (22)

The live population, nliv, is given by (1). This allows
approximately for a slowly changing fraction of susceptible
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individuals. However, R0 may itself be dynamic on a shorter
time scale due to seasonal effects on virus death rate kvir,env

(see previous section).
The disease generation time, τgen (day), can be computed

analytically by (B.7), giving τgen = 2.51 day. A numerical
calculation using Runge-Kutta integration gives also τgen =
2.51 day agreeing with the analytical result to nine decimal
digits, although Euler integration gives τgen = 2.48 day
(in each case the integration interval is 1/32 day; see first
paragraph of Section 3). Due to overlapping generations, τgen

is not equal to the time constant at which the total infecteds
increase. Assume that total infecteds niash (1) increase initially
at an exponential rate according to

niash ∼ et/τ , (23)

where τ (day) is the growth time constant (the proportional
growth rate of infecteds is 1/τ day−1). This depends on both
R0 and τgen and the structure of the model [6, Section
1.2.3]. This can be extracted numerically (there is a period of
constant exponential growth that lasts for some 10 days) to
give τ = 1.29 day. This is considerably less than the generation
time of 2.51 day.

2.3. Parameterization. Parameters have been introduced
while developing the model. Their values are listed for
reference in Table 1. Here we summarize the evidential basis
for the parameter values used.

As a preliminary, statements from two physicians are
quoted. In [50] a general practitioner in the Doncaster (UK)
area describes his study of the 1969-1970 pandemic as it
affected his urban practice. He said “the true incidence
of influenza during an epidemic is probably impossible to
assess.” This is perhaps equally true today and sets the
scene for the significance of processes such as “validation”
and data fitting (see Figure 5 and Section 3.4). Another
general practitioner, this time in Kent (UK) [51], states
that “an epidemic of influenza tends to last in this area
for between two and three months. Beginning slowly the
epidemic reaches its peak in four to five weeks and then
subsides slowly. The extent and severity of any attack will
depend on factors such as the strain of influenza virus, on
the state of the host-immunity of the population and on
the timing of the epidemic; the fatality and complication
rates are always higher during the cold and foggy winter
months.” His statement agrees with many of our seasonal-
forcing simulations (Figures 6 and 7).

Five key epidemiological quantities for influenza are (a)
the time which elapses after the infection event until the
subject becomes infectious to others, denoted by the τinf0

(day); (b) the latent period, namely the time which elapses
between the infection event and the appearance of clinical
sickness, denoted by τlat (day); (c) the infectious period τinf

(day), which is the time during which the subject is infectious
(Figure 1—producing virus); (d) the period of immunity
τimm (day)—the time period after recovery from influenza
during which the subject has immunity, before gradually
losing it and returning to the susceptible pool (Figure 1,
τimm is represented by the box at the bottom of the diagram

with 10 sequential pools); (e) the basic reproductive ratio R0

(dimensionless) (20).
Addressing these quantities, first consider the time period

between the infection event and becoming infectious, τinf0

(day). With the infectivity weighting factors in (14), the first
infected pool ninf1 with a mean lifetime of 0.5 day is not
infectious but the second infected pool ninf2 is, and therefore

τinf0 = 1(
kinf = 2 day−1

) = 0.5 day. (24)

Next the latent period τlat (day) is given by (there are four
sequential pools in the infected category of Figure 1)

τlat = 4(
kinf = 2 day−1

) = 2 day. (25)

The infectious period τinf (day) can be estimated as follows.
Note that (a) all paths from the susceptible category to
the recovered category in Figure 1 pass through eight pools
with the same outgoing rate constant (natural mortality
excluded); (b) it is assumed that the disease-related rate
constants kinf , kasy, ksic, and khos are all equal (Table 1), say
to kdis; (c) the first infected pool (ninf1) is assumed not
infectious and all sick and hospitalized pools are infectious
(14). We therefore write the infectious period τinf as

τinf = 7(
kdis = 2 day−1

) = 3.5 day. (26)

Loss of immunity occurs during a time period of τimm,
assumed to be 3 years. This delay is represented by (Figure 1)
10 sequential pools each having an outgoing rate constant
of kdel (day−1) (ignoring natural mortality (12)). This gives
a gamma-distributed delay (Appendix A, (A.5) to (A.8) with
m = 10). τimm and kdel are related by

kdel = 10
τimm

with τ imm = 1095 day = 3 year. (27)

Next compare the values in (24)–(27) with the literature.
Our value of τinf0 = 0.5 day (24) can be compared with
that of [25], who referring to [45], use a rather different
value of 1.9 day. However, the value given in [45] is
based on fitting a homogenous-mixing deterministic SEIR
(susceptible, exposed (meaning infected but latent), infected
(meaning clinical), resistant) model to the excess pneumonia
and influenza deaths in 45 cities during the 1918 pandemic.
[23] use a value of 0.5 day in their model, without citing a
specific source. Our value could be doubled to 1 day by taking
winf2 = wasy2 = 0 in (14), a relatively small change to the
model. Both 0.5 and 1 day are compatible with the clinical
evidence, although not with the 1.9 day value of [45].

Our latent period of τlat = 2 day (25) is both clinically
acceptable and is not very different from [25]’s (fitted) values
of 2.4 and 3.6 days for the spring and autumn waves of the
1918 epidemic. Note [25] uses the term “latent” to describe
the period between the infection event and the time at which
the person becomes infectious, rather than our use (25)
which refers to the period between the infection event and
the time at which the person becomes clinically sick.
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[41] report that the “infectious period” τinf lies in the
range of 6 to 10 days, but then their single infected pool
represents everything in our Figure 1 between the susceptible
and recovered categories which makes meaningful com-
parison difficult. [41] states that “for simplicity, we do
not explicitly model the exposed population but instead
include people infected but not yet infectious in the “I”
box. Including an exposed class yields similar results.” The
last sentence is not supported by simulations. Students
of dynamical systems may find this statement surprising.
However, their range of 6 to 10 days is very different from our
3.5 day (26) which is compatible with the clinical evidence
and also the 2 or 3 day period obtained by [25] when fitting
the spring and autumn waves of the 1918 pandemic.

The loss of immunity of recovered patients is not a
feature of the model in [25]. [41] uses a range of 4 to 8 years:
we were not able to chase their values to earth. We employ 3
years, as in (27) for τimm, which, while clinically reasonable,
should be regarded as a guess at what is probably a rather
variable quantity.

The basic reproductive ratio R0 (20) is hardly a clinical or
easily observed quantity, but it is much loved by modellers
and epidemiologists, not without reason. It is an “emergent”
parameter of the model, as its value depends on underlying
parameters. Because influenza is highly seasonal, it can be
concluded that the environment is important, yet values
of R0 given in the literature rarely say anything about the
environment. [41] gives its range as 4 to 16. [45] says that
“estimates vary widely, varying from 1.68 to 20.” After fitting
the Geneva data for the 1918 pandemic, [25] gives values
of 1.49 and 3.75 for the spring and fall waves. [27] states
“Assuming a basic reproduction number of R0 = 2.5 and
using the standard parameter set of InfluSim” [26]. We
assume that this value of 2.5 is the outcome of their standard
parameter set. Other values given are 1.2 to 2.4 [7, Table 2]
and 2.07 ([23], after their Figure 3). Since many of these
models use biologically inappropriate assumptions [43], it
is relevant to quote the statement from [43] that “ignoring
the latent period or assuming exponential distributions
will lead to an underestimate of R0 and therefore will
underestimate the level of global control measures . . . that
will be needed . . ..” [52] reviews R0 values of several flu
epidemics and pandemics, focussing on the possible control
of an H1N1 epidemic. Our standard parameter set without
any environmental forcing gives a value of R0 = 4.78 (20).
This can be regarded as an upper baseline applying to an
optimum environment (one maximizing R0), and changing
the environment can only decrease this number (Figure 6).

The disease generation time used in [23] is 2.44 day,
which is close to our value of 2.51 given following (23).

Finally, we wish to comment on the number of pools
used to represent the infected and sick categories in Figure 1,
where there are four in each. Using trajectory matching on
an influenza outbreak at an English boarding school [43, 53]
suggests that two pools are appropriate for each category.
Unfortunately they give few details of their procedure. We
found a good fit (Figure 5) using the current model to fit
the same data. We therefore continued to use four pools,
although arguably, whether or not two, or three or four

pools, or even a nonintegral number of pools are applied is
perhaps less important than the principle of applying two or
more pools.

3. Results

This section reports simulations of the model described
above. First we describe the general technical aspects applied
in the simulations.

3.1. Numerical Methods. The model was programmed in
ACSL (Advanced Continuous Simulation Language, Aegis
Research, Huntsville, AL, USA; version 11.2.2 for DOS),
an ordinary differential equation solver. In all simulations,
equations are integrated using Euler’s method, a fixed
integration interval of Δt = 0.03125 = 1/32 day (45 minutes),
and results were communicated for plotting at half-day
or daily intervals. There were no difficulties with model
implementation. Not unexpectedly, in some of the chaotic
simulations, different (but still chaotic) results were obtained
if different integration methods and intervals or different
Fortran compilers were used (the results shown used the
Watcom compiler).

The simulations focus on the daily hospital admission
rate, Ihos2 (persons day−1; Figure 1), as this is often a recorded
statistic. An “epidemic” is deemed to have occurred if Ihos2

shows a maximum (in steps of Δt) and if at the maximum
Ihos2 ≥ 0.1 persons day−1.

State variable initial values and parameter values are as
listed in Table 1 (unless stated otherwise). In general, the
parameters have not been tuned for any particular perfor-
mance (but see Figure 5) and as far as possible have been
estimated mechanistically (see Section 2.3). Some of the
simulations (e.g., Figures 2, 3, and 4) are intended to illus-
trate important characteristics of the model—they are not
intended to be compared with actual epidemics/pandemics.
Other simulations (e.g., Figure 5, parts of Figures 7 and 8)
are intended to demonstrate at least a partial realism and to
provide credibility to the model.

3.2. Dynamics without Intrinsic Loss of Immunity and without
Forcing. Here the model is exercised with parameter krec = 0
((10), Figure 1, Table 1), so that there is no loss of immunity
as represented by the delay box in Figure 1, and without
environmental forcing (18). In this case, the natural death
and birth rates (μ of Table 1 and (2) to (12)) lead to a
slow loss of immunity at the population level as births are
assumed to be susceptible.

3.2.1. Short-Term Dynamics. These are illustrated in Figure
2(a) and are unexceptionable. From initial infection, it is
two to three weeks before the disease is visible, and the
epidemic is over within a further two weeks. Infected number
(ninf ) peaks a few days before hospitalized numbers (nhos),
both then falling to very low values. Most (99%) of the
population joins the recovered (immune) box (nrec), with
1% escaping infection altogether. 90% of those infected travel
via the asymptomatic route (Figure 1; fasy, Table 1, (7)). The
epidemic in Figure 2(a) is short compared to UK experience,
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Figure 2: Dynamics without loss of individual immunity or seasonal forcing. There is no loss of individual immunity (krec = 0; (10),
Figure 1) nor seasonal forcing ((18); senv = 0). (a) Short-term dynamics. (b) Long-term dynamics. Parameters and initial conditions have the
values in Table 1. Successive epidemics are caused by loss of immunity at the population level from the natural birth and death processes (μ,
(2), Table 1).
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Figure 3: Effect of varying key parameters. Parameters and initial conditions have the values in Table 1. There is no loss of individual
immunity (krec = 0; (10), Figure 1) and no seasonal forcing ((18); senv = 0). In each case, the value of the altered parameter, basic reproductive
ratio R0 (20), and total hospital admissions (HA, the integral of Ihos2, (5)) are given; the curve for the default parameters is thickened and
indicated. (a) Changes to infection parameter β. (b) Changes to kinf (= ksic = khos = kasy; Figure 1). (c) Changes to the initial (time t =
0) immune fraction in the recovered category, frec0. This is achieved by altering the time t = 0 value of nrec state variable (Figure 1) to
nrec(t = 0) = frec0ncity (Table 1, (22)).
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Figure 4: Dynamics with loss of individual immunity. Individuals now lose immunity (krec = 1; Figure 1). Parameters and initial conditions
have the values in Table 1. (a) Short-term dynamics: susceptible nsus and delayed ndel numbers are calculated with (2) and (1), the dynamic
reproductive ratio Rdyn with (22), and hospital admission rate Ihos2 with (5). (b) Longer-term dynamics.
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Figure 5: Model validation. The model is validated by comparing
predictions (solid line) with data (•) from [53]. See text for details.

but Figure 2(a) is for the no-seasonal-forcing situation where
initially the population is 100% susceptible, which is not
comparable with actual epidemics where seasonality is always
a factor as is partial immunity. Later (Figure 5), it is shown
how the model, without significant “tuning”, is able to fit
data on a UK epidemic. Also, seasonal forcing lengthens the
period of the epidemic and decreases the fraction of the
susceptible population which becomes infected (Figures 7
and 8).

3.2.2. Long-Term Dynamics. These are illustrated over 100
years in Figure 2(b). On this time scale, the first epidemic,
shown in Figure 2(a), occurs at zero time and rapidly dies out
with the dynamic reproductive ratio Rdyn (22) (not plotted)
falling to near zero, as the fraction of susceptibles (nsus/nliv)
becomes small. In the first epidemic, at time t ≈ 20 day, the
initial peak in hospital admissions Ihos2 = 949 (Figure 1,
(5)), decreasing to less than 100 at the second epidemic.
After the first epidemic, Rdyn (22) slowly recovers as immune

numbers (nrec) decrease and susceptibles (nsus) increase
due to the natural birth and death processes. The second
smaller epidemic occurs after a further 28 years, followed by
epidemics of decreasing amplitude and increasing frequency
until a steady state is reached with fractions of susceptibles
of 0.209, of all four infected categories together (infected,
asymptomatic, sick, hospitalized, Figure 1) of 0.00014 and
of recovered (immune) of 0.791; there are 0.18 hospital
admissions per day, and Rdyn (22) = 1.

3.2.3. Responses to Key Parameters. Figure 3 illustrates the
effects of changing three key parameters: infectivity param-
eter β (Figure 1; (2); Table 1), rate parameter kinf (with
kinf = ksic = khos = kasy; Figure 1; Table 1; (3)), and
the initial (time zero) immune fraction, frec0. Figure 3(a)
shows how the duration, initial proportional growth rate,
and severity (indicated by hospital admissions, HA) of a
modelled epidemic are influenced by the value of infectivity
parameter β (or equally kvir; both are linear factors of R0

(20)). Indeed, the effects of increasing β are monotonic,
moving the epidemic towards shorter time scales, increasing
initial proportional growth rate, total hospital admissions
(HA) towards an asymptote of 5000, and narrowing the
width of the epidemic. Also, increasing β causes the long-
term steady state to be more quickly attained—the spikes of
Ihos2 (e.g., Figure 2(b)) becomes closer together.

Figure 3(b), where the rates of transit of infected persons
through the system are increased (kinf = ksic = khos = kasy =
kxxx, Figure 1), is less straightforward. Here a low value for
the kxxx (e.g., 0.25 day−1) gives a high basic reproductive
ratio R0 (20) (Appendix B) an epidemic which is slow to take
hold but (surprisingly) moves more rapidly towards a long-
term steady state (i.e., the Ihos2 spikes as in Figure 2(b) are
closer together). As the kxxx are increased basic reproductive
ratio R0 decreases (20) first the epidemic becomes narrower
and faster (e.g., kxxx = 2 day−1), but further increases in
kxxx (e.g., kxxx = 5 and 8 day−1) cause the epidemic to
become slower to take hold and less peaked, with fewer
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Figure 6: Environmental effects on basic reproductive ratio, R0. (a) Seasonal change in virus inactivation rate, kvir,env (Figure 1; (15), (18)),
giving virus inactivation by temperature alone. Tair is mean daily air temperature (appropriate to southern Britain) (19); Tair0 is an assumed
temperature threshold for virus inactivation, here equal to 13◦C ((18), Table 1)); R0 is the seasonally modulated basic reproductive ratio (20),
calculated assuming temperature is constant. (b) For different values of mean annual air temperature, Tair,mean (19), basic reproductive ratio
R0 (20) is seasonally modulated as in (a) via the seasonal modulation of kvir,env, for a constant threshold temperature for virus inactivation
of Tair0 = 13◦C (18), giving for R0 a maximum, minimum, annual mean, and amplitude (maximum-minimum). Nfdy denotes the number of
forcing days per year (a “forcing day” is a day on which air temperature is sufficiently high as to increase virus mortality).
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Figure 7: Weak environmental forcing. Seasonal forcing (18) combined with loss of individual immunity (Figure 4; Figure 1, krec = 1 day−1).
The system is initially in a steady state without forcing (Figure 4(b)); forcing is applied after 1 year. The effects of seasonal forcing on the
basic reproductive rate R0 (20) are shown in parts (a)–(c) (right-hand y-axis). Increases in mean annual air temperature Tair,mean increase
the level of forcing ((18), (19), Figure 6(a)). R0 is the mean annual value of R0. Parts (c) and (d) are from a single simulation and have the
same level of forcing.
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Figure 8: Moderate environmental forcing. Seasonal forcing (18) combined with loss of individual immunity (Figure 4; Figure 1, krec =
1 day−1). The system is initially in a steady state without forcing (Figure 4(b)); forcing is applied after 1 year. The effects of seasonal forcing
on the basic reproductive rate R0 (20) are shown (right-hand y-axis). Increases in mean annual air temperature Tair,mean increase the level of
forcing ((18), (19), Figure 6(a)). R0 is the mean annual value of R0.

hospital admissions (HA). Increasing kxxx always causes the
Ihos2 spikes (Figure 2(b)) to move further apart and lengthens
the time taken to reach a steady state and decreases the
number of infected persons in the steady state (niash,(1)).

Finally, Figure 3(c) illustrates how increasing the initial
immune fraction freco has a similar effect to that of decreasing
β: delaying the onset of the epidemic and increasing its
width, decreasing the initial proportional growth rate, and
decreasing severity (number of hospital admission, HA).

3.3. Dynamics with Intrinsic Loss of Immunity and without
Forcing. Now the discrete delay box of Figure 1 giving loss
of immunity is switched on by making krec = 1 day−1, which
causes recovered individuals to be moved quite rapidly into
the delay sequence of ten compartments where immunity is
lost after three years (τimm = 3 × 365 days; Table 1, (11)).
Immunity is also being lost due to the natural birth and death
processes, as newborns are assumed to be susceptible. The
responses of Figure 2(a) are little changed by taking krec =
1 day−1 (instead of 0) if the nrec variable of Figure 2(a) is
replaced by the ndel variable (1). However, over a longer time
period Figure 4(a) illustrates that there is now a switching
of susceptibles between a low (fractional) value and a
high (fractional) value (fractions of ncity, Table 1, (1) and

following paragraph), with an inverse switching of numbers
in the delay compartment, ndel (Figure 1). Figure 4(b) shows
that the oscillations, as in Figure 2(b), decrease in amplitude
and increase in frequency until a steady state is attained.
In the steady state, there are 3.7 hospital admissions per
day, a dynamic reproductive ratio Rdyn = 1 (22), and the
fractions in the three principal categories (Figure 1) of
susceptible; all infected categories lumped together (infected,
asymptomatic, sick, hospitalized, niash (1)) and the delayed
categories are 0.209, 0.0030, and 0.787. Comparing these
values with the situation in which there is no intrinsic loss
of immunity (Figure 2(b)), it is seen that hospitalizations
have increased by a factor of 20 as has the fraction in all
infected categories, although the fractions of susceptibles and
recovered or immunes have barely changed.

3.4. Validation. “Validation” is often a misused and misun-
derstood concept and is perhaps better described as an
evaluation of applicability. Validity is not a property of a
model alone, neither is it a “zero or one” concept. It describes
the relationship between model predictions and a set of data
obtained under prescribed conditions. In this section, the
model of Figure 1 is “validated” by fitting the predictions of
the model, with minimal parameter adjustment (a perfectly
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formulated mechanistic model would permit no adjustment
of parameters or initial values) to data on an influenza
epidemic [53]. Success in this endeavour gives the model
some credibility, although it does not make the model valid
for general use.

The data in [53] relate to an influenza outbreak at an
English boarding school, which provides a simple situation
that seems comparable to the single-city homogeneous-
mixing model of Figure 1, remembering that the model does
not have the stratification which might be needed if a larger
region was considered.

Minimal tuning is applied. One infected person is
introduced to the school at noon on 18 January, otherwise
all are susceptible. Table 1 parameters are altered for the
Figure 5 simulation as follows: infection parameter β is
changed to 0.07 (virus units)−1day−1; all birth and death
rates are set to zero (μ, μhos, μsic) for such young persons;
total population ncity = 763; and the asymptomatic fraction,
fasy, is one-third, to reflect the finding that only two-thirds
of the boys became sick, and the community is assumed to
be “well-mixed”. There is no initial immunity. With these
values, the basic reproductive ratio R0 (20) is 6.44, the mean
generation time is 2.65 day (A.7), and the initial proportional
growth rate of total infecteds, niash(1), is 1.015 day−1.

For comparison with the data in [53], we define the
number of persons confined to bed, nctb, as

nctb(t) = nsic1(t) + nsic2(t) + nsic3(t) + nsic4(t)

+ nhos2(t) + nhos3(t) + nhos4(t).
(28)

Since this definition is somewhat arbitrary, in comparing
the predicted nctb from the model with the data from Anon
(1978), nctb(t) is scaled with an adjustable factor so that the
comparison line drawn in Figure 5 is

1.35nctb(t). (29)

Fitting was done by eye, as this can produce (see below) a
better focus on the biological significance of the parameter
being adjusted and possible limitations in the biological data
that may be obtained with more automated methods. See
[29] for possible problems arising from formulaic parameter
adjustment in mechanistic models.

The degree of fit in Figure 5 is satisfactory. Apart from
the two outliers on 26th and 27th January, the fit is good.
In an actual epidemic, there may be underreporting during
the early states and overreporting later, as the performance
of those handling the epidemic changes. Overall, we believe
it is reasonable to assume that the model has some credibility
as a result of this validation.

Finally, a comment on whether the number of pools used
in the infected and sick categories in Figure 1 is appropriate.
[43] fits an SEIR model to the observed data given in [53]
and shown here in Figure 5. They minimize the sum of
the squared errors, arguably this underweights the skirts
of the distribution, which are sensitive to the numbers of
sequential pools assumed (Figure 9). They assume m pools
for the E category and n pools for the I category. They
find a best fit with m = 2 and n = 2. We were not able
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Figure 9: Gamma function basics. Illustration of consequences of
using several sequential pools in representing a clinical category.
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m pools, the rate constant km has been set to give the same mean
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to discover the details of their general parameterization or
indeed how they define a confined-to-bed number from
the categories and pools of the SEIR model. They remark
that there is a sensitivity to the number of points used
to obtain the fit and that basic reproductive ratio R0 can
change substantially. More notably, it can be seen in their
Figure 3(c) that the model fits the last three data points as
the epidemic is subsiding rather poorly. This suggests (see
Figure 9) that a higher number of pools is required than
their best values of 2 for the exposed and infected categories.
In view of these difficulties, and the comparison shown in
Figure 5, we consider that the number of pools per category
suggested in Figure 1 and used throughout this paper is
reasonable. Although our particular choice cannot rigorously
be defended, it seems to be “good enough” at the present
time.

3.5. Dynamics with Intrinsic Loss of Immunity and Seasonal
Forcing. Now we add direct seasonal forcing by weather
to the simulations illustrated in Figure 4 ((18), (19)). Four
weather factors which could impinge on virus longevity
are air temperature (Tair), relative humidity (RH), radiation
(possibly multicomponent), and wind speed. The effects can
be highly complex: for example, [48] which examines the
effects of Tair and RH on virus transmission, finding that cold
dry conditions favour transmission (but see their Figure 6).
The topic is far from being well understood, but since our
concern here is to represent broadly weather forcing within
the model, we make the simplifying assumption that Tair

alone is operative.
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Figure 6(a) illustrates the seasonal variation of mean
daily air temperature Tair in the southern UK. Using (19)
with (18), and senv = 1, this affects environmentally induced
virus death rate kvir,env (Figure 1, (15)), and thereby basic
reproductive ratio R0 (20). Mean daily air temperature Tair

varies between 3◦C (Jan 24) and 17◦C (Jul 25). When Tair

crosses the temperature threshold of Tair0 = 13◦C in May, this
increases environmentally induced virus mortality, kvir,env

(18) and decreases basic reproductive ratio R0 (20). With this
formulation, influenza is most likely during the months of
October to April when R0 is highest.

Figure 6(b) shows how varying (e.g., increasing) mean
annual air temperature, Tair,mean (19), (or equivalently,
decreasing threshold temperature Tair0, (18)) varies the dura-
tion and intensity of seasonal forcing of R0. Changing mean
annual air temperature, Tair,mean (19), changes the average
annual value of R0, R0, as well as its maximum, minimum
and amplitude (maximum-minimum). The dependence of
these quantities on Tait,mean is also shown, together with
the number of forcing days per year (Nfdy, a forcing day
is one on which mean air temperature is above threshold
temperature and virus mortality is reduced). With mean
annual air temperature Tair,mean ≤ 6◦C, there is no forcing
at all (Nfdy = 0): air temperature Tair (19) never exceeds
threshold temperature Tair0 = 13◦C (18); R0 is invariant at
its maximum value. Environmentally induced virus death
rate kvir,env ((15), (18)) stays at zero; the system remains
in the steady state shown in Figure 4(b) and R0 = R0

(this situation is equivalent to Tair,mean = 10◦C and Tair0 =
17◦C). As mean annual air temperature Tair,mean increases
above 6◦C, there are more days in the summer months when
mean daily temperature Tair > threshold temperature Tair0,
number of forcing days per year Nfdy increases, and R0 < R0.
The amplitude increases to a maximum whenTair,mean =
21◦C, before decreasing. With Tair,mean > 28.5◦C, influenza
epidemics do not occur, because the annual average of R0 is
less than unity.

In the simulations presented in Figures 7 and 8, various
values of mean annual air temperature Tair,mean are taken
between−4.5 and 16◦C, assuming always an annual variation
Tair,var of ±7◦C (19) as in the UK. Otherwise, parameters
have the values in Table 1. In these simulations, the long-
term steady state reached in Figure 4, with loss of immunity
(krec = 1; Figure 1; (10)) but without seasonal forcing, is used
for initial values. Forcing is applied after one calendar year.
The aim is to illustrate the wide variety in dynamic behaviour
which results from this type of seasonal forcing (which
decreases the reproductive ratio). In each case, the mean
value, its maximum, minimum and amplitude (maximum-
minimum) of basic reproductive ratio can be read off
Figure 6(b). In the UK the influenza season is considered to
be over by May, when the mean daily temperature ranges
from 10.7 (1 May) to 14.1◦C (31 May) (Figure 6). Therefore,
of the simulations described in Figures 7 and 8, those given in
Figures 7(b), 7(c),7(d), 8(a), 8(b), and 8(c) are more relevant
to the UK.

Figure 7 illustrates the effects of low levels of seasonal
forcing on influenza hospital admissions, Ihos2 (Figure 1,(5)).
Forcing is seen as a downward modulation of the basic

reproductive ratio R0, which decreases the annual average,
R0.

The lower graph in Figure 7(a) shows that R0 is slightly
decreased beginning on 24 June, from 4.78 in the steady
state to 4.69 on 25 July. Influenza hospital admissions (the
upper graph in Figure 7(a)) oscillate twice about the steady
state value (Figure 3(b); 3.7 admissions day−1) in a 12-
month period with the two steady-state maxima 168 days
apart on 27 September and 14 March. A regular variation
is quickly established. Note that the natural response time
of the system as indicated by the upper graph in Figure 7(a)
is not commensurate with the annual cycle imposed by the
environment (shown by the lower graph in Figure 7(a)). This
sets the scene for potential chaos.

In Figure 7(b) the level of forcing is increased (lower
graph). This results in a more complex (but still regular)
schedule of hospital admissions with a biennial pattern
superposed on a twice-yearly variation. In [38] monthly data
are presented in their Figures 2 and 3; some of these are
suggestive of a twice-yearly pattern.

A further increase in forcing (Figures 7(c) and 7(d))
results in chaos, with sometimes one, two or even three
peaks in hospital admissions occurring within a twelve-
month period. However, there is a tendency towards annual
epidemics, with 387 epidemics occurring in 250 years, and
the epidemics (10% points) lasting about seven weeks (cf.
[51] which gives a duration of two to three months; also
cf. Figure 8(a) with annual late spring epidemics of 5-
week duration). The susceptible fraction of the population
varies from c. 30% before an epidemic to 15% just after
each epidemic, so that one half of the susceptibles becomes
infected.

Further increases in forcing are shown in Figure 8. First,
in Figure 8(a) with mean annual air temperature Tair,mean =
11◦C (Figure 6), there is a transition to an annual epidemic
occurring in the late spring of each year lasting for about five
weeks. In these annual epidemics, the susceptible fraction
falls from c. 35% to 12%. Next (Figure 8(b); Tair,mean =
12◦C), chaos is again produced (cf. Figure 7(d)) with a
strong tendency towards annual epidemics: 204 epidemics
occur in 200 years. In the last two years of the simulation
shown in Figure 8(b), there is a small epidemic on 22 July,
followed by larger epidemics on 5 October and 16 May.
Then (Figure 8(c); Tair,mean = 13◦C), there is chaos but now
with a tendency towards biennial epidemics (169 epidemics
occur during 200 years). Last (Figure 8(d); Tair,mean = 15◦C),
the system immediately settles down into regular biennial
epidemics occurring in early spring of every other year but
the amplitudes remain slightly chaotic.

Note that, throughout Figures 7 and 8, as mean annual
air temperature threshold Tair,mean is increased, forcing is
increased (i.e., the magnitude of the seasonal changes in basic
reproductive ratio R0 ((20), (18), (19), Figure 6) increases),
but the mean annual value of R0, R0, decreases. This causes
between-epidemic recovery time to increase (see discussion
of Figure 3(a) above). The frequency of epidemics then
decreases.

Increases in mean annual air temperature Tair,mean can
be continued, and although the situations simulated are
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now less realistic, they do contribute to understanding the
system. With Tair,mean = 19◦C, the response is chaotic
with 37 epidemics in the first 200 years. Mostly five or six
years elapse between epidemics; occasionally two smaller
epidemics occur in the same year (e.g., in the 179th year).
The mean reproductive ratio R0 is 2.945. When Tair,mean =
21◦C, the response eventually settles down to a regular
pattern with 27 epidemics in the first 200 years and eight
years between epidemics and anR0 of 2.499. When Tair,mean =
26◦C the response is chaotic with 15 epidemics in the first
200 years and R0 = 1.367. Last, with Tair,mean = 27.5◦C,
after departing from the initial steady state, it is c. 110 years
before influenza reemerges, and then it is at a low level,
eventually settling down to a repeating annual late spring
epidemic lasting about two months with a maximum of 0.6
hospital admissions per day and an annual sum of 20 hospital
admissions per year. R0 has a modest mean annual value
(1.131) and is below unity for much of the year.

4. Discussion

Many models of influenza are more empirical than mecha-
nistic, and therefore, although they can be and sometimes
have been used to fit historic data [54], they are of little
value in further understanding or for indicating how future
epidemics/pandemics might be handled before they occur
([32, 42, 55, 56]).

Seasonality is an important feature in influenza inci-
dence. There are many ways in which seasonality can be
incorporated into an influenza model. In [42] the contact
rate is reduced by a factor of ten for the 6-month nonepi-
demic season. Here a simple representation of UK daily
weather allows the impact of mean daily air temperature to
be explored. A similar approach could be applied to relative
or absolute humidity, radiation, and wind speed. Seasonal
forcing gives rise to wide range of dynamics, from regular at
various intervals, to chaos, as illustrated in Figures 7 and 8.

Some of simulations of Figures 7 and 8 are similar to
influenza incidents which have occurred. For example, in
Figure 7(d), the three maxima near year 184 in the spring,
autumn and following spring have similarities with the waves
of the 1918–1920 influenza pandemic [57]. Note that this
is achieved within a single simulation without changing
parameterization. In comparison, in [25] the authors fitted
these data with a model, applying the model separately
to each wave, with different parameters and initial values
(loc. cit. Table 1, Figure 4). It is legitimate to ask just what
this procedure means. The two principal peaks occurring
within a single influenza season in the autumn and spring
around year 199 of Figure 8(b) resemble the peaks shown in
the 1957-58 pandemic [20, Figure 3A]. The first two peaks
illustrated in Figure 8(c) in year 182 occur in late spring
(the lesser peak) and the following autumn (the main peak),
resembling the 1968–70 pandemic [50].

Apart from Section 3.4 and Figure 5 which applies to an
unusually sharply defined context, we did not attempt to fit
our model to a wider selection of historical data. The reasons
for this include that the model is not sufficiently detailed
to make this meaningful in a general context, historical

data usually have many lacunae, current understanding
of the mechanisms of seasonal impact on influenza is
very limited, given the number and nature of chaotic
solutions, fitting could be technically difficult, and last,
Popper’s cogent discussion of historical data-fitting [54],
in which he concludes that such exercises are usually not
scientifically productive, seems to be particularly pertinent
to this investigation. Regrettably, in spite of all the evidence,
“parameter twiddling” and fitting historic data are still highly
regarded by some investigators, although it is hard to find
examples where such work has led to significant progress.
Nevertheless, with simplified “proof-of-concept” models, it
is important that predictions should be acceptable as has
been shown to be the case with the current model.

Where we part company with many influenza modellers
is in our use of multiple pools to represent given categories:
that is, four pools are used to represent infected latent
persons and seven pools for asymptomatically infected
persons (Figure 1) (but see [26]). Mathematically, this is
a trivial addition requiring some extra programming, but
it gives three significant benefits. First, progress through
the stages of influenza is clearly sequential, suggesting that
to use successive pools is biologically reasonable. Second,
the overall transit times of sequential pools are gamma-
distributed which is arguably more realistic than given by
a single-pool representation. Third, the method opens a
path to a more mechanistic picture of observations where
quantities such as infectivity (14) and death rates can
vary from pool to pool within a category. While simple
models are best for elucidating many general principles, there
seems to be no alternative to more detailed mechanistic
(reductionist) models for serious application. With such
models, parameters will be more determined by experiment
at the assumption level, rather than making parameter
adjustments on the basis of comparison of predictive-level
data.

5. Conclusions

A mechanistic influenza model has been constructed in
which sequential pools are used for some disease cate-
gories, allowing gamma-function-type dynamics with delays,
consistent with biological observations. A simplified rep-
resentation of seasonality is given and is, we believe, the
first attempt to include weather explicitly in an influenza
model. The model has been “validated” by application to
an outbreak of influenza in a school. It has been demon-
strated that seasonal forcing gives rise to a rich variety of
dynamic disease patterns, from regular with outbreaks at
annual, biennial, and longer intervals of time, to chaotic.
Some of these predicted patterns seem highly pertinent to
mankind’s experiences with influenza. It is suggested that
seasonality and its effects could usefully be an integral part
of influenza epidemiology including the areas of prediction
and amelioration. Recognizing that seasonality is important
in influenza dynamics, we were surprised by our inability to
find more controlled-environment studies of the effects of
environmental factors on virus viability or other significant
processes in the disease cycle.
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Appendices

A. Sequential Pools and the Gamma Function

The aim in this appendix is to explain how the use of
sequential pools to represent a given clinical category affects
the transit dynamics for that category. We emphasize first
that a realistic mechanistic treatment of infectious disease
dynamics absolutely requires the use of several, arguably
at least three, sequential pools per clinical category, and
second that the traditional approach of using a single pool
per clinical category cannot be expected to predict credible
dynamics or robust predictions. It is to be noted that
the empirical use of a gamma function for a single-pool
category (e.g., the entire infected box in Figure 1) is based
mechanistically on several stages (in this case four) each with
first-order (exponential) kinetics. Although these points will
be familiar to many workers, this appendix has been written
because they are not always appreciated. A general discussion
of the topic can be found in, for example, [44], pp. 818–822.

A.1. Single Pool. Assume that a given disease category, for
example, “infected”, is represented by a single pool, a, so the
number of pools ma = 1. This method is used in many SIR
models. A single pool a emptying at rate ka from initial value
of a0 at time t = 0 obeys the equations

da
dt
= −kaa; a = a0e−kat ,

ka = 0.25 day−1, t = 0 : a = a0 = 1.

(A.1)

This is drawn in Figure 9 : the line labelled “1 pool, a”.
It can be seen that the maximum rate at which pool a is
depleted occurs at time t = 0 (shown by •). The mean time
for departure is at t = 4 day = (ma = 1)/ka (shown by
�). For a single pool, these are far apart. The biological
data do not support such dynamics, which would imply,
for say the infected category, that it is most probable that
an infected person exits the infected category immediately
following the infection event. Since our paper is particularly
concerned with the detailed dynamics of influenza, including
the possible occurrence of chaotic events (here the existence
of lags can make a crucial difference to model behaviour),
we regard it as essential to depart from the assumption of
assigning a single pool to each disease category.

A.2. Two Pools. Next assume the category is represented by
two sequential pools, b1 and b2, where b1 empties into b2,
and b2 is the final pool in the category. The number of pools,
mb = 2. In this case, the relevant equations become

db1

dt
= −kbb1,

db2

dt
= kbb1 − kbb2,

b1 = b0e−kbt , b2 = kbte−kbt,

kb = 0.5 day−1, t = 0 : b1 = b0 = 1, b2 = 0.

(A.2)

This is shown in Figure 9 : the line labelled “2 pools, b2”. With
two pools, kb has been doubled relative to ka in Eqns (A.1),

so that the mean time for departure from the final pool in
the category b2 is the same at time t = 4 day = (mb = 2)/kb

(shown by �). We see that the maximum rate for departure
from the infected category now occurs at time t = 2 day (=
(mb − 1)/kb) (shown by •), in contrast to 0 day for the single
pool case above. In moving from one pool to two pools,
the maximum value at 2 day has shifted towards the mean
value at 4 day. There is a large qualitative difference between
the 1-pool curve for a and 2-pools curve for b2 drawn in
Figure 9.

A.3. Three Pools. This case is given in detail as there is
another qualitative difference between 2-pool and 3-pool
dynamics. Now there are three sequential pools, c1, c2, and c3,
with c1 emptying into c2, c2 into c3, and c3 is the last pool in
the category. The number of pools is mc = 3. The equations
for the system are

dc1

dt
= −kcc1,

dc2

dt
= kcc1 − kcc2,

dc3

dt
= kcc2 − kcc3,

c1 = c0e−kct, c2 = kcte−kct, c3 = (kct)
2

2!
e−kct,

kc = 0.75 day−1, t = 0 : c1 = c0 = 1,

c2 = c3 = 0.

(A.3)

Now (Figure 9) the curve for the final pool in the category
(c3) is sigmoidal at low values of time t. The time of the
maximum (•) (= ((mb = 3) − 1)/kc = 8/3) has moved closer
to the mean time (�). The mean time is (mc = 3)/(kc =
0.75) = 4 day as in the other curves. With three pools, there
is now a sigmoid departure from time t = 0, giving a more
sharply defined biological delay (cf. the two-pool b2 line).

A.4. Four and More Pools. Adding more sequential pools
to the 3-pool situation has the effect on the final pool
of increasing the sigmoidicity, and moving the time of
maximum (•) closer to the mean time (�). At the same time
as adding more pools, the exit rate constant of each pool is
increased so that the overall mean transit time is unchanged.
For four pools, d1, . . . ,d4, we have

md = 4, kd = 1 day−1, d4 = (kdt)
md−1

(md − 1)!
e−kdt = t3

6
e−t ,

tmean = md

kd
= 4 day, tmax = md − 1

kd
= 3 day.

(A.4)

This is drawn in Figure 9 . There is only a minor quantitative
difference between the 3- and 4-pool sequences when they
have the same mean transit time tmean.



20 ISRN Biomathematics

For a general number of pools, m, with state variables,
y1, . . . , ym, and each with outgoing rate constant, k, the value
of the state variable for the final pool in the sequence, ym, is

ym = f
km−1tm−1

(m− 1)!
e−kt , t = 0 : y1 = f = 1,

yi(i > 1) = 0,

(A.5)

where f is a constant. The total outflow from the final pool,
ym, is f, so that

∫∞
0
kymdt = f

∫∞
0

kmtm−1

(m− 1)!
e−ktdt = f = 1. (A.6)

The statistics on the final pool, ym, are (using 〈〉 to denote
expectation values)

〈t〉 = m

k
,

〈
t2〉 = m(m + 1)

k2
,

variance(t) = 〈
t2〉− 〈t〉2 = m

k2
,

standard deviation(t) =
√

variance(t) = m1/2

k
,

tmax
(
ym is maximum

) = m− 1
k

,

coefficient of variation(t) = standard deviation(t)
〈t〉 = 1√

m
.

(A.7)

The 8-pool curve of Figure 9 , illustrated by the time course
of the final pool in the sequence, h8, is shown because
in Figure 1 every path between susceptible and recovered
traverses 8 pools each with rate constant 2 day−1, giving an
overall average transit time of 4 day (see main text for further
discussion of this point).

Finally we note that although there are several equivalent
definitions for the gamma function used by mathematicians
and others (e.g., [44], pp. 819–821), possibly the most
intuitive definition for the biologist is that given in (A.6),
namely, where the normalized gamma function, γ(t, m), is
given by

γ(t,m) = kmtm−1

(m− 1)!
e−kt ,

with
∫∞

0
γ(t,m)dt =

∫∞
0

kmtm−1

(m− 1)!
e−ktdt = 1.

(A.8)

If the number of sequential pools, m → ∞, and also k → ∞,
with rate constant k = m/T , where T is the overall mean
transit time which is constant, then γ(t, m) approaches a
Dirac delta function located at time t = T.

B. Basic Reproductive Ratio R0 and Mean
Generation Time τgen

An alternative and useful way of writing (20) for R0 is as a
sum of the individual contributions from the 4 + 4 + 3 + 7 =

18 diseased pools of Figure 1. Using an obvious notation,
these 18 terms are written as, first for the four infected pools,

R0(inf1) = β

kvir,nm + kvir,env
kvir

kinf

kinf + μ

winf1

kinf

= cinf
winf1

kinf
,

cinf = β

kvir,nm + kvir,env
kvir

kinf

kinf + μ
,

R0(inf2) = cinf

(
1− fasy

) kinf

kinf + μ

winf2

kinf
,

R0(inf3) = cinf

(
1− fasy

)( kinf

kinf + μ

)2
winf3

kinf
,

R0(inf4) = cinf

(
1− fasy

)( kinf

kinf + μ

)3
winf4

kinf
,

(B.1)

next for the four sick pools

R0(sic1) = β

kvir,nm + kvir,env
kvir

kinf

kinf + μ

(
1− fasy

)

×
(

kinf

kinf + μ

)3
ksic

ksic + μ + μsic

wsic1

ksic
= csic

wsic1

ksic
,

csic = cinf

(
1− fasy

)( kinf

kinf + μ

)3
ksic

ksic + μ + μsic
,

R0(sic2) = csic
(
1− fhos

) ksic

ksic + μ + μsic

wsic2

ksic
,

R0(sic3) = csic
(
1− fhos

)( ksic

ksic + μ + μsic

)2
wsic3

ksic
,

R0(sic4) = csic
(
1− fhos

)( ksic

ksic + μ + μsic

)3
wsic4

ksic
,

(B.2)

then, the three hospitalized pools

R0(hos2) = β

kvir,nm + kvir,env
kvir

kinf

kinf + μ

×
(

1− fasy

)( kinf

kinf + μ

)3
ksic

ksic + μ + μsic

× fhos
khos

khos + μ + μhos

whos2

khos
= chos

whos2

khos
,

chos = cinf

(
1− fasy

)( kinf

kinf + μ

)3

× ksic

ksic + μ + μsic
fhos

khos

khos + μ + μhos
,

R0(hos3) = chos
khos

khos + μ + μhos

whos3

khos
,

R0(hos4) = chos

(
khos

khos + μ + μhos

)2
whos4

khos
,

(B.3)
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and last the seven asymptomatic pools

R0
(
asy2

) = β

kvir,nm + kvir,env
kvir

kinf

kinf + μ

× fasy
kasy

kasy + μ

wasy2

kasy
= casy

wasy2

kasy
,

casy = cinf fasy
kasy

kasy + μ
,

R0
(
asy3

) = casy
kasy

kasy + μ

wasy3

kasy
,

. . .

R0
(
asy8

) = casy

(
kasy

kasy + μ

)6
wasy8

kasy
.

(B.4)

Basic reproductive ratio is the sum of these contributions:

R0 = R0(inf1) + . . . + R0
(
asy8

)
. (B.5)

Generation time τgen (day) can similarly be written in terms
of the contributions from the different infectious pools
(using the contributions to R0 defined above). First write
down the contributions to the total generation time:

Δτ(inf1) = R0(inf1)

(
1

kinf + μ
+

1
kvir,dnm + kvir,env

)
,

. . . ,

Δτ(inf4) = R0(inf4)

(
4

kinf + μ
+

1
kvir,dnm + kvir,env

)
,

Δτ(sic1) = R0(sic1)

(
4

kinf + μ
+

1
ksic + μ + μsic

+
1

kvir,dnm + kvir,env

)
, . . . ,

Δτ(sic4) = R0(sic4)

(
4

kinf + μ
+

4
ksic + μ + μsic

+
1

kvir,dnm + kvir,env

)
,

Δτ(hos2) = R0(hos2)

(
4

kinf + μ
+

1
ksic + μ + μsic

+
1

khos + μ + μhos
+

1
kvir,dnm + kvir,env

)
,

. . . ,

Δτ(hos4) = R0(hos4)

(
4

kinf + μ
+

1
ksic + μ + μsic

+
3

khos + μ + μhos
+

1
kvir,dnm + kvir,env

)
,

Δτ
(
asy2

) = R0
(
asy2

)( 1
kinf + μ

+
1

kasy + μ
+

1
kvir,dnm + kvir,env

)
, . . . ,

Δτ
(
asy8

) = R0
(
asy8

)( 1
kinf + μ

+
7

kasy + μ
+

1
kvir,dnm + kvir,env

)
.

(B.6)

Finally, summing the above, the mean generation time is

τgen =
∑[

Δτ(inf1) + · · · + Δτ
(
asy8

)]

R0
. (B.7)
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