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This paper provides an overview of different types of models for studying activity of nerve cells and their networks with a special
emphasis on neural oscillations. One part describes the neuronal models based on the Hodgkin and Huxley formalism first
described in the 1950s. It is discussed how further simplifications of this formalism enable mathematical analysis of the process
of neural excitability. The focus of the paper’s second component is on network activity. Understanding network function is one
of the important frontiers remaining in neuroscience. At present, experimental techniques can only provide global recordings or
samples of the activity of the huge networks that form the nervous system. Models in neuroscience can therefore play a critical
role by providing a framework for integration of necessarily incomplete datasets, thereby providing insight into the mechanisms
of neural function. Network models can either explicitly contain individual network nodes that model the neurons, or they can be
based on representations of compound population activity. The latter approach was pioneered by Wilson and Cowan in the 1970s.
Finally I provide an overview and discuss how network models are employed in the study of neuronal network pathology such as
epilepsy.

1. Introduction

A fundamental and famous model in neuroscience was
described by Hodgkin andHuxley in 1952 [1].They generated
a formalism for the dynamics of the membrane potential
of the giant axon of squid describing measurements of
sodium, potassium, and leakage currents.Their model can be
represented by an equivalent electronic circuit of the axon’s
membrane in which a capacitor models the membrane’s
phospholipids and several voltage-dependent resistors repre-
sent its ion channels. Much later, after computer technology
became readily available, their formalism has been widely
employed and also includes other types of channels. In
addition, it is used to create detailed cell models in which
the cell is divided into a set of coupled compartments each
represented by a separate membrane model. In many studies
these computational models are embedded in networks (e.g.,
[2–7]). In this approach, the individual nodes of the network
and their connections are simulated with the purpose of
finding the properties associated with emergent network
activities such as generation of synchronized bursts and
oscillations. The enormous advantage of these models is that

they are close to the experimental domain; that is, they may
include recorded ion conductance values, morphology of
observed cell types, and known intercellular connectivity.
In spite of the many parameters in these models, an over-
whelming amount of detail is still missing. As a consequence,
due to nonlinearities in neuronal function (e.g., membrane
conductance dynamics, the coupling function between neu-
rons), small inaccuracies in the model parameters may lead
to large prediction errors of the model. In spite of this
potential shortcoming, some models perform surprisingly
well in predicting ormimicking experimental outcomes (e.g.,
[8]).

An additional problem with these detailed models is
that, because of their complexity, they cannot be analyzed
mathematically and may not therefore lead to deeper under-
standing of the process it models. Further model reduction
is required before mathematical analysis can be employed.
For example, the Hodgkin and Huxley model is a four
dimensional nonlinear model (the dynamic variables are
membrane potential 𝑉, and gating variables 𝑚, ℎ, and 𝑛).
Both FitzHugh [9] and Nagumo et al. [10], inspired by the
nonlinear van der Pol oscillator [11], reduced the Hodgkin
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and Huxley formalism to one pair of dynamic variables
(membrane potential 𝑉 and a recovery variable 𝑤) to gain
insight in the dynamics of the excitable membrane. Later a
similar simplified approach was published for the excitation
in the barnacle giant muscle fiber by Morris and Lecar [12].

A further simplification for simulation of nerve cell
activity is the leaky integrate-and-fire (IF) model [13]. The
basic IF model describes a neuron’s subthreshold behavior as
a leaky integrator (a resistor and capacitor) and adds an ad hoc
superthreshold spike when a preset threshold is exceeded. In
between the spike events, the IF circuit is a one-dimensional
linear model for the cell’s subthreshold activity. There are
additions to this model, for instance, resonance properties
are included by making the model two-dimensional and a
quadratic function has been proposed to add a nonlinear
component that is capable of generating the spike upward
deflection [14]. More recently, Izhikevich [15] extended and
combined these approaches intowhat he defines as the simple
model of choice (SMC). In thismodel there is no threshold for
the spike generator and only the downward deflection (reset)
of the spike is generated in an ad hoc fashion.

When modeling neuronal networks, one can start from
the network nodes, that is, the neurons, or make direct
assumptions at a higher organization level, that is, the popu-
lation activity. In the first case, the bottom-up approach, one
must decide how to model the nodes. Simple on/off switches
are the most abstract models of neurons in networks. The
underlying hypothesis of this approach is that, for some of the
aggregate behavior, the network properties themselves are of
principal interest while the details of the cellular properties
(beyond having active and inactive states) are irrelevant [16–
20]. Many network models that use the bottom-up approach
include more complex representations for the nerve cells
and their connections. These representations may vary from
a simple IF model to compartmental models including
biophysically realistic channels (e.g., [2–7, 21–27]). Recently,
a networkmodel of IF neurons was connected to an artificial,
simulated eye and arm, thereby creating a system that is
capable of replicating human behavior [28].

A different family of network models describes aggregate
behavior of neuronal populations. Although the components
of these models are derived from or inspired by the neuronal
function, they do not explicitly consist of a network of
individual agents. This approach was pioneered by Wil-
son and Cowan [29, 30]. Their result is a nonlinear, two
dimensionalmodel describing the dynamics of excitatory and
inhibitory activity.The expressions for the population activity
are based on assumptions about cellular statistics such as the
distribution of neuronal excitability. The initial 1972 Wilson-
Cowan model describes only the time-dependent dynamics
of the neural populations; whereas their 1973 paper includes
a spatial component to thismodel. In the same decade, Nunez
proposedmodels of cortical networks to explain and describe
the electroencephalogram (EEG) representing compound
activity of millions of nerve cells [31–34]. This work focused
on the synaptic activities in the cortical pyramidal cell popu-
lation since they are considered to be the major contributors
to the mammalian EEG. To describe cortical activity, Nunez
included inhibitory and excitatory populations and used

linearized relationships to describe their interactions. Since
the early 1970s, many models have been inspired by the
Wilson and Cowan approach and the models by Nunez.
Examples are the models by Lopes da Silva et al. [35] and van
Rotterdam et al. [36], the Jansen neural mass model [37, 38],
and Freeman’s models of the olfactory system [39, 40]. More
recent examples are the models by Wendling and coworkers
(e.g., [41]), Liley and Bojak [42], van Albada and Robinson
[43], and Hindriks and van Putten [44]. A model developed
by Jirsa and Haken [45] produces a field equation for the
network activity generated by a cortical surface and can be
considered a synthesis of the different population model
approaches. In part due to increased access to computer
technology facilitating the analysis of nonlinear dynamics,
the original Wilson-Cowan approach and its derived models
are being “rediscovered” [46]. Due to the deterministic
character of these models, they fail to model fluctuations.
Stochastic approaches are capable of including higher order
moments that characterize the neural activity such as synaptic
input and spike trains (e.g., [47, 48]). Recently, Buice and
Cowan [49] used a statistical mechanics approach to include
fluctuations in the population model.

Understanding the function of neuronal networks is a
frontier in current neuroscience. Our lack of fundamental
understanding of network function in the nervous system
prevents us from linking neuronal activity to higher level
physiologic and pathologic behavior. Although compound
activity of huge networks can be captured by the EEG or
possibly by functional magnetic resonance imaging (fMRI),
current experimental techniques in neuroscience cannot
record the individual activity of cells forming larger net-
works (>1000 neurons) with sufficient resolution in the time
domain (<1ms). Due to the lack of such techniques, there
is a real need for theoretical and computational models
in neuroscience because they can provide a framework for
the integration of experimental data. In addition, models
provide an efficient tool for generating and testing series of
hypotheses; to cite Abbott [50], “A skillful theoretician can
formulate, explore, and often reject models at a pace that no
experimental program can match.”

The purpose of this paper is to provide a summary of
different models for neural activity with a focus on oscilla-
tory patterns, to discuss the relationship between modeling
approaches, and to place them in a logical and a historical
context. Section 2 summarizes the Hodgkin-Huxley formal-
ism and its simplifications.The next part, Section 3, describes
the network models with nodes that are based on the models
for the individual neurons, followed by Section 4 about
population cell models without explicit individual neurons.
Section 5 discusses a procedure and effects of adding a
stochastic component.The application of neuronal models in
studying pathology such as epilepsy is evaluated in Section 6.
The final section contains the concluding remarks.

2. Cellular Models

The Hodgkin and Huxley (H&H) equations [1] describe
the nonlinear dynamics of the electrical properties of an
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excitable membrane of the giant nerve fiber that innervates
the muscles involved in water jet propulsion in the squid.
The inside and outside of the nerve fiber is separated by a
biomembrane (Figure 1(a)). The principal component of the
biomembrane is a double layer of phospholipids that serve as
an insulator between the conductive media in- and outside of
the fiber; this component can be modeled as a capacitor (𝐶 in
Figure 1(a)). Ion pumps in the membrane create gradients of
different ion species, such as sodium and potassium, across
the membrane, and ion channels allow passive leak of the
ions.

Because ions are charged, an ion pump creates a potential
difference and can therefore be modeled as a potential source
(𝐸 in Figure 1(a)). For individual ion species, these potentials
are known as Nernst potentials that can be computed by the
Nernst equation: for example, at 25∘C, the Nernst potential
for the positively charged sodium and potassium ions is
determined from their intra- and extracellular concentrations
([𝐶in] and [𝐶out], resp.) as 58 log10([𝐶out]/[𝐶in])mV. An
ion channel conducts one or more ion species and may be
modeled as a resistor (𝑅 in Figure 1(a)). The resistances of
the sodium and potassium channels depend on the potential
across the biomembrane. This membrane potential depen-
dence is modeled by the H&H equations using activation and
inactivation processes that govern the degree of opening of
the channel and consequently its conductance. It is of interest
to note thatHodgkin andHuxley proposed their formalism in
the 1950s as an empirical model, and that molecular evidence
for the existence of the differentmembrane components came
decades later!

In the H&H formalism, the potential difference between
the fiber’s in- and outside, the membrane potential (𝑉) is
related to activation and inactivation parameters of sodium
and potassium ion channels (𝑚, 𝑛, ℎ). The differential equa-
tions that H&H used to describe the dynamics are

𝐶𝑑𝑉𝑑𝑡 = −𝐼Leak − 𝐼Na − 𝐼K + 𝐼Inject (1)

or

𝐶𝑑𝑉𝑑𝑡 = − 𝑔Leak (𝑉 − 𝐸Leak) − 𝑔Na𝑚3ℎ (𝑉 − 𝐸Na)− 𝑔K𝑛4 (𝑉 − 𝐸K) + 𝐼Inject . (2)

The parameter’s dynamics are governed by three first-order
differential equations

𝑑𝑚𝑑𝑡 = 𝑚∞ (V) − 𝑚𝜏𝑚 (𝑉) , (3)

𝑑ℎ𝑑𝑡 = ℎ∞ (𝑉) − ℎ𝜏ℎ (𝑉) , (4)

𝑑𝑛𝑑𝑡 = 𝑛∞ (𝑉) − 𝑛𝜏𝑛 (𝑉) . (5)

Here, the variables 𝜏𝑚, 𝜏ℎ, and 𝜏𝑛 are the time constants of
parameters 𝑚, ℎ, and 𝑛. Equation (2) is based on Kirchhoff ’s
law stating that the sum of all membrane currents is equal
to zero. An equivalent membrane circuit is depicted in
Figure 1(b). Based on the equation 𝑄 = 𝐶𝑉 (with 𝑄—
charge of the capacitor, 𝐶—its capacitance, and 𝑉—potential
across the capacitor), we determine that current 𝐼𝐶 equals𝐶(𝑑𝑉/𝑑𝑡). Further we determine that each ion current 𝑖𝑘
is described by Ohm’s law 𝑔𝑘(𝑉 − 𝐸𝑘), with 𝐶—membrane
capacitance; 𝑉—membrane potential; 𝑔𝑘—conductance (=1/𝑅𝑘) of ion species k, which can be presented in (2) by the
product of the maximum conductance 𝑔𝑘 and activation and
inactivation parameters; 𝐸𝑘—equilibrium potential for ion
species 𝑘. Equations (3)-(4) describe the dynamics for the
activation (𝑚) and inactivation (ℎ) parameters of the sodium
channel. Equation (5) describes the dynamics of the activa-
tion (𝑛) of potassium. In the following, we often represent
activation/inactivation variables generically by 𝑥. It can be
seen in (3)–(5) that the parameters 𝑥∞ and 𝜏𝑥 depend on
the membrane potential 𝑉. These 𝑉-dependent relationships
are all nonlinear as well as the activation parameters 𝑚 and𝑛 since H&H determined experimentally that the model fits
best if they used 𝑚3 and 𝑛4 in (2). The dynamics of the
parameters in (3)–(5) were originally presented by H&H
in the form: 𝑑𝑥/𝑑𝑡 = 𝛼𝑥(1 − 𝑥) − 𝛽𝑥𝑥, where 𝛼𝑥 and𝛽𝑥 are rate constants that are membrane potential (voltage)
sensitive. These presentations can be linked to the one in
(3)–(5) by 𝜏𝑥 = 1/(𝛼𝑥 + 𝛽𝑥) and 𝑥∞ = 𝛼𝑥/(𝛼𝑥 + 𝛽𝑥). The
voltage-dependent functions for 𝛼𝑥 and 𝛽𝑥 were determined
by H&H using the so-called voltage-clamp technique. This
technique enables the experimenter to keep 𝑉 constant, the
holding potential, while measuring membrane current. By
repeating this measurement for a range of holding potentials,
H&H determined the I-V relationship. This relationship was
determined for sodiumandpotassium currents (a specific ion
current can be determined by disabling other ion currents
pharmacologically). In their model, H&H used these I-V
relationships to determine 𝛼𝑥 and 𝛽𝑥. As it can be seen
in (2), the total membrane current is proportional to the
time derivative of the membrane potential 𝑑𝑉/𝑑𝑡 = .𝑉;
therefore, the experimentally determined I-V relationship
can be interpreted as the

.𝑉 − 𝑉 phase space for membrane
potential dynamics (e.g., [15, 51]).

2.1. Linearization of the Hodgkin and Huxley Equations. A
linearized version of the H&H equations is useful to exam-
ine subthreshold oscillatory properties of the biomembrane
around a resting or holding potential (say 𝑉∗). The mathe-
matical details of the following can be found in Appendix A.
Here I describe the details of the linearization procedure so
that the physiological parameters in the full model can be
related to its linearized version; readers not interested in this
aspect can skip to Section 2.1.3.

In order to linearize the nonlinear equations, we
rewrite (2)–(5) in a more compact form as 𝐶(𝑑𝑉/𝑑𝑡) =𝑓(𝑉, 𝑚, ℎ, 𝑛, 𝐼Inject) and 𝑑𝑥/𝑑𝑡 = 𝑓(𝑉, 𝑥), with 𝑥 representing
an activation/inactivation variable 𝑚, ℎ, or 𝑛. Then we
linearize about an equilibrium potential 𝑉∗. We define small
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Figure 1: (a) Diagram of a biomembrane that separates the inside and outside of the nerve cell. See text for further explanation. (b)Membrane
equivalent circuit with k ion channels. 𝐸1, 𝐸2, . . . , 𝐸𝑘 are the Nernst potentials for the individual ion species; 𝑅1, 𝑅2, . . . , 𝑅𝑘 and 𝑖1, 𝑖2, . . . , 𝑖𝑘
represent the resistance of the different ion channels and their currents, respectively. 𝐼Inject is the current injected.Themembrane capacitance
and the associated current are 𝐶 and 𝐼𝐶. 𝑉 is the membrane potential. The equation 𝐼𝐶 + 𝐼 = 𝐼Inject is Kirchhoff ’s law applied to the circuit.

variations in the parameters about this equilibrium as 𝛿𝑉,𝛿𝑚, 𝛿ℎ, 𝛿𝑛, 𝛿𝐼. Using this, we obtain a linearized equation
(2) 𝐶𝑑𝛿𝑉𝑑𝑡 = ( 𝜕𝑓𝜕𝑉)

∗
𝛿𝑉 + ( 𝜕𝑓𝜕𝑚)

∗
𝛿𝑚 + (𝜕𝑓𝜕ℎ)

∗
𝛿ℎ

+ (𝜕𝑓𝜕𝑛)
∗
𝛿𝑛 + ( 𝜕𝑓𝜕𝐼Inject )∗𝛿𝐼Inject , (6)

with: 𝑓 = 𝑓(𝑉, 𝑚, ℎ, 𝑛, 𝐼Inject), (𝜕𝑓/𝜕𝑉)∗ =−(𝑔Leak + 𝑔Na𝑚3ℎ + 𝑔K𝑛4)|∗, (𝜕𝑓/𝜕𝑚)∗ =−𝑔Na3𝑚2ℎ(𝑉 − 𝐸Na)|∗, (𝜕𝑓/𝜕ℎ)∗ = −𝑔Na𝑚3(𝑉 − 𝐸Na)|∗,(𝜕𝑓/𝜕𝑛)∗ = −𝑔K4𝑛3(𝑉 − 𝐸K)|∗, (𝜕𝑓/𝜕𝐼Inject)∗ = 1.
For the gating parameters ((3)–(5)), using 𝑑𝑥/𝑑𝑡 =(𝑥∞(𝑉)−𝑥)/𝜏𝑥(𝑉) = 𝑓(𝑉, 𝑥), we get the linearized expression𝑑𝛿𝑥𝑑𝑡 = ( 1𝜏𝑥 (𝑉))

∗
(𝑑𝑥∞ (𝑉)𝑑𝑉 )

∗
𝛿𝑉 − ( 1𝜏𝑥 (𝑉))

∗
𝛿𝑥. (7)

In the literature, it is common to further simplify the notation
of (6) and (7). For example in Richardson et al. [52], (6) and
(7) are simplified to (Appendix A)

𝐶𝑑𝑣𝑑𝑡 = −𝑔𝑀𝑣 − 𝑁∑
𝑥=1

𝑔𝑥𝑤𝑥 + 𝛿𝐼Inject⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼app

,
𝜏𝑥 (𝑉) 𝑑𝑤𝑥𝑑𝑡 = 𝑣 − 𝑤𝑥.

(8)

2.1.1. Linearization of the Potassium Channel. Now we con-
sider the potassium current and model small perturbations
and show we can model this by using a two branch electrical
circuit with resistors 𝑅, 𝑅K, and inductance 𝐿 (Figure 2(a)).
A small perturbation in the circuit with the two parallel
branches is governed by𝛿𝑉 = 𝛿𝐼1/𝑅K + 1/(𝑅 + 𝐿 (𝑑/𝑑𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑍𝑅𝐿

. (9)

Equation (9) is just Ohm’s law (𝑉 = 𝐼𝑍) applied to the
circuit in Figure 2(a). Here 𝑍, the inverse of 1/𝑅K + 1/(𝑅 +𝐿(𝑑/𝑑𝑡)), represents the impedance of the circuit that links
the fluctuations in potential and current (𝑅 and 𝐿 are in series
and they are parallel to 𝑅K). Now if we consider a single ion
current, the K+ current, we show that we can write this in the
same form as (9). (Experimentally, a single ion current can be
measured by disabling all other currents pharmacologically.)

First we restate, from (2), that the potassium current 𝐼K is
given by

𝐼K = 𝑔K𝑛4 (𝑉 − 𝐸K) . (10)

A small perturbation approximated by a linearization around
potential 𝑉∗ is

𝛿𝐼K = (𝜕𝐼K𝜕𝑉 )
∗
𝛿𝑉 + (𝜕𝐼K𝜕𝑛 )

∗
𝛿𝑛, (11)

with (𝜕𝐼K/𝜕𝑉)∗ = 𝑔K𝑛4|∗ = 𝐺∗K, and (𝜕𝐼K/𝜕𝑛)∗ =4𝑔K𝑛3(𝑉 − 𝐸K)|∗.
We can now use (7), substituting 𝑛 for 𝑥, to relate 𝛿𝑛 to𝛿𝑉

𝛿𝑛 = (1/𝜏𝑛)∗(𝑑𝑛∞/𝑑𝑉)∗(1/𝜏𝑛)∗ + 𝑑/𝑑𝑡 𝛿𝑉. (12)

Substituting this result into (11) gives

𝛿𝐼K = 𝐺∗K𝛿𝑉 + (4𝑔K𝑛3 (𝑉 − 𝐸K))∗ (1/𝜏𝑛)∗(𝑑𝑛∞/𝑑𝑉)∗(1/𝜏𝑛)∗ + 𝑑/𝑑𝑡 𝛿𝑉.
(13)

This result can be written as

𝛿𝑉 = 𝛿𝐼K(𝐺∗K + [𝐴∗/ (𝐵∗ + 𝑑/𝑑𝑡)]) (14)
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Figure 2: Diagrams of equivalent circuits representing ion channels. (a) A two branch equivalent circuit for a linearized potassium channel.
Thepotassium channel has properties similar to an inductor. A change in current flowing through an inductor creates a time-varyingmagnetic
field inside the coil; this induces a potential that opposes the change in current that created it. In the potassium channel, a change of K+ current
is opposed by the change in membrane potential and the associated change in K+-conductance caused by the current. (b) Equivalent circuit
for linearized sodium activation and inactivation. (c) A part of the linearized membrane model for the sodium channel with negative values
for both 𝐿𝑛 and 𝑟𝑛 (c1) and its equivalent RC circuit (c2).

with 𝐴∗ = (4𝑔K𝑛3(𝑉 − 𝐸K))∗(1/𝜏𝑛)∗(𝑑𝑛∞/𝑑𝑉)∗ and 𝐵∗ =(1/𝜏𝑛)∗.
Now we can directly relate the linearized potassium

channel to the circuit in Figure 2(a). Comparing (9) and (14),
we can determine that both expressions are equivalent if𝑅K =1/𝐺∗K, 𝑅 = 𝐵∗/𝐴∗, and 𝐿 = 1/𝐴∗.

Combining the above we find that

𝐿 = 𝑅𝐵∗ = 𝑅𝜏∗𝑛 ,
𝑅 = 𝐵∗𝐴∗ = 1(4𝑔K𝑛3 (𝑉 − 𝐸K))∗(𝑑𝑛∞/𝑑𝑉)∗ . (15)

Thus we can successfully model small perturbations in the
potassium channel with the equivalent circuit in Figure 2(a).
Note that 𝐴∗ is positive because 𝑑𝑛∞/𝑑𝑉 and 𝑉-𝐸K are both
positive at physiological values of 𝑉∗. Therefore 𝐿 is positive
and (because 𝐵∗ is also >0) 𝑅 is positive.

2.1.2. Linearization of the SodiumChannel. Nowwe apply the
linearization to inward current 𝐼Na𝐼Na = 𝑔Na𝑚3ℎ (𝑉 − 𝐸Na) . (16)

A small perturbation approximated by a linearization around
potential 𝑉∗ is

𝛿𝐼Na = (𝜕𝐼Na𝜕𝑉 )
∗
𝛿𝑉 + (𝜕𝐼Na𝜕𝑚 )

∗
𝛿𝑚 + (𝜕𝐼Na𝜕ℎ )

∗
𝛿ℎ. (17)

We simplify notation

𝛿𝐼Na = (𝐺∗Na + [ 𝐴∗𝐵∗ + 𝑑/𝑑𝑡] + [ 𝐷∗𝐸∗ + 𝑑/𝑑𝑡]) 𝛿𝑉 (18)

using: (𝜕𝐼Na/𝜕𝑉)∗ = 𝑔Na𝑚3ℎ|∗ = 𝐺∗Na, 𝐴∗ =(3𝑔Na𝑚2ℎ(𝑉 − 𝐸Na))∗(1/𝜏𝑚)∗(𝑑𝑚∞/𝑑𝑉)∗, 𝐵∗ = (1/𝜏𝑚)∗,𝐷∗ = (𝑔Na𝑚3(𝑉 − 𝐸Na))∗(1/𝜏ℎ)∗(𝑑ℎ∞/𝑑𝑉)∗, and 𝐸∗ =(1/𝜏ℎ)∗.
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From the three terms in (17), it is obvious that we need
three branches in an equivalent electrical circuit for the
sodium channel. One resistor 𝑅Na and two branches each
with a resistor and inductor, one for activation 𝑚 and one
for inactivation ℎ (Figure 2(b)). From the circuit properties in
Figure 2(b), we determine that a perturbation of the potential
is governed by𝛿𝑉 = 𝛿𝐼1/𝑅Na + 1/(𝑅𝑚 + 𝐿𝑚 (𝑑/𝑑𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑍𝑚𝑅𝐿
+ 1/(𝑅ℎ + 𝐿ℎ (𝑑/𝑑𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑍ℎ𝑅𝐿

.
(19)

We find that the expressions in (18) and (19) are equal if𝑅Na =1/𝐺∗Na, 𝑅𝑚 = 𝐵∗/𝐴∗, and 𝐿𝑚 = 1/𝐴∗ with 𝐿𝑚 = 𝑅𝑚/𝐵∗ =𝑅𝑚𝜏∗𝑚, 𝑅𝑚 = 𝐵∗/𝐴∗ = 1/(3𝑔K𝑚2ℎ(𝑉 − 𝐸Na))∗(𝑑𝑚∞/𝑑𝑉)∗,𝑅ℎ = 𝐸∗/𝐷∗, and 𝐿ℎ = 1/𝐷∗.
Combining the above we find 𝐿ℎ = 𝑅ℎ/𝐸∗ = 𝑅ℎ𝜏∗ℎ and𝑅ℎ = 𝐸∗/𝐷∗ = 1/(𝑔K𝑚3(𝑉 − 𝐸Na))∗(𝑑ℎ∞/𝑑𝑉)∗.
So we can successfully model small perturbations in the

sodium channel with the equivalent circuit in Figure 2(b).
The model can easily be evaluated by simulation; however,
building the model using hardware components cannot be
done as simply because some of the conductance and induc-
tance values are negative over the range we are interested in.
Note that in the expressions above 𝐴∗ is negative because𝑑𝑚∞/𝑑𝑉 > 0 and 𝑉-𝐸Na is negative at physiological values
of 𝑉∗. Therefore 𝐿𝑚 is negative and (because 𝐵∗ is >0) 𝑅𝑚
is also negative. In contrast, note that 𝐷∗ is positive because
both 𝑑ℎ∞/𝑑𝑉 and 𝑉-𝐸Na < 0 at 𝑉∗. Therefore 𝐿ℎ is positive
and (because 𝐸∗ is >0) 𝑅ℎ is also positive. Mauro et al. [53]
and Koch [54] proposed to replace the negative inductance
by a positive capacitance and correct for negative resistance
in one of the other branches of the circuit. They show that a
branch with negative conductance and inductance parallel to
a true (positive valued) resistor can be replaced with an RC
circuit without changing the effective impedance of the two
branches.The equivalent diagrams of the circuitry are shown
in Figure 2(c). In the original circuit (Figure 2(c1)) with
the positive resistor 𝑅K, negative resistance 𝑟𝑛, and negative
inductor 𝐿𝑛, we have impedance 𝑍𝑜 in the original circuit

𝑍𝑜 = ( 1𝑅K
+ 1𝑟𝑛 + 𝑗𝜔𝐿𝑛)−1 = ((𝑅K + 𝑟𝑛) + 𝑗𝜔𝐿𝑛𝑅K𝑟𝑛 + 𝑗𝜔𝑅K𝐿𝑛 )−1.

(20)
In the replacement circuit (Figure 2(c2)) with the capacitor
we have impedance 𝑍𝑟𝑍𝑟 = (𝑅K + 𝑟𝑛𝑅K𝑟𝑛 + 1(−𝑟𝑛 + 1/𝑗𝜔𝐶𝑛))−1

= (−𝑅K𝑟𝑛 + 𝑅K/𝑗𝜔𝐶𝑛 − 𝑟2𝑛 + 𝑟𝑛/𝑗𝜔𝐶𝑛 + 𝑅K𝑟𝑛(−𝑅K𝑟2𝑛 + 𝑅K𝑟𝑛/𝑗𝜔𝐶𝑛) )−1. (21)

After substituting 𝐶𝑛 = −𝐿𝑛/𝑟2𝑛 and multiplying numerator
and denominator by −𝑗𝜔𝐿𝑛/𝑟2𝑛 we get𝑍𝑟 = ((𝑅K + 𝑟𝑛) + 𝑗𝜔𝐿𝑛𝑅K𝑟𝑛 + 𝑗𝜔𝑅K𝐿𝑛 )−1. (22)

V

R

L

C

RL

IL

𝐼Inject+synapse

Figure 3: Electrical equivalent circuit of the linearized H&H
equations.

This result is identical to the original impedance 𝑍𝑜; it will
therefore also have the same frequency response: absolute
value and phase (i.e., the same Bode plot).

2.1.3. Generalized Equivalent Circuit. In the previous sec-
tions, it was shown that the channels in a linearized version
of the H&H equations can be represented by equivalent
circuits consisting of a network of resistors and inductors
(Figure 2). Even in the case where negative values occur
for these components (due to positive feedback between
sodium conductance and membrane depolarization), they
can be represented by positive valued alternative electronic
components (Figure 2(c)). When combining these findings,
we simplify the equivalent circuit in Figure 1 and consider the
RCL network in Figure 3 as a linearized representation of the
membrane.

The inductor channel in the circuit represents the
stabilizing effects of the outward current activation (e.g.,
potassium) and inward current inactivation (e.g., sodium).
The resistor and capacitor represent membrane resistance
and capacitance plus corrections for negative impedances.
Since we look at small perturbations around an equilibrium,
which we conveniently set at zero, the driving forces of the
difference between Nernst potential and resting potential can
be ignored.

The pair of differential equations that govern the circuit
in Figure 3 are

𝐶𝑑𝑉𝑑𝑡 + 𝑉𝑅 + 𝐼𝐿 = 𝐼Inject+Synapse , 𝐿𝑑𝐼𝐿𝑑𝑡 = 𝑉 − 𝑅𝐿𝐼𝐿.
(23)

We now simplify and we nondimensionalize the system. First
we substitute 𝑤 = 𝑅𝐿𝐼𝐿 and 𝐼0 = 𝐼Inject+Synapse and get𝐶(𝑑𝑉/𝑑𝑡) + 𝑉/𝑅 + 𝑤/𝑅𝐿 = 𝐼0 and (𝐿/𝑅𝐿)(𝑑𝑤/𝑑𝑡) = 𝑉 − 𝑤.
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Then we change to a timescale 𝜏 such that 𝜏 = (𝑅𝐿/𝐿)𝑡 →𝑑𝑡 = (𝐿/𝑅𝐿)𝑑𝜏; substituting this we get the following pair of
ODEs:𝐶 𝑑𝑉(𝐿/𝑅𝐿) 𝑑𝜏 + 𝑉𝑅 + 𝑤𝑅𝐿= 𝐼0 󳨀→ 𝑑𝑉𝑑𝜏 + ( 𝐿𝐶𝑅𝐿) 𝑉𝑅 + ( 𝐿𝐶𝑅𝐿) 𝑤𝑅𝐿 = ( 𝐿𝐶𝑅𝐿) 𝐼0,𝐿𝑅𝐿 𝑑𝑤(𝐿/𝑅𝐿) 𝑑𝜏 = 𝑉 − 𝑤 󳨀→ 𝑑𝑤𝑑𝜏 = 𝑉 − 𝑤.

(24)

Finally, using 𝑉 = 𝑤󸀠 + 𝑤 and 𝑉󸀠 = 𝑤󸀠󸀠 + 𝑤󸀠 (note that 𝑤󸀠 =𝑑𝑤/𝑑𝜏), we obtain the following 2nd order ODE:

𝑤󸀠󸀠 + 𝑤󸀠 + ( 𝐿𝐶𝑅𝑅𝐿) 𝑤󸀠 + ( 𝐿𝐶𝑅𝑅𝐿) 𝑤 + ( 𝐿𝐶𝑅2𝐿) 𝑤
= ( 𝐿𝐶𝑅𝐿) 𝐼0 󳨀→ 𝑤󸀠󸀠 + [[[1 + ( 𝐿𝐶𝑅𝑅𝐿)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛼

]]] 𝑤󸀠
+ [[[[( 𝐿𝐶𝑅𝑅𝐿) + ( 𝐿𝐶𝑅2𝐿)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛼+𝛽

]]]] 𝑤
= ( 𝐿𝐶𝑅𝐿) 𝐼0.

(25)

This result for 𝛼 and 𝛽 is identical to the equations analyzed
by Erchova et al. [55] (their equations (A16) and (A17)).
An alternative route to create a single equation from the
two original ones is by direct substitution while leaving
dimensionality intact. If we differentiate the first expression
in (23) with respect to time we have𝐶 ..𝑉+ .𝑉/𝑅+ .𝐼𝐿 = .𝐼0. Here..𝑉,

.𝑉, and
.𝐼 indicate the second and first time derivatives of𝑉

and 𝐼. We can use the second expression in (23) to substitute.𝐼𝐿 = (𝑉 − 𝑅𝐿𝐼𝐿)/𝐿 where 𝐼𝐿 as a function of 𝑉 can be found
from 𝐶 .𝑉 + 𝑉/𝑅 + 𝐼𝐿 = 𝐼0. This yield

𝐶 ..𝑉 + .𝑉𝑅 + 𝑉 − 𝑅𝐿 (𝐼0 − 𝐶 .𝑉 − 𝑉/𝑅)𝐿 = .𝐼0
󳨀→ 𝐶 ..𝑉 + ( 1𝑅 + 𝑅𝐿𝐶𝐿 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛾

.𝑉 + 1𝐿 (1 + 𝑅𝐿𝑅 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜀

𝑉 = 𝑅𝐿𝐿 𝐼0 + .𝐼0.
(26)

This result is identical to the expression used by Erchova et al.
[55] (their Equation (A1)). Interestingly this equation is also
similar to the network equation by Jirsa and Haken [45] in
which the spatial derivative is set to zero (see Section 4.5).
This similarity across the scale fromneuron to network is seen
frequently. In one example, investigators even use a cellular
model for action potential generation to represent activity of
a population [56]. Although Curto et al. [56] do not explicitly
describe this, in this case the inward and outward currents
of the cell membrane can be considered to represent the
network’s excitation and inhibition, respectively.
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Figure 4: Bode plot of the linearizedmodel depicted in Figure 3.The
parameters used to prepare the plots are 𝐶 = 100 pF; 𝑅 = 200MΩ;𝑅𝐿 = 20MΩ; 𝐿 = 2MH. Note in the upper panel that a resonance
peak is present at 75 rad/s.

2.1.4. The Frequency Response of the Linearized Model. In
electrophysiology, cellular properties are often probed with
hyperpolarizing and depolarizing current steps. The unit
impulse response, the derivative of the unit step, is the
inverse Fourier transform or inverse Laplace transform of the
system’s frequency response or transfer function, respectively.
Since we deal with a linearized system with current 𝐼 as input
andmembrane potential𝑉 as output, the frequency response
is just the impedance 𝑍 (i.e., 𝑍(𝜔) = 𝑉(𝜔)/𝐼(𝜔), with 𝜔—
frequency in rad/s).We can use the Laplace transform of (26)
to obtain the transfer function 𝐻(𝑠) of the linearized model:𝐻(𝑠) = 𝑉(𝑠)/𝐼(𝑠) = (𝜀 + 𝛾𝑠 + 𝐶𝑠2)/((𝑅𝐿/𝐿) + 𝑠). In this form
we can apply the Matlab freqs command to depict the Bode
plot of the model (Figure 4).

An interesting observation is that the Bode plot in
Figure 4 shows a peak in the magnitude of the impedance,
indicating that neurons and their networks display resonance
[55, 57–60]. With an appropriate, realistic choice of parame-
ters, this peak is located in the alpha-frequency range of the
EEG at 75 rad/s (∼12Hz).

2.2. Models That Can Be Derived from the Hodgkin and Hux-
ley Formalism. The H&H representation and its linearized
version can be seen as a basis for many different neuronal
models. Of course one could either add complexity to the
H&H formalism or further reduce it. The following sections
summarize representative examples of both types.

2.2.1. Complex Cell Models. Using the H&H formalism one
might extend the sodium and potassium channels of the
model neurons to also include different types of potassium
channels (such as the A-current, a transient potassium
current), persistent sodium channels, and different types of
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Ca++ channels. In addition to the voltage sensitive channels, it
is common practice to also include Ca++ and/or Na+ sensitive
channels. In addition to the addition of channels, the cell
model can also be divided into many multiple coupled com-
partments (e.g., [4]). Each compartment represents a small
part of the cell that can be approximated by a compartment
with a uniform membrane potential. The rationale for the
use of multiple equipotential compartments is to mimic
the spatial separation of different functions: synaptic input,
passive and active propagation of signals, and generation of
action potentials. The more complex cell models are also
frequently used to create networks in order to determine
emergent behavior of neuronal populations (e.g., [3, 5, 6, 26,
61]). Special neural simulation packages such as Genesis and
Neuron have been developed to simulate such models, even
on parallel machines [62, 63]. A recent example in which
many details are incorporated in the individual cell models
is the Blue Brain Project [7]. The advantage of these models
is that they are based on experimental data enabling the
modeler to link the model’s behavior to measurements. This
close relationship can also be a disadvantage of these complex
models; due to the complexity, the simulation results can be
as difficult to interpret as real recorded data.

2.2.2. Simplified Cell Models. One can simplify the H&H
equations while preserving the nonlinearity, or one might
use the linearization results described in Section 2.1. In fact
both these approaches have been employed. In one case, the
four dimensional H&H model can be reduced to a lower
dimensional one and in the other case, the equivalent circuit
of a linearizedmembranemodel (Figure 3) is coupled to an ad
hoc spike generator (Figure 5). The advantage of preserving
the nonlinearity is that the spike generation mechanisms
remain (at least in part) intact, but mathematical analysis of
such a model can be fairly complicated. The linearized cell
models are more accessible for analysis but require an ad hoc
spike generator (Table 1).

(1) FitzHugh-Nagumo/Morris and Lecar. The simplifica-
tion used independently by FitzHugh [9], Nagumo et al., [10],
and Morris and Lecar [12], is all based on the observation
that the cell has a relatively fast activating inward current
and a slower activating outward current. This allows one
to simplify (2)–(5) from a four dimensional model into a
model with only two dynamic variables. In the FitzHugh-
Nagumo approach, the inward current is sodium whereas in
the Morris and Lecar model for a barnacle muscle cell, the
inward current is calcium. For the following discussion, it
is not critical which ion species carries the inward current,
so I will focus on simplification of the H&H formalism with
a Na+ current. In the original equations (2)–(5) we have𝑉, 𝑚, ℎ, and 𝑛. The simplified version ignores activation of
the inward current 𝑚 because it is so fast it is considered
instantaneous. The effects of ℎ and 𝑛 are similar; that is, they
repolarize the membrane, so they can either be lumped or
one of the two can be ignored so that only one repolarization
parameter (often indicated by 𝑤) remains. This generates a
nonlinear dynamical system with two variables. Although a

few variations exist, the original equations in FitzHugh [9]
were

.𝑥 = 𝑐 (𝑦 + 𝑥 − 𝑥33 + 𝑧) ,
.𝑦 = −(𝑥 − 𝑎 + 𝑏𝑦)𝑐 . (27)

Here 𝑥, 𝑦, and 𝑧 are membrane potential, recovery variable,
and injected current, respectively; 𝑎, 𝑏, and 𝑐 are constants.

(2) Reduced Spiking Models. From the linearization pro-
cedure we can appreciate that the neural membrane can be
represented by the RCL-circuit (Figure 3). Of course, this rep-
resentation only works for studying subthreshold behavior
such as integration of inputs or resonance properties. This
type of study explains the propensity of some neurons to
resonate with specific input frequencies. If, as an additional
simplification, the ion channel properties are completely
ignored, we may even further simplify the membrane to
an RC-circuit; in this configuration there are no resonant
properties. Both these simplifications, the RCL- and RC-
circuits, ignore the nonlinear properties of the excitable
membrane. In the so-called integrate-and-fire (IF)models the
nonlinearity is again introduced, but in an ad hoc fashion
by employing a firing threshold. When this threshold is
exceeded, a spike + reset are pasted into the signal. Although
such an ad-hoc firing process can be included in both RCL-
and RC-circuits, it is commonly applied to the latter.

Historically, the RC-based integrate-and-fire model was
introduced long before the H&H formalism in 1907 by
Lapicque [13]. Because of the leakage current in the resistor, it
is also often called the leaky integrate-and-fire neuron (LIF).
Much later a nonlinear variant of the LIF was introduced
where the I-V relationship is not linear as in (23), but
quadratic, the QIF model (e.g., [14]). Because this quadratic
relationship, the I-V curve contains a stable and an unstable
equilibrium, the spike’s upstroke can be generated by the
model and only an ad-hoc spike reset is required (Figure 6).

Finally, one can combine the QIF scenario with the RCL-
circuit to produce a model that is capable of both resonance
and spike upstroke generation. This is defined as the simple
model of choice (SMC) by Izhikevich and was shown to be
able to produce a plethora of neuronal behavior (e.g., [15]).

2.3. Summary of the Cell Models. We can consider the dif-
ferent models and summarize their relationships by counting
the dimensions (Table 1). The H&H model is four dimen-
sionalwhereas the subthreshold component of the IFmodel is
only one dimensional. Of course, dimensions are addedwhen
the ad hoc spike generator is included but most studies using
this model will focus on the subthreshold behavior. Table 1
summarizes the model dimensions and provides an overview
of the spiking mechanisms of the models we evaluated above.

3. Populations of Cell Models

Network models containing concrete nodes come in a wide
variety, ranging fromnodes represented by an on/off switch to



ISRN Biomathematics 9

Table 1: Overview of the dimensionality of cellular models.

Amplifying ResonantMembrane
potential

(𝑉)
Inward current

activation
Inward current
inactivation

Outward current
activation

Leak current
capacitance

(not time dependent)

Physiological
AP mechanism

Hodgkin and Huxley [1] 1 (𝑚) 2 (ℎ) 3 (𝑛) 4 Yes Yes

FitzHugh-Nagumo [9, 10] 1 Instantaneous
(not time dependent)

Generic
recovery (𝑤) 2 Yes Yes

Morris and Lecar [12]
(Ca instead of Na) 1 Instantaneous

(not time dependent) No (𝑤) 2 Yes Yes

IF [13] 1 No No No Yes Generator
RF [15] 1 No No Simplified (𝐿) 2 Yes Generator

QIF [14] 1 Generic amplification
(quadratic) No No Yes Reset

Izhikevich SMC [15] 1 Generic amplification
(quadratic) No Simplified (𝐿) 2 Yes Reset

AP: action potential; L: inductor; IF: integrate and fire; QIF: quadratic integrate and fire; RF: resonate and Fire; SMC: simple model of choice; V, m, h, n:
parameters of the Hodgkin and Huxley equations; w: recovery variable. Numbers 1–4 count the dimensions of the model.

Threshold value

Reset value

Potentiometer
10 kΩ

10 kΩ

10 kΩ 10 kΩ

Diode
1N4001

3.3 μFInput from
function
generator

Reed relay
SPST1A 5 V

−

+

OP Amp
TLO82

1

1N4001
Output

Charging membrane

2

3

+V

V−

(a) Circuit

(b) (c)
“spike output”

Diode

Figure 5: Example of an electronic circuit of an IF neuron model using analog components. The membrane is modeled by the R and C
components (orange), the threshold is implemented by the OP-Amp as a comparator (the threshold is the value at the potentiometer, orange).
The reset function is performed by the Reed relay. The diodes and 10 kΩ resistors at the in-and output are included to rectify the signals. This
model is linear for the subthreshold part of the activity. (b) shows a measurement of the subthreshold activity of the membrane including the
reset at the threshold; (c) depicts a measurement of the spike output.

a detailed multicompartmental cell model with multiple ion
channels. Similarly, the connections between the nodes can
bemodeled by relatively simple rules or they can be simulated
by biophysically realistic synaptic ion channels. In general,
the purpose of these models is to provide simulation results
that can be compared to a result from mathematical analysis
and/or an experimental measurement.

3.1. On/Off Switches. The first simple network model using
coupled switches was described by McCulloch and Pitts [16].
Their approach was to represent network elements as gates
in a logical circuit (e.g., AND, OR, etc.). Others have used
a similar approach and also compared the network on/off
node with the spins in a spin-glass lattice (e.g., [17]). The
so-called Ising spins can be up or down, indicated by +1
and −1, respectively [64]. Each spin 𝑆𝑖 tends to align with

its neighbors. However, at high temperatures, the probability
of this alignment decreases to 1/2. We model the cortical
surface by a two dimensional lattice of Ising spins.The overall
state of this lattice can be characterized by its magnetization𝑚; the average of the individual spins: 𝑚 = (1/𝑁) ∑𝑁

𝑖=1 𝑆𝑖.
Below a certain critical temperature 𝑇𝑐, the lattice will retain
global magnetization by an external magnetic field ℎ. Above
the critical temperature (also called the Curie temperature),
thermal fluctuations will cause demagnetization. Although
this is a mathematical framework in statistical mechanics,
it has been used to represent neuronal networks where the
spins are the neuronal nodes in the network; in these models,
the up and down states are often presented by 1 (active) and
0 (inactive), respectively. These networks with nodes 𝑆𝑖 are
typically simulated in discrete time 𝑡 and follow the following
update rules.



10 ISRN Biomathematics

VThreshold

Upstroke

Reset

V

Vmax
VRestO

u
tw

ar
d

 c
u

rr
en

t
In

w
ar

d
 c

u
rr

en
t

I ∼ V̇

Figure 6: Phase space representation for the QIF neuron. The
relationship of membrane current, proportional to the derivative of𝑉, is plotted against membrane potential, 𝑉. Due to the quadratic
relationship, there are two fixed points: one stable (the resting
potential) and one unstable one, the threshold, at the border between
the subthreshold (blue) and superthreshold (red) regions.Themodel
generates the upstroke of the action potential when 𝑉 exceeds the
threshold. To avoid instability, an ad hoc reset is provided when the
arbitrary reset value 𝑉max is reached.

(1) At each time step, the state of 𝑆𝑖 is determined by the
state of its set (𝑆𝑘) of its connected neighbors, reflected
by function 𝐻𝑖 = ∑𝑗∈𝑆𝑘 𝑤𝑗,𝑖𝑆𝑗, with 𝑤𝑗,𝑖 representing
a weighting function from node 𝑗 to node 𝑖 (in many
models this weight is set to one).

(2) The update of 𝑆𝑖 now takes place in a probabilistic
fashion; the probability𝑃 that 𝑆𝑖 will be in the up state
in the next time step 𝑡 + 1 is: 𝑃[𝑆𝑖(𝑡 + 1) = 1] =1/(1 + 𝑒−𝐻𝑖/𝑇); variable 𝑇 is the temperature; it can be
seen that 𝑃 = 1/2 at 𝑇 → ∞ and that the update is a
deterministic process (𝑃 = 1) at 𝑇 = 0.

This update process is a stochastic variant of one of the
rules described by McCulloch and Pitts [16] where a neuron’s
output y is updated by the state of its input from neurons 𝑥𝑖
in a deterministic fashion, that is, output y is set to 1 when its
input exceeds a threshold and to 0 otherwise. A mean field
approach for the analysis of the Ising spin model is described
in Section 4.1.

A model similar to the Ising spin lattice was described by
Hopfield [18]. He also considered switches interconnected in
a network in which the strength of the connections between
any neuron pair 𝑖 and 𝑗 is determined by the synaptic weight𝑤𝑖𝑗 of their connection (no unit has connection with itself𝑤𝑖𝑖 = 0 and, unrealistically, he also assumed that the weight
matrix is symmetric, 𝑤𝑖𝑗 = 𝑤𝑗𝑖). The principal difference
between Hopfield’s approach and the ones described above
is that the updates occur randomly and asynchronously;
that is, for every time step a node is randomly selected
and then an update rule is applied for that node only. This
update rule is similar to the deterministic one employed by
McCulloch and Pitts [16], that is, the selected neuron is active
if the sum of activities of its connected neurons exceeds
a threshold. More on stochastic approaches is discussed in
Section 5.

3.2. Networks of Reduced Spiking Models. As described in
Section 2.2.2 (2), there is a variety of simplified models
ranging from simple IF to rather complete SMC represen-
tations (Table 1). Especially the IF-model is frequently used
for network simulations. One advantage of this model is that
it is simply linear in between the spikes. By employing this
approach, one can not only simulate the network but also,
to some extent, analyze its properties mathematically. Using
the simplification in Figure 3 and a further simplification
by neglecting induction effects, we can simplify (23): 𝐶 .𝑉 =−𝑉/𝑅 + 𝐼Inject+Synapse. By simplifying this notation, one can
describe the network dynamics bymembrane potential 𝑣𝑖, the
activity level of each neuron, by

.𝑣𝑖 (𝑡) = 𝐴 − 𝑣𝑖 (𝑡) + 𝐸𝑖 (𝑡) , (28)

(e.g., [21, 22]). The injected current is separated into 𝐴 and𝐸(𝑡). Parameter 𝐴 represents spontaneous drive and 𝐸 is the
time-dependent input. The presynaptic spike train can be
represented by a train of unit impulses ∑𝑛 𝛿(𝑡 − 𝑡𝑛). Each
incoming impulse generates a postsynaptic signal that can be
modeled by a so-called alpha function; that is, for an impulse
arriving at time 𝑡𝑛, its postsynaptic effect is given by ∑𝑛 𝜃[𝑡 −𝑡𝑛](𝑡 − 𝑡𝑛)𝛼2𝑒−𝛼(𝑡−𝑡𝑛). The Heaviside function 𝜃 is included
because the alpha-function does not have a physical meaning
for negative arguments, (𝑡 − 𝑡𝑛) < 0. Combining these
considerations, one can conclude that input 𝐸 is the weighted
sum of all alpha functions resulting from the incoming spike
train (e.g., [23, 24])

𝐸𝑖 (𝑡) = 1𝑘𝑖 ∑
𝑛

𝑊𝑗,𝑖𝜃 [𝑡 − 𝑡𝑛] (𝑡 − 𝑡𝑛) 𝛼2𝑒−𝛼(𝑡−𝑡𝑛). (29)

Here we determine the input by using the synaptic weight
matrix 𝑊, in which each entry 𝑤𝑗,𝑖 is the connectivity
strength of neuron 𝑗 to neuron 𝑖. Scaling factor 𝑘𝑖 represents
the number of presynaptic inputs of neuron 𝑖. We now
determine the Laplace transform of (29) and rearrange terms(𝑠2 + 2𝛼𝑠 + 𝛼2)𝐸𝑖(𝑡) = (𝛼2/𝑘𝑖) ∑𝑛 𝑊𝑗,𝑖𝑒−𝑡𝑛𝑠, which can also be
inverse transformed into the time domain in the form of a
differential equation

..𝐸𝑖 (𝑡) + 2𝛼 .𝐸𝑖 (𝑡) + 𝛼2𝐸𝑖 (𝑡) = 𝛼2𝑘𝑖 ∑
𝑛

𝑊𝑗,𝑖𝛿 (𝑡 − 𝑡𝑛) . (30)

Since the first order differential equation (28) and the second
order one (30) are coupled, via input E, they create a three
dimensional nonlinear system; a system capable of exhibiting
oscillatory and chaotic behavior. To study the activity in the
model, Olmi et al. [23] rewrite the system as three 1st-order
differential equations and integrate between pulses 𝑡𝑛 and𝑡𝑛+1. This creates an event-driven map that can be further
investigated. Tattini et al. [24] examine the propensity for
chaotic behavior by evaluating the attractors characterizing
the network activities and they show that both connectivity
and network size are critical properties—unsurprisingly, the
level of chaos, reflected by themaximumLyapunov exponent,
decreases with network size, although less so for sparsely
connected ones.
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More complicated cell models have also been employed
to investigate network activity. Recently, Izhikevich and
Edelman [25] used the SMC model to create a large network
while using connectivity based on the tracts determined by a
diffusion tensor image of the brain.

3.3. Networks of Ion Channel Models Based on Biophysical
Considerations. Using the H&H formalism combined with
approximation of the cell morphology by segments, one
can create realistic representations of neurons. Addition
of ligand-sensitive, synaptic channels allows one to create
networks. Equation (2) is then adapted to include currents
associated with other voltage sensitive channels, the synaptic
currents, and intercompartmental currents𝐶𝑑𝑉𝑑𝑡 = − 𝐼Leak − 𝐼𝑉-Sensitive − 𝐼Synapse+ 𝐼Intercompartmental + 𝐼Inject. (31)

Interestingly, by applying Kirchhoff ’s first law, it is apparent
that intracellular intercompartmental currents must be equal
to the extracellular current between the compartments,
thereby providing a tool to model extracellular measure-
ments. The dynamics of the voltage-sensitive channels is
governed by expressions similar to (3)–(5).The intercompart-
mental current, following Ohm’s law, is determined by the
potential difference between the isopotential compartments
divided by the axial resistance between them. Traub and
co-workers were amongst the first to develop this approach
(e.g., [2, 26]), the blue brain project [7] is a famous recent
attempt to determine properties that govern network activity
atmesoscopic levels.The advantage of the approach is that the
neurons in the network are modeled with realistic ion chan-
nels, which allows a direct comparison with experimental
data. However, well-known problems with the approach are
associated with the complexity and large number of parame-
ters, many of which are not experimentally determined yet.
The large parameter space renders this type of model ill-
posed and the complexity can make interpretation of the
results very difficult. A combined approach with associated
detailed and global models can be very useful to understand
the principles underpinning the simulation results of the
detailed models [5, 6, 27, 65, 66].

The detailed model of neocortex outlined in Figure 7(a)
shows pyramidal cell populations and the inhibitory basket
and chandelier cells. The network generates an EEG signal
based on the weighted sum of the neuronal currents. Surpris-
ingly, during reduced excitatory coupling, the model starts to
oscillate (top trace in Figures 7(a) and 7(b)) [5]. The mecha-
nism generating these oscillations is difficult to grasp when
studying the individual rasters of the superficial and deep
pyramidal neurons (grey panels in Figure 7(b)). However
when lumping each of the superficial and deep pyramidal
activities (Figure 7(c)), it can be seen that the simulated
EEG oscillation is associated with alternating oscillations in
the two populations. The mechanism of the EEG oscillation
can be much better understood if one considers population
activity patterns while ignoring the details of the individual
neural activity. If one considers individual neuron’s activity

as depicted in the rasters in Figure 7(b), one might not see
the relationship between neuron and network activity since
only few neurons are active during each cycle; that is, most
neurons show cycle skipping (Wallace et al., 2012).

Not only the oscillatory activity pattern itself but also
the sudden transition between nonoscillatory and oscillatory
network behavior can be understood from bifurcation anal-
ysis of a global model of two coupled excitatory-inhibitory
populations as depicted in Figure 7(b) [65, 66].

4. Mean Field Network Models

Thenetworkmodels discussed in this section donot explicitly
simulate each network node, but start directly by modeling
populations of nerve cells. Some of the models explicitly use
the mean field approach commonly employed in statistical
mechanics, others create neural populations with functional-
ity inspired by the single neuron function. The final result of
these approaches can be fairly similar since they both usually
contain excitatory and inhibitory components (the Ising spin
model is an exception). As I will point out repeatedly, this
results in a strong similarity between the equations that result
from the various networkmodels and even between these and
the equations describing single neurons.

4.1. The Ising Spin Model. Two- or three-dimensional mod-
els of the Ising-spin lattice, where the spins represent the
neurons, are not easy to solve. A mean field approach is
the simplest approximation to describe such a system. In
the lattice, each node experiences the sum of the magnetic
forces created by the other nodes and, if present, an external
magnetic field. In the mean field approach, we replace the
internal field generated by the spins by its average value. It
is beyond the scope of this paper to derive the mean field
relationship, which can be found in many physics textbooks
(e.g., [67, Chapter 7]). Using the mean field expression, we
can describe the equilibrium state of the lattice of spins—or
network of model neurons—by the expression

(𝐽𝑛𝑚 + ℎ) − 𝑘𝑇 tanh−1 (𝑚) = 0, (32)

with 𝑘—Boltzmann constant (in the following k is set to
unity), 𝑇—temperature, 𝐽—magnetic coupling strength, 𝑛—
number of neighbors, 𝑚—magnetization of the lattice, andℎ—an externally applied magnetic field. As shown in the fol-
lowing, (32) shows sudden transitions in behavior according
to the so-called cusp catastrophe [68]. First we can determine
the fixed points for the expression graphically by finding the
intersections of both terms, 𝑇 tanh−1(𝑚) and 𝐽𝑛𝑚 + ℎ as a
function of 𝑚. When depicting these functions for different𝑇 and ℎ, it can be seen that they intersect at either 3 or at 1
point(s). In case of the intersection at 3 points, the middle
one is an unstable fixed point, the other two are stable ones;
therefore the system is bistable in one area of the 𝑇-ℎ plane
and monostable elsewhere.

The transition between bi- and mono-stability occurs at
the bifurcation where the straight line 𝐽𝑛𝑚 + ℎ intersects
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Figure 7: Model of Neocortex. The detailed model (after [6]) is outlined in diagram (a). The excitatory populations consist of superficial
(S PYR) and deep (D PYR) pyramidal cells and the inhibitory neuron type (I) consists of populations of basket cells (B) and chandelier cells
(CH). The weighted sum of all soma currents is used as the “EEG” signal (top, (a)). The excitatory connections of the microcircuitry are
shown in the left part, and the inhibitory synapses in the right part of (a). (b) depicts a detail of the EEG during seizure-like oscillation in the
“EEG” and the associated raster plots of the S PYR andD PYR populations.The simplified network version, after Visser et al. [65], where only
excitatory pyramidal cells and inhibitory neuronal populations are considered, is shown in the right part of (b). (c) The average membrane
potentials of both pyramidal cell populations show that the activities of the deep S PYR and D PYR populations alternate during seizure-like
oscillation.
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Figure 8: Properties of themean field equation of the Isingmodel. (a)The stability diagram. (b) Bifurcation diagram. (c)The cusp catastrophe
shows the dependence of magnetizationm on both the temperature (T) and an external magnetic field (h).

the sigmoid 𝑇 tanh−1(𝑚) tangentially; this indicates that two
conditions must be satisfied at the transition in point 𝑇𝑐, ℎ∗:𝑇𝑐tanh−1 (𝑚) = 𝐽𝑛𝑚 + ℎ∗, (33)

and since they must be tangent𝑑𝑑𝑚 [𝑇𝑐tanh−1 (𝑚)] = 𝑑𝑑𝑚 [𝐽𝑛𝑚 + ℎ∗] 󳨀→ 𝑇𝑐1 − 𝑚2 = 𝐽𝑛.
(34)

From these two expressions, one can find the expression for𝑇𝑐 and ℎ∗ (as a function of 𝑚). The plot of these functions in

the 𝑇-ℎ plane is the so-called stability diagram (Figure 8(a)).
These lines mark the border where the system transitions
frommono- (1 fixed point) to bi-stability (3 fixed points with
one of the points unstable). Another common presentation
is a bifurcation diagram; here we have a codimension-2 case
with two independent variables 𝑇 and ℎ. Note that for ℎ =0, 𝑚 = 0 is always a solution (fixed point) for (32). If we
use 𝐽𝑛 = 1, we have a stable fixed point at 𝑚 = 0 for𝑇 > 1 and an unstable one plus two stable fixed points for𝑇 < 1. This is depicted in Figure 8(b); we can see that we
have the characteristic of a supercritical pitchfork bifurcation.
This plot can be considered as cross-sections of a 3D plot
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of 𝑚(ℎ, 𝑇) shown in Figure 8(c); this surface depicts the so-
called cusp catastrophe.

4.2. The Wilson and Cowan Model. The 1st model by Wil-
son and Cowan [29] is exclusively temporal and describes
the behavior of two neuronal populations—one excitatory
and one inhibitory—embedded in neural tissue. It is more
realistic than using the Ising model that only considers
the equivalent of excitation. In the Wilson-Cowan model,
population properties are derived from assumed statistics
of the neurons [29]. Each population receives input from
itself, the other population, and external sources. The input
to a population affects the neurons of that population that
are available (the inactive proportion of the population).
The model is nonlinear because the incoming activity for
the population is related to its output through a nonlinear
sigmoid function S. In a 2nd version of the model that
will not be further discussed here, Wilson and Cowan [30]
extended their model to include the spatial component as
well. Instead of formulating the model from underlying
statistical properties, a coarse grained version of the model
can be directly derived from the diagram in Figure 9. Two
populations, the excitatory and inhibitory, are coupled with
strengths 𝑐1–𝑐4. The external population affects the excitatory
and inhibitory networks with activities 𝑃 and 𝑄. We denote
excitatory activity by 𝐸 and inhibitory activity by 𝐼, the
excitatory population in Figure 9 receives input that can be
quantified as 𝑐1𝐸 − 𝑐2𝐼 + 𝑃. This input of the population is
converted to an output expression via a sigmoid function𝑆𝑒{⋅ ⋅ ⋅}. In most followers of their approach, such a sigmoid
curve is employed to represent conversion from membrane
potential to spike rate and/or vice versa. In the Wilson and
Cowan’s approach, the sigmoid curve represents the cumula-
tive distribution of the probability that a neuron will fire at a
given input, that is, the distance betweenmembrane potential
and firing threshold. Further, assuming that the unavailable
part of the population, that is, the active + refractory portion
is proportional (by a fraction 𝑟𝑒) to the activity level 𝐸 then
the receptive population (available portion of 𝐸) is 1 − 𝑟𝑒𝐸.

In Wilson and Cowan [29], the authors use a value a
little bit less than unity for 𝑘𝑒, reflecting that the maximum
values for the sigmoid function 𝑆𝑒 will be a little bit less
than one (see pages 9-10 in the original paper). Therefore,
the available population becomes 𝑘𝑒 − 𝑟𝑒𝐸. The formalism
for population activity also must describe spontaneous decay
proportional to E, reflecting that a nonstimulated group of
neurons converge to a base level of activity (zero, reflecting
a low level of spontaneous activity in this model). Finally
all changes 𝑑𝐸/𝑑𝑡 are weighted by the time constant of the
neuronal population 𝜏𝑒. Putting this all together the coarse
grained equation for excitatory activity becomes𝜏𝑒⏟⏟⏟⏟⏟⏟⏟

EXCITATORY
TIME CONSTANT

𝑑𝐸𝑑𝑡
= −𝐸⏟⏟⏟⏟⏟⏟⏟

DECAY
+ (𝑘𝑒 − 𝑟𝑒𝐸)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

AVAILABLE
POPULATION

SIGMOID⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑆𝑒{𝑐1𝐸 − 𝑐2𝐼 + 𝑃}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
INPUT

. (35)

External activity

P Q
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population
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Figure 9: Diagram of the Wilson-Cowan Model containing exci-
tatory and inhibitory populations. The coupling strength between
the populations is denoted with constants 𝑐1–𝑐4 and external activity
is symbolized by 𝑃 and 𝑄. Note that the model contains nonlinear
functions to relate input and output for each population (not shown
in the diagram).

A similar approach for the inhibitory population yields

𝜏i 𝑑𝐼𝑑𝑡 = −𝐼 + (𝑘𝑖 − 𝑟𝑖𝐼) 𝑆𝑖 {𝑐3𝐸 − 𝑐4𝐼 + 𝑄} . (36)

In their 1972 paper [29], Wilson and Cowan derive these
relationships from first principles followed by a coarse grain-
ing procedure (their equations (11) and (12)). When looking
into the two dimensional nonlinear Wilson-Cowan model,
there should be a variety of behaviors including a steady
activity scenario, oscillatory activity with damping, and limit
cycles (Figure 10).

4.2.1. Linearization of theWilson-Cowan Equations. To study
resonance phenomena, we will consider the effect on E and
I by small sinusoidal perturbations (e.g., evoked by electrical
stimulation) close to an equilibrium state. When stimulating
electrically in the extracellular space and assuming similar
spatial distribution of excitatory and inhibitory cells, it is
reasonable to assume that both the excitatory and inhibitory
populations receive the same stimulus current. Thus the
external inputs 𝑃 and 𝑄 are considered equal. Further
simplifying the sigmoid curves 𝑆𝑒 and 𝑆𝑖 to lines with slopes𝛼 and 𝛽, the linearized versions of (35) and (36) become

.𝐸 = − 𝐸𝜏𝑒 + (𝑘𝑒 − 𝑟𝑒𝐸)𝜏𝑒 𝛼 (𝑐1𝐸 − 𝑐2𝐼 + 𝑃) ,
.𝐼 = − 𝐼𝜏i + (𝑘𝑖 − 𝑟𝑖𝐼)𝜏i 𝛽 (𝑐3𝐸 − 𝑐4𝐼 + 𝑃) . (37)
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Rewriting these results and using 𝛼𝜏 = 𝛼/𝜏𝑒 and 𝛽𝜏 = 𝛽/𝜏𝑖,
we get

.𝐸 = 𝑓 (𝐸, 𝐼, 𝑃) = − 𝐸𝜏𝑒 + 𝑘𝑒𝛼𝜏𝑐1𝐸 − 𝑘𝑒𝛼𝜏𝑐2𝐼 + 𝑘𝑒𝛼𝜏𝑃
− 𝑟𝑒𝛼𝜏𝑐1𝐸2 + 𝑟𝑒𝛼𝜏𝑐2𝐸𝐼 − 𝑟𝑒𝛼𝜏𝐸𝑃,

.𝐼 = 𝑔 (𝐸, 𝐼, 𝑃) = − 𝐼𝜏𝑖 + 𝑘𝑖𝛽𝜏𝑐3𝐸 − 𝑘𝑖𝛽𝜏𝑐4𝐼 + 𝑘𝑖𝛽𝜏𝑃
− 𝑟𝑖𝛽𝜏𝑐3𝐸𝐼 + 𝑟𝑖𝛽𝜏𝑐4𝐼2 − 𝑟𝑖𝛽𝜏𝐼𝑃.

(38)

We now further linearize and consider small perturbations𝛿𝐸, 𝛿𝐼, 𝛿𝑃 around the equilibrium indicated by ∗
𝛿 .𝐸 = ( 𝜕𝑓𝜕𝐸)

∗
𝛿𝐸 + (𝜕𝑓𝜕𝐼 )

∗
𝛿𝐼 + ( 𝜕𝑓𝜕𝑃)

∗
𝛿𝑃,

𝛿 .𝐼 = ( 𝜕𝑔𝜕𝐸)
∗
𝛿𝐸 + (𝜕𝑔𝜕𝐼 )

∗
𝛿𝐼 + ( 𝜕𝑔𝜕𝑃)

∗
𝛿𝑃. (39)

The partial derivatives determined at equilibrium ∗ are:

𝜀𝐸 = ( 𝜕𝑓𝜕𝐸)
∗= (− 1𝜏𝑒 + 𝑘𝑒𝛼𝜏𝑐1 − 2𝑟𝑒𝛼𝜏𝑐1𝐸 + 𝑟𝑒𝛼𝜏𝑐2𝐼 − 𝑟𝑒𝛼𝜏𝑃)

∗
,

𝜀𝐼 = (𝜕𝑓𝜕𝐼 )
∗

= (−𝑘𝑒𝛼𝜏𝑐2 + 𝑟𝑒𝛼𝜏𝑐2𝐸)∗,𝜀𝑃 = ( 𝜕𝑓𝜕𝑃)
∗

= (𝑘𝑒𝛼𝜏 − 𝑟𝑒𝛼𝜏𝐸)∗,
𝛾𝐸 = ( 𝜕𝑔𝜕𝐸)

∗
= (𝑘𝑖𝛽𝜏𝑐3 − 𝑟𝑖𝛽𝜏𝑐3𝐼)∗,

𝛾𝐼 = (𝜕𝑔𝜕𝐼 )
∗= (− 1𝜏𝑖 − 𝑘𝑖𝛽𝜏𝑐4 − 𝑟𝑖𝛽𝜏𝑐3𝐸 + 2𝑟𝑖𝛽𝜏𝑐4𝐼 − 𝑟𝑖𝛽𝜏𝑃)

∗
,

𝛾𝑃 = ( 𝜕𝑔𝜕𝑃)
∗

= (𝑘𝑖𝛽𝜏 − 𝑟𝑖𝛽𝜏𝐼)∗.
(40)

Combining these expressions and substituting 𝑒 and 𝑖 for 𝛿𝐸
and 𝛿𝐼, and making the perturbation 𝛿𝑃 sinusoidal 𝑝 sin𝜔𝑡
(where amplitude𝑝 is a small value), we can simplify notation

.𝑒 = 𝜀𝐸𝑒 + 𝜀𝐼𝑖 + 𝜀𝑃𝑝 sin𝜔𝑡, (41)
.𝑖 = 𝛾𝐸𝑒 + 𝛾𝐼𝑖 + 𝛾𝑃𝑝 sin𝜔𝑡. (42)

These two 1st order differential equations can also be written
as a single 2nd order one. Taking the derivative of (42) and
substituting the expression in (41) for 𝑖 gives

..𝑒 = 𝜀𝐸 .𝑒 + 𝜀𝐼 (𝛾𝐸𝑒 + 𝛾𝐼𝑖 + 𝛾𝑃𝑝 sin𝜔𝑡) + 𝜀𝑃𝜔𝑝 cos𝜔𝑡. (43)

Using (41), we can substitute 𝑖 = ( .𝑒 − 𝜀𝐸𝑒 − 𝜀𝑃𝑝 sin𝜔𝑡)/𝜀𝐼,
andwe get the standard expression for a 2nd order differential
equation with a driving force

..𝑒 − (𝜀𝐸 + 𝛾𝐼)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑏

.𝑒 + (𝜀𝐸𝛾𝐼 − 𝜀𝐼𝛾𝐸)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑐

𝑒
= 𝜀𝑃𝑝 𝑑 sin𝜔𝑡𝑑𝑡 + (𝜀𝐼𝛾𝑃 − 𝜀𝑃𝛾𝐼) 𝑝 sin𝜔𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

driving "force"

. (44)

This equation is again of the same form as the equation that
governs a parallel RCL circuit as shown in Figure 3.The 2nd-
orderODE governing this RCL circuit is (26).This equation is
also very similar to the network equation by Jirsa and Haken
[45] in which the spatial derivative is set to zero (Section 4.5).
Thus the linearized network model is capable of resonance
behavior, described in Section 2.1.4. Since we deal with a
linearized version of a nonlinear system, unstable solutions
of the linearized case may relate to bifurcations in the full
nonlinear version of the model (see Section 6.1 for further
discussion).

4.3. Models Inspired by the Wilson-Cowan Approach. The
model described by Lopes da Silva et al. [35] is a model of
thalamus and one of the first that is inspired by the Wilson-
Cowan approach. A similar treatment of the mesoscopic
model, with altered synaptic function, was given by van
Rotterdam et al. [36]. The base model describes a thalamic
network; however, the populations are identical to the ones
in the cortical Wilson-Cowan model: one excitatory and
one inhibitory cell group. Similar to the Wilson-Cowan
approach they assume an invertible function f that translates
membrane potential, 𝑉𝑒(𝑡) and 𝑉𝑖(𝑡) (i.e., the input) for the
excitatory and inhibitory populations, into a rate of action
potentials for each population 𝐸(𝑡) and 𝐼(𝑡) (i.e., the output).
For the excitatory population we then get the following
relationships: 𝐸(𝑡) = 𝑓𝑒[𝑉𝑒(𝑡)] and 𝑉𝑒(𝑡) = 𝑓−1𝑒 [𝐸(𝑡)]. Here𝑓𝑒 and 𝑓−1𝑒 are the function and its inverse that translates
membrane potential into spike rate and vice versa. Both the
functions 𝑓𝑒 and its equivalent for the inhibitory population𝑓𝑖 are basically the static nonlinearities in their model. Each
nonlinear component is subsequently approached by a Taylor
series about the mean value of 𝐸 denoted as 𝐸: 𝑓−1𝑒 [𝐸(𝑡)] =𝑎𝑒0𝐸 + 𝑎𝑒1(𝐸(𝑡) − 𝐸) + 𝑎𝑒2(𝐸(𝑡) − 𝐸)2 + ⋅ ⋅ ⋅. Subsequently
Lopes da Silva et al. simplify notation by only considering
the deviation from the mean only, 𝑒(𝑡) = 𝐸(𝑡) − 𝐸. This is
done for all variables in the model, and next they linearize
about themean by neglecting the 2nd and higher order terms
in the Taylor series so that the original equations can be
approximated by 𝑣𝑒(𝑡) = 𝑓−1𝑒 [𝑒(𝑡)] = 𝑎𝑒1𝑒(𝑡) and 𝑣𝑖(𝑡) =𝑓−1𝑖 [𝑖(𝑡)] = 𝑎𝑖1𝑖(𝑡). External input 𝑃(𝑡) or its demeaned
version 𝑝(𝑡) perturbs the system (top Left in Figure 11(a)).
For the excitatory component in the diagram in the Laplace
domain we get 𝑉𝑒(𝑠) = 𝐻𝑒(𝑠)𝑃(𝑠), with the following Laplace
transform pairs: 𝑉𝑒(𝑠) ⇔ 𝑣𝑒(𝑡), 𝐻𝑒(𝑠) ⇔ ℎ𝑒(𝑡), and 𝑃(𝑠) ⇔𝑝(𝑡). Here ℎ𝑒 and 𝐻𝑒 are the unit impulse response and
transfer function of the excitatory network.
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Figure 10: Phase plane representations of the Wilson-Cowan model during equilibrium, oscillatory, and limit-cycle activities. These plots
correspond to the parameters in Figures 4, 10, and 11 of the original 1972 paper [29]. Note that in the equilibrium case there are two stable
fixed points: one in a “down” and one in an “up” state. Also note that in these examples, oscillations are obtained by flattening the 𝐸 null-cline
(magenta) andmaking the 𝐼 null-cline (orange) steeper. Sample trajectories are depicted in blue. (a)Three fixed points, two of them are stable
and one (in between) is unstable.The eigenvalues of these points from left to right are as follows:−0.59,−1.13; 0.73,−1.6;−1.43,−2.88. (b) Two
fixed points, one is clearly associated with a damped oscillation. The eigenvalues from left to right are as follows: −0.34, −0.98; −0.09 ± 0.86𝑗.
(c) The limit cycle with a fixed point inside. The eigenvalues of the fixed point are 0.12 ± 1.88𝑗.

In a similar fashion we include the effect of the inhibition
in the diagram in Figure 11(a) and get𝑉𝑒 (𝑠) = 𝑎𝑒1𝐸 (𝑠) = 𝐻𝑒 (𝑠) 𝑃 (𝑠) − 𝐶2𝐼 (𝑠) 𝐻𝑖 (𝑠) . (45)

Following the same procedure for the linearized inhibitory
component (bottom part in Figure 11(a)) gives𝑉𝑖 (𝑠) = 𝑎𝑖1𝐼 (𝑠) = 𝐶1𝐸 (𝑠) 𝐻𝑒 (𝑠) . (46)

If we substitute the expression for I(s) (obtained from (46))
into (45) and use 𝐸(𝑠) = 𝑉𝑒(𝑠)/𝑎𝑒1 (from (45)), we obtain the
following expression for 𝑉𝑒(𝑠):𝑉𝑒 (𝑠) = 𝐻𝑒 (𝑠) 𝑃 (𝑠)1 + 𝐶1𝐶2𝐻i (𝑠) 𝐻𝑒 (𝑠) /𝑎𝑖1𝑎𝑒1 . (47)

Then the authors use a linear system to model synaptic input
with unit impulse responses (UIRs) ℎ𝑒 and ℎ𝑖. In Lopes

da Silva et al. [35], the synaptic UIR is a dual exponential𝐴[𝑒−𝑎1𝑡 − 𝑒−𝑎2𝑡] and in van Rotterdam et al. [36] it is an
alpha-function𝐴𝑡𝑒−𝑎𝑡; in both cases, these functions are only
considered for 𝑡 ≥ 0. The associated Laplace and Fourier
transforms are, of course, slightly different.Herewe follow the
paper of Lopes da Silva et al. [35] and use the dual exponential
unit impulse response for both the excitatory and inhibitory
populations. These functions and their Laplace transforms
are

ℎ𝑒 (𝑡) = 𝐴 [𝑒−𝑎1𝑡 − 𝑒−𝑎2𝑡] ⇐⇒ 𝐻𝑒 (𝑠) = 𝐴 (𝑎2 − 𝑎1)(𝑠 + 𝑎1) (𝑠 + 𝑎2) ,
ℎ𝑖 (𝑡) = 𝐵 [𝑒−𝑏1𝑡 − 𝑒−𝑏2𝑡] ⇐⇒ 𝐻𝑖 (𝑠) = 𝐵 (𝑏2 − 𝑏1)(𝑠 + 𝑏1) (𝑠 + 𝑏2) .

(48)
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Figure 11: (a) Diagram of the Model (after [35]). 𝑃(𝑡) is the external input; ℎ𝑒 and ℎ𝑖 are the population’s linear unit impulse responses
reflecting the synaptic function. Variables 𝑉𝑒 and 𝐸 are the population’s mean membrane potential and firing rate respectively; 𝑉𝑖 and 𝐼 are
the same for the inhibitory population. Functions 𝑓𝑒 and 𝑓𝑖 are the nonlinear functions that convert population membrane potential into
population firing rate. 𝐶1 and 𝐶2 are coupling constants. (b) Result for the spectrum following (49).

We can substitute this into (47) and simplify

𝑉𝑒 (𝑠) = 𝐴 (𝑎2 − 𝑎1) (𝑠 + 𝑏1) (𝑠 + 𝑏2)(𝑠 + 𝑎1) (𝑠 + 𝑎2) (𝑠 + 𝑏1) (𝑠 + 𝑏2) + 𝐾𝑃 (𝑠) , (49)

with 𝐾 = (𝐶1𝐶2/𝑎𝑖1𝑎𝑒1)(𝑎2 − 𝑎1)(𝑏2 − 𝑏1)𝐴𝐵.
We can substitute 𝑠 by 𝑗𝜔 in 𝑉𝑒(𝑠) to obtain an expression

for the spectrum of 𝑣𝑒. The spectrum can be further quanti-
fied by assuming that the thalamic input 𝑝(𝑡) is white noise
and therefore 𝑃(𝜔) is constant. The numerical values we use
for Figure 11(b) are the same as the ones in the example given
in Lopes da Silva et al. [35]: 𝐴 = 1.65mV, 𝐵 = 32mV, 𝐶1 = 32
cells, 𝐶2 = 3 cells, 𝑎1 = 55 s−1, 𝑎2 = 605 s−1, 𝑏1 = 27.5 s−1,𝑏2 = 55 s−1, 𝑞𝑒1 = 1/𝑎𝑒1, 𝑞𝑖1 = 1/𝑎𝑖1, and 𝑞𝑖1𝑞𝑒1 = 4.55 × 106
(𝐾 ≈ 3.5𝑒8). It can be seen that the spectrum peaks around
10 Hz, the alpha rhythm frequently encountered in the EEG
of subjects with eyes closed.

4.3.1. Neural Mass Models. The Wilson-Cowan Equations
[29] and Lopes da Silva et al. approach [35] inspired many
other models. Instead of considering individual neurons,
these models determine the activity of coupled populations
of nerve cells, each population representing a neural mass.
A very basic model, using two populations representing a
coupled excitatory and inhibitory network is described by
Dayan and Abbott [69, pages 265–270]. The rate of change
for each network is inversely proportional to its activity level,
and proportional to the input it receives from itself, the
other population, and an external input. This results in a set
of two coupled differential equations. Although the model
seems to be linear, their model is actually nonlinear because
the population activities are limited to positive values only.
Therefore their model is capable of generating limit cycles.

Jansen’s neural mass model [37] is applied by Grimbert
and Faugeras [38] to create a cortical network unit (Fig-
ure 12(a)). It is a temporal model of neuronal populations
inspired by the Lopes da Silva et al. [35] approach where each
population is represented by a Wiener cascade ([70], Chap-
ters 2–5): a dynamic linear component,modeling the synaptic

conversion process, and a nonlinear static component that
represents the conversion of membrane potential to spike
rate (Figure 12(b)). As it can be seen in Figure 12(b), input𝑥1 (input spike rate) is first convolved with the unit impulse
response (UIR) ℎ of the linear dynamic component, the result𝑥2 = 𝑥1 ⊗ℎ (populationmembrane potential; ⊗-convolution)
is subsequently converted with a static sigmoid to produce
output 𝑥3 = 𝜎(𝑥2) (output spike rate). The structure of
the model by Grimbert and Faugeras [38] is similar to the
canonical cortical model of Douglas and Martin [71] in the
sense that it also includes two excitatory populations 𝐸,
one inhibitory population 𝐼, and an external input 𝑃. The
development of the equations that govern the activities is
straightforward. First we use the UIR to write a convolution
expression. Again, the synapse is considered a linear system
and in this model, the synaptic impulse response function is
defined as an alpha function (as in [36]):

ℎ (𝑡) = {𝛼𝛽𝑡𝑒−𝛽𝑡, 𝑡 ≥ 0,0, otherwise, (50)

in which 𝛼 and 𝛽 are population-specific constants.
The Laplace transform of the unit impulse response is:𝐻(𝑠) = 𝛼𝛽/(𝑠 + 𝛽)2. In the time/Laplace domain we may
link the input 𝑥(𝑡)/transformed input 𝑋(𝑠) to the output𝑦(𝑡)/transformed output 𝑌(𝑠) of any linear system by the
transform pair: 𝑌(𝑠) = 𝐻(𝑠)𝑋(𝑠) ⇔ 𝑦(𝑡) = ℎ(𝑡) ⊗ 𝑥(𝑡).
Second, we write the convolution relationship as
an ODE. Substituting the above expression for 𝐻
in the Laplace transformed expression and we get(𝑠 + 𝛽)2𝑌(𝑠) = 𝛼𝛽𝑋(𝑠). This result can be re written as𝑠2𝑌(𝑠) + 2𝛽𝑠𝑌(𝑠) + 𝛽2𝑌(𝑠) = 𝛼𝛽𝑋(𝑠). Recall that 𝑠𝑌(𝑠) and𝑠2𝑌(𝑠) denote the Laplace transforms of the 1st and 2nd
derivatives of 𝑦(𝑡) in the time domain; using this, we can
transform the above expression into a 2nd order ODE for
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the linear synaptic process: ..𝑦(𝑡) = 𝛼𝛽𝑥(𝑡) − 2𝛽 .𝑦(𝑡) − 𝛽2𝑦(𝑡),
which can be written as two 1st order ODEs

.𝑦 (𝑡) = 𝑧 (𝑡) ,
.𝑧 (𝑡) = 𝛼𝛽𝑥 (𝑡) − 2𝛽𝑧 (𝑡) − 𝛽2𝑦 (𝑡) . (51)

Now we add the static nonlinearity employed for the mem-
brane potential to pulse rate conversion, a sigmoid curve 𝜎(𝑣)
(Figure 12(b)). In this study, it is defined as a Boltzmann
function with maximum rate 𝑣max, slope 𝑟 and a 50% level
threshold 𝑣0: 𝜎(𝑣) = 𝑣max/(1 + 𝑒−𝑟(𝑣−𝑣0)). This completes the
formalism for one population, a single Wiener cascade in
Figure 12(b).The pair ofODEs plus the static nonlinearity can
be defined for each of the three populations in the neuralmass
model (two excitatory and one inhibitory, Figure 12(a)). This
means we will have a pair of 1st order differential equations
per population, generating a total of six equations (Equation
(3) in [38])

.𝑦0 (𝑡) = 𝑦3 (𝑡) ,
.𝑦3 (𝑡) = 𝐴𝑎𝜎 (𝑦1 (𝑡) − 𝑦2 (𝑡)) − 2𝑎𝑦3 (𝑡) − 𝑎2𝑦0 (𝑡) ,

.𝑦1 (𝑡) = 𝑦4 (𝑡) ,
.𝑦4 (𝑡) = 𝐴𝑎 {𝑝 (𝑡) + 𝐶2𝜎 (𝐶1𝑦0)} − 2𝑎𝑦4 (𝑡) − 𝑎2𝑦1 (𝑡) ,

.𝑦2 (𝑡) = 𝑦5 (𝑡) ,
.𝑦5 (𝑡) = 𝐵𝑏𝐶4𝜎 (𝐶3𝑦0) − 2𝑏𝑦5 (𝑡) − 𝑏2𝑦2 (𝑡) .

(52)

The parameters 𝑦0–𝑦2 denote the membrane potentials, and𝐴, 𝑎, 𝐵, 𝑏 are the constants in the population specific alpha
functions. Note that in these equations, some outputs 𝑦 and
sigmoid functions areweighted by connectivity strengths𝐶1−𝐶4. The focus of the paper is on the variable y, the aggregate
membrane potential of themain population, which is thought
to be proportional with the local field potential. A simulation
using the following parameters, 𝐴 = 3.25, 𝑎 = 100, 𝐵 = 22,𝑏 = 50, 𝐶1 = 135, 𝐶2 = 0.8 ∗ 𝐶1, 𝐶3 = 0.25 ∗ 𝐶1, 𝐶4 =0.25 ∗ 𝐶1, 𝑣max = 5, 𝑟 = 0.56, and 𝑣0 = 6, shows a signal that
is similar to the EEG alpha rhythm (Figure 12(a)).

4.3.2. Modeling the Olfactory System. The models created by
Freeman in the 1980s used a combined network modeling
and experimental approach to study the electrical activity
in rabbit olfactory system. Although Freeman’s approach
may not have been directly inspired by the Wilson-Cowan
equations and/or the models by Lopes da Silva and co-
workers, the fundamental building blocks of his model are
neural masses. The appeal of Freeman’s approach is that it
is strongly based on the anatomy of the olfactory system,
and that he relates modeling results to electrophysiological
experiments. As compared to the previous models, a unique
addition is that it contains latencies L1–L4, modeling the
conduction delays occurring in between populations [39].
Differential equations without delays need initial values,
whereas equations with delays require initial functions to
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Figure 12: Neural mass models. (a) A diagram of the model of a
cortical unit employed by Grimbert and Faugeras [38] and a sample
trace showing an oscillation similar to an EEG alpha rhythm. (b)
Representation of a Wiener cascade used to model a population
of nerve cells. The Wiener cascade consists of a linear dynamical
module and a static nonlinear one. (c) Schematic representation of
the model described by Freeman [39] and sample traces showing
chaotic behavior of the impulse responses (impulse input—arrows).

determine the delayed response of the system. Equations
with delays can exhibit behavior that cannot be displayed
by equations without delay of the same order. It is given
that delays in the nervous system occur because of the finite
conduction velocity of nerve fiber activity. In addition to
Freeman’s model, several others have explored the role of
these delays or included the delays in the formalism (e.g.,
[65, 66, 72–74]).

In his models, Freeman describes different population
levels. Within the most basic population type, which is
defined as K0, he includes pulse-to-wave conversion, linear
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spatiotemporal integration, wave-to-pulse conversion, and
conduction of the output. This basic population is modeled
with a 2nd order linear ODE coupled to a nonlinear static
sigmoid function, the Wiener cascade (Figure 12(b)). In
general, Freeman [39] (andmany other papers from Freeman
and co-workers) defines the following neuronal population
levels (Figure 12(c)).

(1) K0: a subset of noninteracting neurons, either all
excitatory (K0𝑒) or inhibitory (K0𝑖). The smallest unit in
Figure 12(c) signifies a K0 subset. In each K0 subset j, the
wave variable 𝑣𝑗 is governed by a 2nd order ODE: 𝑎𝑏𝐹(𝑣𝑗) =..𝑣𝑗 + (𝑎 + 𝑏) .𝑣𝑗 + 𝑎𝑏𝑣𝑗, with 𝑎 and 𝑏 constants. For the output
there is a sigmoid function to convert themembrane potential
to pulse rate: 𝑝𝑗 = 𝐴 − 𝐵 exp(𝐶 − 𝐶𝑒𝑣𝑗), with 𝐴, 𝐵, and 𝐶
constants.

(2) KI: coupled K0 networks create the KI level. In Free-
man’s terminology, two K0𝑒modules give a KI𝑒module and a
pair of K0𝑖 gives one KI𝑖 (Figure 12(c)). For each population 𝑗,
the coupling is governed by𝐹(𝑣𝑗), a function representing the
incoming pulses originating from the connected populations.
As shown above, the dynamics of the system’s basic K0
population is described by a 2nd order differential equation
with a driving term (i.e., 𝐹(𝑣𝑗)). If we Laplace transform the
ODE while assuming that the driving force 𝐹(𝑣𝑗) is a unit
impulse 𝛿(𝑡), we get 𝑎𝑏 = [𝑠2 + (𝑎 + 𝑏) 𝑠 + 𝑎𝑏 ]𝐻(𝑠), with𝐻(𝑠) - transfer function.The inverse transform of the transfer
function, the UIR is the dual exponential (also used in other
models such as Lopes da Silva et al. [35]).

(3) KII: this type of population arises when a KI𝑒 and
KI𝑖 are coupled (Figure 12(c)). The distance between KII
populations can be large enough that conduction delays
cannot be neglected. These delays are indicated by 𝐿 in
Figure 12(c).

(4) KIII: when KII sets are interconnected, a KIII set is
created. Note that there is just one such a set in Figure 12(c).
In Freeman [39] there are three coupledKII sets: the olfactory
bulb (OB), the anterior olfactory nucleus (AON), and the
prepyriform cortex (PC). The connections in this set are
longer range so that lags (latencies) were incorporated.These
latencies are included in his expressions of the driving
force by a backward counter J. For example, the effect of a
subpopulation from AON to one in OB is included as

(19) 22∑
𝐽=14

𝑃𝐸1 (𝐽) . (53)

This term represents the weighted sum of the AON popula-
tion’s pulse values 𝑃𝐸1 in the past 14–22 steps. Note that the
coefficient is divided by 9, the number of backward steps that
are included in the sum.

Simulations of Freeman’s model were implemented in
Matlab and typical results are depicted in the bottom panel
in Figure 12(c). To show that the system is initially quiet, we
deliver a first stimulus a little after onset of the simulation and
to demonstrate that the response of the active intact network
is slightly different, we deliver another stimulus at about the
halfway point of the simulation (arrows in Figure 12(c)).

Position �rPosition �r1

h1(�r1, t)

hE(�r1, t)

dx d
y

u(�r, t)

g(�r1, t)

hE(�r, t)

h1(�r, t)

g

�r1, t − | �r −�r1 |

v



Figure 13: The model presented by Nunez is based on interaction
between cortical volume units. The output g of one volume at
position→𝑟 1 arrives at its target at position→𝑟 with a delay determined
by conduction velocity (𝑣). Every volume unit is characterized by
its synaptic activity, both for excitatory (ℎ𝑒) and inhibitory synapses
(ℎ𝑖). In the mammalian brain, the excitatory cortical synaptic
activity is assumed to make the principal contributions to the
electroencephalogram (EEG).

4.4. Model for the Electroencephalogram. The electrical sig-
nal that can be recorded from the scalp, the electro-
encephalogram (EEG), reflects the currents generated by the
brain’s nerve cells. If we ignore electrical signals from other
more remote sources (e.g., muscle, heart) and nonbiological
artifacts, we can assume that the EEG is the weighted sum
of the underlying neural network in which the weights are
determined by the geometry. The EEG signal is used both
in research and clinical settings. Because a single EEG signal
includes the activity ofmillions of nerve cells, the relationship
between smaller networks of the brain and the EEG signal is
not necessarily a trivial one. Therefore this relationship has
been the target of many modeling studies; the framework
developed by physicist Paul Nunez is an example. Because
it is generally thought that the slower synaptic potentials,
especially those of the neocortical pyramidal cells, contribute
most to the EEG signals on the surface of cortex and
scalp, Nunez’ model focused on describing synaptic activity
across cortex (e.g., [31, 32]). The spatiotemporal model of
cortical activity is based on the schematic of neocortex
shown in Figure 13. This diagram shows the effect of action
potential firing activity g produced by the left cube on the
synaptic activity h of the right cube. The synaptic activity has
subscripts e and i for the excitatory and inhibitory synapses,
respectively. Both activity variables g and h are a function
of location: →𝑟 1 (left cube), →𝑟 (right cube), and time t. The
remaining variables in Figure 13 are v for conduction velocity
and 𝑢(→𝑟 , 𝑡) for external, subcortical input. Consequently the
delay for action potentials arriving at the right cube that were
generated in the left cube is |→𝑟 − →𝑟 1|/𝑣; therefore, the action
potential firing function from the left cube arriving at the
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right cube is indicated as 𝑔(→𝑟 1, 𝑡 − |→𝑟 −→𝑟 1|/𝑣). Furthermore,
the connectivity within the cortex is governed by functions𝑅𝐸 and 𝑅𝐼 for the excitatory and inhibitory connections,
respectively. These functions also depend on the locations
→𝑟 , →𝑟 1, and fiber system (with conduction velocity 𝑣), that is,𝑅𝐸 = 𝑅𝐸(→𝑟 ,→𝑟 1, 𝑣). The equation that describes the excitatory
synaptic activity as a function of the input to the right cube
can now be formulated as

ℎ𝐸 (→𝑟 , 𝑡)= 𝑢 (→𝑟 , 𝑡)
+∫∞

0
𝑑𝑣∫

𝑆
𝑅𝐸 (→𝑟 ,→𝑟 1, 𝑣)𝑔(→𝑟 1, 𝑡− 󵄨󵄨󵄨󵄨󵄨󵄨→𝑟 −→𝑟 1󵄨󵄨󵄨󵄨󵄨󵄨𝑣 ) 𝑑2𝑟1.

(54)

For the inhibitory synaptic activity a simpler expression can
be used since there are only local inhibitory fibers all with
similar conduction velocity, that is, 𝑅𝐼 = 𝑅𝐼(→𝑟 ,→𝑟 1). Further,
because of the local character of inhibition, one can neglect
the delays for the inhibitory fibers: that is, now the action
potential firing function is simply 𝑔(→𝑟 1, 𝑡). For the inhibitory
expression, we get

ℎ𝐼 (→𝑟 , 𝑡) = 𝑢0 + ∫
𝑆
𝑅𝐼 (→𝑟 ,→𝑟 1) 𝑔 (→𝑟 1, 𝑡) 𝑑2𝑟1. (55)

The external input 𝑢0 represents subcortical input which
is assumed constant for a given state. Because the physio-
logical basis for this input is not obvious, Nunez dropped
this term in later versions of the model. In the following,
it is not very important since the effect of 𝑢0 vanishes
when linearizing the expression. Note that both in (54) and
(55) the connectivity functions 𝑅𝐸 and 𝑅𝐼 and/or activity
function g must contain a component that translates the
action potential rate into a level of synaptic activity. In his
development, Nunez assumes this component to be linear by
using a simple gain/attenuation factor. The same can be said
for external input functions 𝑢(→𝑟 , 𝑡) and 𝑢0. They implicitly
include a conversion from action potential rate to synaptic
activity; the external input in terms of the action potential rate
must be corrected to generate synaptic activity and (again)
if this relationship is linear, one can use a simple factor.
The above expressions in (54) and (55) relate spike input to
synaptic activity (pulse-to-wave conversion); of course there
is also the effect of the synaptic activity on the spike output
(wave-to-pulse conversion). The nonlinear relationship for
both synaptic activities ℎ𝐸 and ℎ𝐼 on action potential rate
function 𝑔 is commonlymodeled by a sigmoid function (e.g.,
[32]). Nunez linearizes this relationship about an assumed
fixed state 𝑔0. If we consider a small change of the action
potential rate 𝛿g around state 𝑔0 and relate this to small
changes in the synaptic activities 𝛿ℎ𝐸 and 𝛿ℎ𝐼, we get 𝛿𝑔 =(𝜕𝑔/𝜕ℎ𝐸)𝑔=𝑔0𝛿ℎ𝐸 + (𝜕𝑔/𝜕ℎ𝐼)𝑔=𝑔0𝛿ℎ𝐼. Defining 𝐻𝐸 = 𝛿ℎ𝐸 and𝐻𝐼 = 𝛿ℎ𝐼, 𝑄𝐸 = (𝜕𝑔/𝜕ℎ𝐸)𝑔=𝑔0 , and 𝑄𝐼 = −(𝜕𝑔/𝜕ℎ𝐼)𝑔=𝑔0 , we

can simplify notation and get 𝛿𝑔 = 𝑄𝐸𝐻𝐸 − 𝑄𝐼𝐻𝐼. If we now
use (54) to write an expression for 𝛿ℎ𝐸, we get𝛿ℎ𝐸 (→𝑟 , 𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐻𝐸(→𝑟 ,𝑡)= 𝛿𝑢 (→𝑟 , 𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑈(→𝑟 ,𝑡)
+ ∫∞

0
𝑑𝑣

×∫
𝑆
𝑅𝐸(→𝑟 ,→𝑟 1, 𝑣) 𝛿𝑔 (→𝑟 1, 𝑡 − 󵄨󵄨󵄨󵄨󵄨󵄨→𝑟 − →𝑟 1󵄨󵄨󵄨󵄨󵄨󵄨𝑣 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑄𝐸𝐻𝐸(→𝑟 1 ,𝑡−󵄨󵄨󵄨󵄨󵄨󵄨
→𝑟−→𝑟 1󵄨󵄨󵄨󵄨󵄨󵄨/𝑣)−𝑄𝐼𝐻𝐼(

→𝑟 1 ,𝑡−󵄨󵄨󵄨󵄨󵄨󵄨
→𝑟−→𝑟 1󵄨󵄨󵄨󵄨󵄨󵄨/𝑣)

𝑑2𝑟1,
(56)

with the changes of notation indicated by the horizontal curly
brackets, we obtain (Equation (11.5) in [32]):𝐻𝐸 (→𝑟 , 𝑡)= 𝑈 (→𝑟 , 𝑡)

+ ∫∞
0

𝑑𝑣 ∫
𝑆
𝑅𝐸 (→𝑟 ,→𝑟 1, 𝑣) [[𝑄𝐸𝐻𝐸(→𝑟 1, 𝑡 − 󵄨󵄨󵄨󵄨󵄨󵄨→𝑟 − →𝑟 1󵄨󵄨󵄨󵄨󵄨󵄨𝑣 )

−𝑄𝐼𝐻𝐼 (→𝑟 1, 𝑡 − 󵄨󵄨󵄨󵄨󵄨󵄨→𝑟 − →𝑟 1󵄨󵄨󵄨󵄨󵄨󵄨𝑣 )]] 𝑑2𝑟1.
(57)

Following the same procedure for (55) gives (Nunez’ Equa-
tion (11.6))

𝐻𝐼 (→𝑟 , 𝑡)=∫
𝑆
𝑅𝐼 (→𝑟 ,→𝑟 1)[𝑄𝐸𝐻𝐸(→𝑟 1, 𝑡)−𝑄𝐼𝐻𝐼 (→𝑟 1, 𝑡)]𝑑2𝑟1.

(58)

One of the strong aspects of Nunez’ model is that it acknowl-
edges different conduction velocities, the weak part is that
it linearizes the relationship between synaptic activity and
action potential rate, and vice versa.

4.5. A Field Equation for the EEG. An excellent summary
of macroscopic modeling is provided in Jirsa and Haken
[45]. These authors integrate temporal and spatial aspects,
the firing rate models first described by Wilson and Cowan
[29, 30], and the synaptic fields described by Nunez (e.g.,
[31, 32]).Their approach is straightforward. First they develop
expressions for the synaptic and action potential activities.
Then they simplify by zooming out, determine the expression
for the synaptic field, and write that expression in the form
of a convolution operation. Finally, they take the Fourier
transform of the convolution and transform this result back
into the spatiotemporal domain as a partial differential
equation for the synaptic field of the excitatory neurons. Just
as Nunez (Section 4.4), Jirsa and Haken assume that this field
is a representative for the EEG.

4.5.1. Spatiotemporal Expression for the Synaptic Field. The
excitatory (e) and inhibitory (i) populations each have pulse
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Figure 14: Diagrams of the model described by Jirsa and Haken [45]. They explicitly model the conversion between cellular output and the
synaptic input (transformation frompulse-to-wave, upper panels) and the conversion between synaptic activity and spike rate (transformation
fromwave-to-pulse, bottom panels). Top-left panel shows how the excitatory synaptic field𝜓𝑒 (as a function of time 𝑡 and place 𝑥) is generated
by the action potential field 𝐸 by integration over the 1-dimensional cortical “area” Γ using integration variable 𝑋. The outcome (59) depends
on the distribution of connectivity 𝑓𝑒 and the conversion operation 𝐻𝑒 (60).The other panels in the top row show the same picture in various
degrees of zooming out. The Bottom-left panel shows the generation of the action potential field 𝐸 (as a function of time t and place x) by
the excitatory synaptic field 𝜓𝑒 (61). The outcome depends on the distribution of connectivity 𝑓𝐸 and the conversion operation 𝐻𝐸 (62). The
other panels in the bottom row show the same in various degrees of zooming out. Note that the distribution function𝑓𝐸 approaches a delta
function 𝛿(𝑥 − 𝑋). The depicted relationships only show the excitatory population; for the inhibitors, similar diagrams could be constructed.

rate 𝐸 and 𝐼 (𝐸(𝑥, 𝑡) and 𝐼(𝑥, 𝑡)) similar to the approach by
Wilson and Cowan [29], and a wave expression 𝜓 (𝜓𝑒(𝑥, 𝑡)
and 𝜓𝑖(𝑥, 𝑡)) similar to the development by Nunez. In the
above, the spatial component 𝑥 is three dimensional; in
the remainder of the text, the spatial variable is reduced to
one dimension represented by 𝑥. In the following text, we
follow the derivation of the macroscopic field equation as it is
visualized in Figure 14. In order to find the expression for the
synaptic activity, we determine the synaptic component (top,
Figure 14), while including the spike rate generator (bottom,
Figure 14).The left part of Figure 14 shows the details whereas
the right part shows the zoomed out version representing a
macroscopic view where some detail is lost.

(1) Synaptic Component. The synaptic activity 𝜓 resulting
from the incoming spike activity, for the excitatory popula-
tion is:𝜓𝑒 (𝑥, 𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

synaptic
activity

excitatory
population

at location 𝑥
and time 𝑡

= ∫ Γ⏟⏟⏟⏟⏟⏟⏟
Surface
Area
of the
brain

𝑑𝑋 𝑓𝑒 (𝑥, 𝑋)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Distribution Function
of Spatial Connectivity
of axons(output) at𝑋 to 𝑥

𝐻𝑒 (𝑥, 𝑋, 𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Output of
Conversion
Pulse→Wave

.
(59)

For the inhibitory population a similar expression can be
presented. In the equations for synaptic activity, the con-
tribution from the pulse activity over the whole cortex is
included: at location 𝑥, this contribution is the product of all

converted cortical activity 𝐻 multiplied by the connection
distribution 𝑓 for 𝑥. Synaptic activity 𝜓 is then computed
by integrating (using integration variable 𝑋) over cortical
surface Γ (Figure 14).The conversion function𝐻𝑒 determines
how incoming action potentials originating from excitatory
cells are converted into excitatory synaptic activity (excitatory
post synaptic potentials). This is represented by a sigmoid
function S that can be linearized over most of the trajectory
using the constant slope 𝑎𝑒𝐻𝑒 (𝑥, 𝑋, 𝑡) ≈ 𝑎𝑒𝐸 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 ) . (60)

Note that the 𝐸(⋅ ⋅ ⋅) function describes all action potentials
generated in the past that could have traveled to location 𝑥
originating from location 𝑋 (Figure 14, top row) in a time
interval |𝑥 − 𝑋|/𝑣𝑒, with 𝑣𝑒—conduction velocity. The ones
that have really arrived at 𝑥 depend on the connectivity
between 𝑥 and 𝑋; this is described by function 𝑓𝑒(𝑥, 𝑋).

(2) Spike Rate Component. The expression for the spike
rate for the excitatory population E is similar to (59)

𝐸 (𝑥, 𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
spike
density

excitatory
population

at location 𝑥
and time 𝑡

= ∫ Γ⏟⏟⏟⏟⏟⏟⏟
Surface
Area
of the
brain

𝑑𝑋 𝑓𝐸 (𝑥, 𝑋)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Distribution Function
of Spatial Connectivity
of dendrites (input)

at 𝑋 to 𝑥

𝐻𝐸 (𝑥, 𝑋, 𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Output of
Conversion
Wave→Pulse

.
(61)
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Theoutput conversion𝐻𝐸: wave-to-pulse becomes an expres-
sion that reflects the conversion from: (a) the excitatory
synapses, (b) the inhibitory synapses, and (c) a term for
the extracortical activity. The synaptic activities for the three
wave sources are simply added and a (static) nonlinearity𝑆𝑒 converts it to pulse rate. Like in the expression in (60),
there is a temporal delay term |𝑥 − 𝑋|/𝑣 that corrects for
conduction velocity. The expression for the wave-to-pulse
conversion becomes𝐻𝐸 (𝑥, 𝑋, 𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Conversion
Wave→Pulse

= 𝑆𝑒 ((((((
(

𝜓𝑒 (𝑋, 𝑡− |𝑥−𝑋|𝑣𝑒 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Contribution of the
Excitatory Synaptic
Activities from

location 𝑋 at times𝑡 − delay

− 𝜓𝑖 (𝑋, 𝑡− |𝑥−𝑋|𝑣𝑖 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Contribution of the
Inhibitory Synaptic

Activities

+𝑝𝑒 (𝑋, 𝑡− |𝑥−𝑋|𝑣 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Contribution of the
External Synaptic

Activities

))))))
)

.

(62)

The inclusion of a conduction delay is correct when
assuming active propagation of synaptic input, for passive
propagation (at the speed of light) such a delay is not needed.
For the remainder of the derivation by Jirsa and Haken [45]
this point is irrelevant because these delays will be neglected.
The conversion function𝐻𝐸 describes the contributions from
all cortical areas𝑋 to location 𝑥 and the distribution function𝑓𝐸 in (61) determines the strength of the connection.

4.5.2. Zooming out. In the model, cortical connectivity
is described by exponential distributions of the form(1/2𝜎)𝑒−|𝑥|/𝜎, functions where the area under the curve
evaluates to unity: ∫∞−∞(1/2𝜎)𝑒−|𝑥|/𝜎𝑑𝑥 = 1. The advantage
is that when we zoom out to a global overview of the cortex,
these distributions can be replaced by delta functions. In the
model, the distributions 𝑓𝑖, 𝑓𝐼, and 𝑓𝐸 are represented by a
delta function because they are local (see for example 𝑓𝐸 in
Figure 14 bottom row). This procedure for 𝑓𝐸 is depicted in
Figure 14, bottom row: 𝑓𝐸(𝑥, 𝑋) ≈ 𝛿(𝑋 − 𝑥). Distribution𝑓𝑒, describing the excitatory connections over a longer range,
remains in the form of the exponential expression (Figure 14,
top row).

(1) The Expression for 𝜓𝑒. Now we use the above to
formulate the expression for the synaptic activity because
this variable is considered proportional to the EEG. In this
approach, we focus on solving for the excitatory component

since this is considered the major contributor to the EEG
signal. First we substitute the linearized version of 𝐻𝐸 (60)
into 𝜓𝑒 (59):

𝜓𝑒 (𝑥, 𝑡) = ∫
Γ

𝑑𝑋𝑓𝑒 (𝑥, 𝑋) 𝑎𝑒𝐸 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 ) . (63)

In this expression, we substitute (61) for 𝐸(⋅ ⋅ ⋅), while chang-
ing integration variable 𝑋 to 𝑋1, and we get 𝜓𝑒(𝑥, 𝑡) =∫Γ 𝑑𝑋𝑓𝑒(𝑥, 𝑋)𝑎𝑒 ∫Γ 𝑑𝑋1𝑓𝐸(𝑋, 𝑋1)𝐻𝐸(𝑋, 𝑋1, 𝑡 − |𝑥 − 𝑋|/𝑣𝑒).
Subsequently we substitute the expression for 𝐻𝐸 from (62)
and replace 𝑓𝐸 with a delta function

𝜓𝑒 (𝑥, 𝑡) = ∫
Γ

𝑑𝑋𝑓𝑒 (𝑥, 𝑋) 𝑎𝑒 ∫Γ 𝑑𝑋1𝛿 (𝑋 − 𝑋1)
× 𝑆𝑒 (𝜓𝑒 (𝑋1, 𝑡 − 󵄨󵄨󵄨󵄨𝑋 − 𝑋1󵄨󵄨󵄨󵄨𝑣𝑒 − |𝑥 − 𝑋|𝑣𝑒 )

− 𝜓𝑖 (𝑋1, 𝑡 − 󵄨󵄨󵄨󵄨𝑋 − 𝑋1󵄨󵄨󵄨󵄨𝑣𝑒 − |𝑥 − 𝑋|𝑣𝑒 )
+𝑝𝑒 (𝑋1, 𝑡 − 󵄨󵄨󵄨󵄨𝑋 − 𝑋1󵄨󵄨󵄨󵄨𝑣𝑒 − |𝑥 − 𝑋|𝑣𝑒 )) .

(64)

Nowwe apply the sifting property to evaluate the 2nd integral
and get

𝜓𝑒 (𝑥, 𝑡) = 𝑎𝑒 ∫Γ 𝑑𝑋𝑓𝑒 (𝑥, 𝑋) 𝑆𝑒 (𝜓𝑒 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 )
− 𝜓𝑖 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 )
+𝑝𝑒 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 )) .

(65)

For the inhibitory population we follow a similar procedure
and get

𝜓𝑖 (𝑥, 𝑡) = 𝑎𝑖 ∫Γ 𝑑𝑋𝑓𝑖 (𝑥, 𝑋) 𝑆𝑖 (𝜓𝑒 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑖 )
− 𝜓𝑖 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑖 )
+𝑝𝑖 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑖 )) .

(66)

If we now evaluate the integral in this expression, while
replacing the distribution function 𝑓𝑖 with the delta function𝛿(𝑋 − 𝑥), so we can use the sifting property, we obtain
the result for the inhibitory synaptic activity: 𝜓𝑖(𝑥, 𝑡) =𝑎𝑖𝑆𝑖(𝜓𝑒(𝑥, 𝑡) − 𝜓𝑖(𝑥, 𝑡) + 𝑝𝑖(𝑥, 𝑡)). Subsequently we follow the
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procedure by Jirsa and Haken [45] and only take the linear
aspect of the 𝑆𝑖 function, using a slope of 𝛼𝑖 and finally solve
for 𝜓𝑖 𝜓𝑖 (𝑥, 𝑡) = 𝑎𝑖𝛼𝑖1 + 𝑎𝑖𝛼𝑖 (𝜓𝑒 (𝑥, 𝑡) + 𝑝𝑖 (𝑥, 𝑡)) . (67)

Substitution of (67) into (65) gives

𝜓𝑒 (𝑥, 𝑡) = 𝑎𝑒 ∫Γ 𝑑𝑋𝑓𝑒 (𝑥, 𝑋) 𝑆𝑒
× {{{{{

𝜌𝜓𝑒⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜓𝑒 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 ) − 𝑎𝑖𝛼𝑖

1 + 𝑎𝑖𝛼𝑖 𝜓𝑒 (𝑋, 𝑡 −
|𝑥 − 𝑋|
𝑣𝑒 )

+𝑝𝑒 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 ) − 𝑎𝑖𝛼𝑖
1 + 𝑎𝑖𝛼𝑖 𝑝𝑖 (𝑋, 𝑡 −

|𝑥 − 𝑋|
𝑣𝑒 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝(𝑋,𝑡−|𝑥−𝑋|/𝑣𝑒)
}}}}}}}.

(68)

Using the simplifications indicated by the horizontal curly
brackets above we have the expression for the excitatory
synaptic activity:

𝜓𝑒 (𝑥, 𝑡) = 𝑎𝑒 ∫Γ 𝑑𝑋𝑓𝑒 (𝑥, 𝑋) 𝑆𝑒 {𝜌𝜓𝑒 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 )
+𝑝 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 )} .

(69)

4.5.3. Expression for 𝜓
𝑒
as a Convolution. The next step is to

write the result for 𝜓𝑒 in the form of a convolution. First, the
notation for the integrand in (69) can be simplified

𝑓𝑒 (𝑥, 𝑋) 𝑎𝑒𝑆𝑒 {𝜌𝜓𝑒 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 ) + 𝑝 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 )}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜌(𝑋,𝑡−|𝑥−𝑋|/𝑣𝑒)

= 𝑓𝑒 (𝑥, 𝑋) 𝜌 (𝑋, 𝑡 − |𝑥 − 𝑋|𝑣𝑒 ) .
(70)

Because the excitatory connections cover a larger area
its distribution function cannot be replaced by 𝛿. There-
fore we use the exponential distribution for 𝑓𝑒 and get:(1/2𝜎𝑒)𝑒−|𝑥−𝑋|/𝜎𝑒𝜌(𝑋, 𝑡−|𝑥−𝑋|/𝑣𝑒). Although it seems that we
make things more complicated, we rewrite this as an integral:(1/2𝜎𝑒)𝑒−|𝑥−𝑋|/𝜎𝑒 ∫∞−∞ 𝜌(𝑋, 𝑇)𝛿(𝑇 − (𝑡 − |𝑥 − 𝑋|/𝑣𝑒))𝑑𝑇. Now
we substitute this result and the expression in (70) in (69) and
rearrange the order of the terms

𝜓𝑒 (𝑥, 𝑡) = ∫
Γ
∫∞
−∞

𝛿 (𝑡 − 𝑇 − |𝑥 − 𝑋|𝑣𝑒 ) 12𝜎𝑒 𝑒−|𝑥−𝑋|/𝜎𝑒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐺(𝑥−𝑋,𝑡−𝑇)× 𝜌 (𝑋, 𝑇) 𝑑𝑋 𝑑𝑇. (71)

The part (1/2𝜎𝑒)𝑒−|𝑥−𝑋|/𝜎𝑒𝛿((𝑡 − |𝑥 − 𝑋|/𝑣𝑒) − 𝑇) can be
interpreted as a unit impulse response or Green’s function G.

Nowwe complete this step andwrite the expression in the
form of a convolution with respect to space and time

𝜓𝑒 (𝑥, 𝑡) = ∫
Γ
∫∞
−∞

𝐺 (𝑥 − 𝑋, 𝑡 − 𝑇) 𝜌 (𝑋, 𝑇) 𝑑𝑋 𝑑𝑇. (72)

4.5.4. From Convolution to the Field Equation. Now we take
advantage of the convolution form of (72). With the spatio-
temporal Fourier transforms for 𝜓(𝑥, 𝑡), 𝜌(𝑥, 𝑡) and 𝐺(𝑥, 𝑡),
we can write the transform of the convolution as a product in
the frequency domain. To summarize we have the following
transform pairs: 𝜓𝑒 (𝑥, 𝑡) ⇐⇒ 𝜓𝑒 (𝑘, 𝜔) ,𝜌 (𝑥, 𝑡) ⇐⇒ 𝜌 (𝑘, 𝜔) ,

𝐺 (𝑥, 𝑡) ⇐⇒ 𝜔20 + 𝑗𝜔0𝜔𝑣2𝑒𝑘2 + (𝜔0 + 𝑗𝜔)2 , with 𝜔0 = 𝑣𝑒𝜎𝑒 .
(73)

Using 𝜓𝑒(𝑥, 𝑡) = 𝐺(𝑥, 𝑡) ⊗ 𝜌(𝑥, 𝑡) ⇔ 𝜓𝑒(𝑘, 𝜔) = 𝐺(𝑘, 𝜔) ×𝜌(𝑘, 𝜔), we get:
𝜓𝑒 (𝑘, 𝜔) = 𝜔20 + 𝑗𝜔0𝜔𝑣2𝑒𝑘2 + (𝜔0 + 𝑗𝜔)2 𝜌 (𝑘, 𝜔) . (74)

Note that in the temporal Fourier transform 𝑗𝜔 and −𝜔2
represent the transformed first and second derivatives in
the time domain, while the representatives for the first and
second spatial derivatives are +𝑗𝑘 and −𝑘2. Transforming
(74), we complete our last step and get the equation for the
spatio-temporal excitatory synaptic activity

(𝜔20 − 𝑣2𝑒 𝜕2𝜕𝑥2) 𝜓𝑒 (𝑥, 𝑡) + 2𝜔0 .𝜓𝑒 (𝑥, 𝑡) + ..𝜓𝑒 (𝑥, 𝑡)
= (𝜔20 + 𝜔0 𝜕𝜕𝑡) 𝜌 (𝑥, 𝑡) . (75)

An example of simulated activity is depicted in Figure 15. In
this example, we show the model’s response to a half sine
wave pulse in the center of a cortical surface. As expected,
the evoked activity is damped over both space and time.
The result in (75) is also similar to earlier results obtained
for linearized cellular and network models. If we ignore the
spatial component in (75), we get a second order ODE with a
force term, similar to (26) and (44). Although in this case, a
nonlinearity is included in the factor 𝜌 of the force term.

5. Models with a Stochastic Component

With the exception of the spinmodel andHopfield’s approach
(Section 3.1), all models we discussed are deterministic. Most
of the deterministic approaches can easily be modified to
include a stochastic component [48]. Such a component may
represent intrinsic noise in themembrane and/or the synaptic
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(a) 𝑡 = 5 (b) 𝑡 = 7

(c) 𝑡 = 10 (d) 𝑡 = 25
Figure 15: Simulation of (75) for times 5, 7, 10, and 25 showing the response of a cortical surface to a stimulus pulse in the middle of the
surface. The pulse was half a period of a sine wave between times 0 and 10. Parameters used are 𝜔0 = 0.15; 𝑣𝑒 = 1.52; 𝜌 = 0.9; 𝑎𝑒 = 1.2;𝛼𝑒 = 1.2.
input originating from sources external to the modeled unit.
In the 1960s and 1970s, membrane noise was investigated to
quantify electrical channel properties (e.g., [75]). Especially
when modeling a network embedded in the brain, its input
from the rest of the brain is generated by enormous networks
and a stochastic approach to this input is appropriate and
also significant because it affects the network function (e.g.,
[76]). A critical shortcoming of the deterministic models
(e.g., the mean field models discussed in Section 4), that can
be mitigated with a stochastic approach, is the absence of
fluctuations and correlations of the neural activity, especially
spike trains (e.g., [77, 78]). Moreover, a statistical approach
is applied to spike trains to relate to information coding
in networks in general [47, 79]. Mathematically, stochastic
modeling often results in a diffusion equation approach,
where the models are frequently approximated by either
the Fokker-Planck equation and/or Langevin equation (e.g.,
Appendix in [48]). Further discussion of these approaches is
beyond the scope of this paper.

Recently, Benayoun et al. [19] and Wallace et al. [20]
used a network of switches in which the update rule
was asynchronous and stochastic known as the Gillespie’s
exact stochastic simulation algorithm [80, 81]. To show this
approach, I describe a simplified version𝐴𝑓 ↑↓ 𝛼𝑄 (76)

The active neurons 𝐴 are created from an infinite pool of
inactive ones 𝑄 at a rate 𝑓 and they become inactive again
with a rate 𝛼.The rate function𝑓 depends on the activity level

in the network, however, for the sake of the example, we will
not worry about this “detail” here. Rate 𝛼 is the intrinsic rate
at which active cells become inactive (this also includes the
refractory period).The deterministic kinetic rate equation for
this process is

𝑑𝐴𝑑𝑡 = 𝑓𝑄 − 𝛼𝐴 = 𝑓 − 𝛼𝐴. (77)

We assume here that Q is available in large excess (i.e., an
infinite pool) so that it can be considered constant. This
equation can be solved both analytically and numerically.

The next step is to consider the so-called master equation
for this process. In contrast to the deterministic approach
above, we now use a stochastic approach and describe the
probability that there are n active neurons (i.e., 𝑛 cells in our
infinite pool are in state𝐴). Wemay visualize this by a line on
which we see all the possible states for the number of active
neurons, that is, 0, 1, 2, 3, 4, 5, . . . , 𝑛 − 1, 𝑛, 𝑛 + 1, 𝑛 + 2, 𝑛 +3, . . . , ∞. If we update the system fast enough, we can safely
assume that a state change only involves a single step.

Under this assumption, the probabilities describing the
dynamics around state n are easily seen in the following
diagram that depicts part of the line of possible states

𝑛 + 1 ⋅ ⋅ ⋅ 𝑃𝑛+1𝑓 ↑↓ 𝛼𝑛 ⋅ ⋅ ⋅ 𝑃𝑛𝑓 ↑↓ 𝛼𝑛 − 1 ⋅ ⋅ ⋅ 𝑃𝑛−1
(78)
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Figure 16: Gillespie’s approach for Monte Carlo simulation of the master equation. (a) The joint PDF that determines the reactions 𝜇 as
function of time 𝜏. Note that the variable 𝜏 is continuous and 𝜇 discrete. (b) shows two examples of deterministic (black lines) and associated
stochastic (blue lines) simulations superimposed.The two cases start from a low and high initial value.The inset is a detail of how the stochastic
solutions fluctuate around the deterministic ones. (c)The procedure of picking the time steps. (d) depicts how to determine the cell to update
at each time step.

This leads to the master equation describing the dynamics of
the probability 𝑃𝑛 for the state with 𝑛 active neurons

𝑑𝑃𝑛𝑑𝑡 = 𝛼 (𝑛 + 1) 𝑃𝑛+1 − 𝛼𝑛𝑃𝑛 + 𝑓𝑃𝑛−1 − 𝑓𝑃𝑛. (79)

To simplify this further, we can apply shift operators 𝐸+ and𝐸− that operate on function𝑓(𝑛) and increase or decrease the
number 𝑛 by one, respectively [82].This allows one to rewrite
(79) as a function of 𝑃𝑛𝑑𝑃𝑛𝑑𝑡 = [𝛼𝐸+𝑛 − 𝛼𝑛 + 𝑓𝐸− − 𝑓] 𝑃𝑛. (80)

The problem is that in most cases the master equation is
difficult to solve analytically or cannot be solved at all. Gille-
spie [80, 81] formulated a remarkable and exact algorithm to
simulate chemical systems in a stochastic fashion.Within this
approach, one starts from the system in a particular state at
time t and determines the probability density function (PDF)
for the next reaction. Briefly, if we consider 1, 2, . . . , 𝜇, . . . , 𝑀
reactions; if one simulates such a system over time, we only
need to know

(a) when the next reaction (any of the 𝑀) will occur, and

(b) what kind of reaction (𝜇) it will be.
In order to resolve these questions, Gillespie follows

the system of reactions from any time 𝑡 to 𝑡 + 𝜏 + 𝑑𝜏.
Accordingly, he formulates the joint probability 𝑃(𝜏, 𝜇)𝑑𝜏
as the probability that none of the reactions occurs in the
interval between 𝑡 and 𝑡 + 𝜏, and that reaction 𝜇 does occur
in the interval between 𝑡 + 𝜏 and 𝑡 + 𝜏 + 𝑑𝜏 (Figure 16(a)). It is
straightforward to show that𝑃(𝜏, 𝜇)𝑑𝜏 is characterized by the
product of both probabilities. Let us first determine the first
component𝑃0 that no reaction occurs in the interval between𝑡 and+𝜏. Consider a time axis 𝜏󸀠 set at 0 immediately after one
of the reactions occurred. Consequently, the probability that
none of the reactions occurs in 𝑑𝜏󸀠 is

1 − 𝑀∑
𝜇=1

𝑎𝜇𝑑𝜏󸀠. (81)

Thus one can define the probability of no reaction at 𝜏󸀠 +𝑑𝜏󸀠 is the probability of no reaction at 𝜏󸀠 multiplied by the
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expression in (81)

𝑃0 (𝜏󸀠 + 𝑑𝜏󸀠) = 𝑃0 (𝜏󸀠) [1 − 𝑀∑
𝜇=1

𝑎𝜇𝑑𝜏󸀠] (82)

which can be written as𝑃0 (𝜏󸀠 + 𝑑𝜏󸀠) − 𝑃0 (𝜏󸀠)𝑃0 (𝜏󸀠) = − 𝑀∑
𝜇=1

𝑎𝜇𝑑𝜏󸀠 = −𝑎0𝑑𝜏󸀠, (83)

where 𝑎0 is the sum over all 𝑎𝜇. Integration of (83) from 0 to𝜏 results in 𝑃0 (𝜏) = 𝑒−𝑎0𝜏. (84)

Component (b) that reactions 𝜇 do occur in the interval
between 𝑡 + 𝜏 and 𝑡 + 𝜏 + 𝑑𝜏 is given by 𝑎𝜇𝑑𝜏. Thus the
probability 𝑃(𝜏, 𝜇)𝑑𝜏 is the product of this result and (84),
therefore𝑃 (𝜏, 𝜇) 𝑑𝜏 = 𝑎𝜇𝑒−𝑎0𝜏𝑑𝜏 󳨀→ 𝑃 (𝜏, 𝜇) = 𝑎𝜇𝑒−𝑎0𝜏. (85)

For all values of 𝜇 (the reaction number) and 𝜏 (time steps >0). Now we go back to the initial questions (a) and (b) above,
and we state that𝑃 (𝜏, 𝜇) = 𝑃1 (𝜏)⏟⏟⏟⏟⏟⏟⏟⏟⏟

When is the next reaction?

𝑃2 (𝜇 | 𝜏)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Given 𝜏 what reaction is it?

.
(86)

The first factor indicates the probability for the next reaction
and it does not matter which one, therefore

𝑃1 (𝜏) = 𝑀∑
𝜇=1

𝑃 (𝜏, 𝜇) = 𝑀∑
𝜇=1

𝑎𝜇𝑒−𝑎0𝜏 = 𝑎0𝑒−𝑎0𝜏. (87)

From substitution of (87) in (85), we have

𝑃2 (𝜇 | 𝜏) = 𝑃 (𝜏, 𝜇)∑𝑀
𝜇=1 𝑃 (𝜏, 𝜇) = 𝑎𝜇𝑎0 . (88)

So now we have the probabilities for both 𝜏 and 𝜇 and the
only question that remains is how we use this knowledge to
implement a simulation. Usually the particular probability
functions in (87) and (88) are not readily available in a
simulation environment. But most computers do have a
random number generator based on a uniform distribution
between 0 and 1. In a simulation, the uniform distribution
can be used to generate values taken from any arbitrary PDF
by using the uniform distribution to pick random points on
the cumulative distribution of the target PDF.The procedures
for 𝜏 and 𝜇 are shown in Figures 16(c) and 16(d). Because𝜏 is a continuous variable, we can compute the cumulative
(Cum[⋅ ⋅ ⋅]) function by integration of (87)

Cum [𝑃1 (𝜏)] = 1 − 𝑒−𝑎0𝜏. (89)

In order to determine both the values for 𝜏 and 𝜇, we generate
two random numbers 𝑟(1) and 𝑟(2) respectively. Now we
can connect the random number 𝑟(1) to the cumulative

distribution of 𝑃1 (Figure 16(c)). However, since the cumu-
lative function ranges between 0–1, we can also connect 𝑟(1)
directly to exp(−𝑎0𝜏) (Figure 16(c); note that 0 and 1 are
inverted in this case). If we now solve for 𝜏, we get

𝑟 (1) = 𝑒−𝑎0𝜏 󳨀→ 𝜏 = 1𝑎0 log 1𝑟 (1) . (90)

Subsequently we create the cumulative distribution for the
reactions and use 𝑟(2) to update the system (Figure 16(d)).
This procedure of picking a time step and update the system
can be repeated for the simulation epoch. Examples of
two simulations of our simplified system are depicted in
Figure 16(b). For the sake of this example (see Matlab script
in Appendix B), we update individual switches (neurons)
at each time step. In homogenous all-to-all networks, the
simulation algorithm of the number of neurons active in each
population may be simplified along the lines of Gillespie’s
original presentation for a well-mixed chemical system, since
the downward and upwards transition rates are identical
for all neurons. This simplification will result in a faster
computation since the time steps will increase (due to a
smaller 𝑎0) as compared to our approach in the example.

Because the master equation can be used to recover the
deterministic rate equation, the stochastic approach is more
general than themean fieldmodels we discussed in Section 4.
We recover the mean field equation by determining themean
number of active neurons 𝑛 from the master equation via its
definition

⟨𝑛⟩ = ∞∑
𝑛=0

𝑛𝑃𝑛. (91)

In our case we assumed an infinite pool of nerve cells so
there is no finite limitation to the number of active neurons.
Therefore the sum in (91) is taken from 0 → ∞. Other
models have assumed a limited number of inactive and active
nerve cells.

We now plug in (91) into (79) (i.e., we multiply each term
by 𝑛 and sum over all 𝑛), and we get𝑑𝑑𝑡 ∞∑

𝑛=0
𝑛𝑃𝑛 = 𝛼 ∞∑

𝑛=0
𝑛 (𝑛 + 1) 𝑃𝑛+1 − 𝛼 ∞∑

𝑛=0
𝑛2𝑃𝑛

+ 𝑓 ∞∑
𝑛=0

𝑛𝑃𝑛−1 − 𝑓 ∞∑
𝑛=0

𝑛𝑃𝑛. (92)

This generates an expression for the time derivative of the
mean (the term left of the equal sign). We now substitute 𝑛󸀠
and 𝑛󸀠󸀠 for 𝑛 − 1 and 𝑛 + 1, respectively and we have𝑑𝑑𝑡 ∞∑

𝑛=0
𝑛𝑃𝑛 = 𝛼 ∞∑

𝑛󸀠󸀠=1
𝑛󸀠󸀠 (𝑛󸀠󸀠 − 1) 𝑃𝑛󸀠󸀠 − 𝛼 ∞∑

𝑛=0
𝑛2𝑃𝑛

+ 𝑓 ∞∑
𝑛󸀠=−1

(𝑛󸀠 + 1) 𝑃𝑛󸀠 − 𝑓 ∞∑
𝑛=0

𝑛𝑃𝑛. (93)

Note that we changed the range over which we sum in the 1st
and 3rd term.We now sum again from 0 → ∞. Note that we
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canmake this change in the summation interval since𝑃−1 = 0
in the 3rd term, and for 𝑛󸀠󸀠 = 0, 𝑛󸀠󸀠(𝑛󸀠󸀠 − 1)𝑃𝑛󸀠󸀠 = 0 in the 1st
term. Furthermore, we expand the first and third terms and
get 𝑑𝑑𝑡 ∞∑

𝑛=0
𝑛𝑃𝑛 = 𝛼 ∞∑

𝑛󸀠󸀠=0
𝑛󸀠󸀠2𝑃𝑛󸀠󸀠 − 𝛼 ∞∑

𝑛󸀠󸀠=0
𝑛󸀠󸀠𝑃𝑛󸀠󸀠

− 𝛼 ∞∑
𝑛=0

𝑛2𝑃𝑛 + 𝑓 ∞∑
𝑛󸀠=0

𝑛󸀠𝑃𝑛󸀠 + 𝑓 ∞∑
𝑛󸀠=0

𝑃𝑛󸀠
− 𝑓 ∞∑

𝑛=0
𝑛𝑃𝑛.

(94)

Terms 1 and 3, 4 and 6 cancel and terms 2 and 5 remain, that
is 𝑑𝑑𝑡 ∞∑

𝑛=0
𝑛𝑃𝑛 = −𝛼 ∞∑

𝑛󸀠󸀠=0
𝑛󸀠󸀠𝑃𝑛󸀠󸀠 + 𝑓 ∞∑

𝑛󸀠=0
𝑃𝑛󸀠 . (95)

Using (91), and knowing that all probabilities must add up
to one, we obtain an expression similar to the kinetic rate
equation (77) 𝑑𝑑𝑡 ⟨𝑛⟩ = 𝑓 − 𝛼 ⟨𝑛⟩ , (96)

where the mean of n is the variableA.Thus the mean number
of active neurons in the master equation of the process
produces the kinetic rate equation. Accordingly, the work by
Benayoun et al. [19] and Wallace et al. [20] showed that the
mean activity generated by the stochastic model in which f
depended on the network activity, corresponded to the mean
field Wilson-Cowan model (Section 4.2). In addition, the
simulations of their stochastic model made predictions about
the fluctuations of the neural activity. These fluctuations
followed avalanche statistics as observed in real neuronal
networks or even in the scalp or intracranial EEG [83–85].

A recent, novel approach to solve the master equation for
a neuronal networkmodel used the equation ofmotion of the
generator function in operator notation

|𝐺⟩ = ∞∑
𝑛=0

𝑃𝑛 |𝑛⟩ . (97)

Here, we use the Dirac bra-ket notation (for a didactic
overview of the notation see [86]). The ket of G represents
the probability 𝑃𝑛 for each state n represented by the ket of𝑛 in an infinite dimensional (Hilbert) space. The advantage
of this approach is that the extensive mathematics developed
for the operator notation can nowbe used to analyze neuronal
networks (e.g., [49, 87]). Using (79), multiplying with ket of 𝑛
and summing over 𝑛, we get𝑑𝑑𝑡 ∞∑

𝑛=0
𝑃𝑛 |𝑛⟩ = 𝛼 ∞∑

𝑛=0
(𝑛 + 1) 𝑃𝑛+1 |𝑛⟩ − 𝛼 ∞∑

𝑛=0
𝑛𝑃𝑛 |𝑛⟩

+ 𝑓 ∞∑
𝑛=0

𝑃𝑛−1 |𝑛⟩ − 𝑓 ∞∑
𝑛=0

𝑃𝑛 |𝑛⟩ . (98)

Now we use the equality in (97) and 𝑛󸀠 and 𝑛󸀠󸀠 for 𝑛 − 1 and𝑛 + 1, respectively and rewrite the expression in (98)𝑑𝑑𝑡 |𝐺⟩ = 𝛼 ∞∑
𝑛󸀠󸀠=1

(𝑛󸀠󸀠) 𝑃𝑛󸀠󸀠 󵄨󵄨󵄨󵄨󵄨𝑛󸀠󸀠 − 1⟩ − 𝛼 ∞∑
𝑛=0

𝑛𝑃𝑛 |𝑛⟩
+ 𝑓 ∞∑

𝑛󸀠=−1
𝑃𝑛󸀠 󵄨󵄨󵄨󵄨󵄨𝑛󸀠 + 1⟩ − 𝑓 |𝐺⟩ . (99)

For the same reasons as we did above, we summate 𝑛󸀠 and 𝑛󸀠󸀠
from 0 to∞ and, in addition, we use the raising and lowering
operators 𝑎+ and 𝑎− 𝑎+ |𝑛⟩ = |𝑛 + 1⟩ ,𝑎− |𝑛⟩ = 𝑛 |𝑛 − 1⟩ . (100)

Note that the eigenvalues are 1 and 𝑛 instead of the conven-
tional √(𝑛 + 1) and √𝑛.

Now we get𝑑𝑑𝑡 |𝐺⟩ = 𝛼 ∞∑
𝑛󸀠󸀠=0

𝑃𝑛󸀠󸀠𝑎− 󵄨󵄨󵄨󵄨󵄨𝑛󸀠󸀠⟩ − 𝛼 ∞∑
𝑛=0

𝑃𝑛𝑎+𝑎− |𝑛⟩
+ 𝑓 ∞∑

𝑛󸀠=0
𝑃𝑛󸀠𝑎+ 󵄨󵄨󵄨󵄨󵄨𝑛󸀠⟩ − 𝑓 |𝐺⟩ . (101)

Using (97), we can simplify this to𝑑𝑑𝑡 |𝐺⟩ = 𝛼𝑎− |𝐺⟩ − 𝛼𝑎+𝑎− |𝐺⟩ + 𝑓𝑎+ |𝐺⟩ − 𝑓 |𝐺⟩ . (102)

With a bit of algebra, we may rewrite this, and recognize it as
a linear equation of motion𝑑𝑑𝑡 |𝐺⟩ = − (𝑎+ − 1) (𝛼𝑎− − 𝑓) |𝐺⟩ 󳨀→ 󵄨󵄨󵄨󵄨󵄨󵄨 .𝐺⟩ = −𝐿 |𝐺⟩ .

(103)

If we use the eigenfunctions |𝑗⟩ of L, to expand |𝐺⟩|𝐺⟩ = ∑
𝑗

𝐺𝑗 󵄨󵄨󵄨󵄨𝑗⟩ . (104)

For each eigenfunction there is a corresponding eigenvalue 𝑗
of 𝐿, and therefore

.𝐺𝑗 = −𝑗𝐺𝑗. (105)

The solution of this differential equation is𝐺𝑗 (𝑡) = 𝐾𝑗𝑒−𝑗𝑡. (106)

Now we can retrieve the PDF by projecting 𝐺 on bra-𝑛, and
using the expressions in (104)–(106)

𝑃𝑛 (𝑡) = ⟨𝑛 | 𝐺 (𝑡)⟩ = ⟨𝑛 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∑𝑗 𝐺𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑗⟩ = ∑
𝑗

𝐾𝑗𝑒−𝑗𝑡 ⟨𝑛 | 𝑗⟩ .
(107)

The 𝐾𝑗 coefficients are determined from the initial distribu-
tion 𝑃𝑛(0).
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Figure 17: Can seizure onset be modeled with a Hopf bifurcation?
(a) A partial complex seizure spreads and grows in amplitude,
suggesting one might model it with a supercritical Hopf bifurcation.
(b) A generalized seizure occurs suddenly and at full amplitude,
similar to a subcritical Hopf bifurcation. (c) Note that the same
seizure as in (b) can also be explained by a perturbation in a bistable
regime associated with the subcritical Hopf bifurcation. In this case
the transition into the seizure state is not a bifurcation but due to a
change of basin of attraction (e.g., [103]).

6. Epileptic Seizures

Epilepsy is a serious neurological disorder characterized by
spontaneous recurrent seizures. In the electroencephalogram
(EEG) of patients with epilepsy, one may observe seizures
(ictal events) and interictal events: for example, epileptic
spikes or spike-waves. The real problem is that about 30% of
the current population of 60 million patients with epilepsy
do not respond to any treatment [88].This problem is mostly
due to an incomplete understanding of the mechanisms that
underlie this pathology (e.g., [89]). As is the case for many
other neurological diseases, this directly relates to a poor
understanding of network function in general. Because of
lack of experimental tools for studying network behavior
at sufficient scale with the associated detail (e.g. [70, 90]),
there is a significant role for modeling in this field (e.g.,
[3, 5, 6, 27, 41, 61, 91–102]).

6.1. Modeling Epileptic Activity. Although there are many
clinical types of seizure [104], the seizure activity in the EEG
is often characterized by rhythmic activity usually lasting
for minutes. Examples of typical seizure onset activity are
depicted in Figure 17. In contrast, interictal spikes and waves
are sudden, short bursts of electrical activity. Although there

are exceptions, in between the epileptiform events (i.e.,
seizures, spikes, waves), the EEG of patients with epilepsy
cannot be distinguished from normal EEG patterns. Because
epilepsy is characterized by its EEG patterns representing
large networks, it is impossible to define epileptiform activity
at the level of single neurons or even small networks.
Although there seem to be cellular activity patterns frequently
found in epileptic brain tissue, such as the paroxysmal
depolarization shift (PDS), it is by no means clear how these
PDSs relate to the typical network phenomena in epilepsy.
The oscillatory activity of cells and small networks is of
general interest to the neuroscientist but equally of interest
in epilepsy research. However, at this level, the distinction
between normal and pathologic oscillatory activity is unde-
fined. At the scale of large networks, as reflected in the
EEG signal, the distinction between normal and abnormal
is not without problems but definitely easier to make. This
makes the study of networks at mesoscopic and macroscopic
scales of particular interest in epilepsy research. Based on
the activity patterns observed in patients with epilepsy, an
effective network model should be able to explain

(1) normal and epileptiform states,
(2) prototypical oscillations and bursts, and
(3) transitions between the states.

From these properties, a few general conclusions about
the nature of the model can be determined. First, a model of
network activity must be at least two dimensional to explain
oscillations. Second, transitions between normal and epilep-
tiform activity can bemodeled by a bifurcation in a nonlinear
dynamical system.Of course, there aremany bifurcations that
could explain sudden onset and offset of seizure-like oscilla-
tions. Examples using the simplest candidate: co-dimension-
1 bifurcations transitioning a system between steady state
and oscillatory behavior, the sub- and supercritical Hopf
bifurcations [105], are shown in Figure 17. In Figure 17, the
two top panels show the bifurcation superimposed on seizure
activity, the bottom panel indicates that in case of the sub-
critical scenario, the transition can also occur if the system
exceeds the boundary between the basins of attractors (one
attractor being the stable node and the other the stable limit
cycle) [103].

Some of the models employed in epilepsy research go
beyond the minimalistic approach of two dimensions. The
detailed simulation models with compartmental neuron
models with realistic ion channels may have hundreds of
parameters. Independent of the level of complexity of the
network models, it is important to know if the neuron model
itself is capable of oscillatory activity so that the individual
network node can be a pacemaker for oscillation.

6.2. Population Models and Epileptiform Activity. Here we
examine the population models we described in Section 4
for their capability of generating seizure-like behavior. The
Wilson and Cowan [29] model is both nonlinear and two-
dimensional and is therefore capable of showing a range of
behaviors that include limit cycles (Figure 10) and transitions
from stable behavior to an oscillatory one. The Wilson and
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Figure 18: Bifurcations, caused by a gradually varying excitatory
coupling (blue, top trace), creating a seizure-like epoch in pop-
ulation activity governed by the Wilson and Cowan Equations
(Excitatory population–red and inhibitory population–green).

Cowan model satisfies the three criteria of an effective net-
work model for studying epilepsy described in the previous
section. In addition, it is also a minimal model because
the two dimensions (𝐸 and 𝐼, (35), (36)) are minimally
required to include oscillation and the nonlinearity (sigmoids𝑆𝑒 and 𝑆𝑖) are essential for the existence of sudden transitions
(bifurcations) between nonoscillatory and oscillatory states.
An example of how a gradually changing excitatory-coupling
(𝑊𝐸, represented by constants 𝑐1 and 𝑐3 in Figure 9) can cause
sudden transitions of the population activity is depicted in
Figure 18. Interestingly, it can be seen that, depending on the
initial state, oscillations may occur with both increasing and
decreasing strength of the coupling (arrows, Figure 18).

The modeling approach by Lopes da Silva et al. [35]
was used to formulate the Jansen neural mass model, which
was later examined for epileptic behavior by Grimbert and
Faugeras [38]. Several versions of neural mass models were
recently investigated [41, 91, 93, 98, 102]. Because these
neural mass models are at least two dimensional and non-
linear (see for example (52)), they are capable of displaying
transitions between activities associated with a stable node
and oscillations or even chaotic behavior if they have three
or more dimensions. The neural mass models by Freeman
[39] are capable of displaying these behaviors as well since
they are both relatively high-dimensional and nonlinear.
However, due to Freeman’s parameter choices, the isolated
K0 populations (Section 4.3.2) show stable behavior only.The
nondrivenK0 systemobeys theODE ..𝑣𝑗−𝜏 .𝑣𝑗+Δ𝑣𝑗 = 0. In this
notation, 𝜏 is the sum and Δ the product of the eigenvalues.
In Freeman’s simulations the eigenvalues are−0.72 and−0.22,
thus their sum 𝜏 = −0.94 and product Δ = 0.158. Since𝜏 is negative, Δ positive, and 𝜏2 − 4Δ = 0.25 > 0, the K0
units have the behavior of a stable node (e.g., [105, Chapter
5]). Therefore, any behavior in the model other than that
associated with a stable node, must be generated externally
by the driving force 𝐹, that is, the external input and
interconnections between the populations. Using Freeman’s
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Figure 19: Diagram of string models used for EEG. (a) A string
attached at its ends but unattached to local structures; the associated
detail shows the forces acting on a small piece Δ𝑥 between 𝑥1 and𝑥2. Forces acting on each side of this small piece of string are equal
to the tension 𝑇 in the string.The curve 𝜙 adopted by the perturbed
string is associated with angles 𝛼1 and 𝛼2 at 𝑥1 and 𝑥2 respectively.
(b) shows a detail of the same string but now there is an external
force, a local effect (a local spring), and the string is embedded in a
damping medium (molasses).

choice of parameters, the model displays chaotic behavior
similar to ongoing discharges during a seizure (Figure 12(c)).

Linearizedmodels do not support bifurcations and there-
fore fall short in explaining a critical aspect of epilepsy
(seizure onset and offset). The linearized model of Nunez
[31, 32] has this shortcoming.Nonetheless, it is useful to check
if it supports oscillatory activity. First, the oscillatory activity
can model ongoing seizure activity. Second, the point where
an unstable oscillation arises in a linearized system is an
indicator for a Hopf bifurcation in the full nonlinear model.
Models in neuroscience are often represented by electronic
equivalent circuits (e.g., Figures 1, 2, 3, and 5). In contrast,
Nunez compares the spatiotemporal behavior of his cortical
model with that of the mechanics of a string (e.g., [32]). If
we consider a string in vacuum attached by its ends and
subject to a tension 𝑇 (but unattached to any other structure,
Figure 19(a)), we only need to consider forces acting in the
string itself. At rest the string is straight but now we perturb
the string a little in the vertical direction 𝑦. Let us analyze
the forces by considering a small part of the string of lengthΔ𝑥. In the detail of Figure 19(a), we can see that the forces
acting on each side of this small piece are equal to the tension𝑇 in the string. Because of the curve adopted by the string,
the two forces at each side of Δ𝑥 are not exactly opposed and
therefore they do not cancel. First we consider the horizontal
component of the force: 𝐹𝐻 = 𝑇 cos𝛼2 − 𝑇 cos𝛼1. This
horizontal component can be neglected since, for small values
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of the angles 𝛼1 and 𝛼2, we have cos𝛼1 ≈ 1 and cos𝛼2 ≈ 1.
Therefore we find that 𝐹𝐻 ≈ 0. The upward force is 𝑇 sin 𝛼2
and the downward force is 𝑇 sin 𝛼1. The vertical force 𝐹𝑉
acting on Δ𝑥 is 𝐹𝑉 = 𝑇 sin𝛼2 − 𝑇 sin𝛼1. (108)

We divide this equation by 𝑇 and (recall that cos𝛼1 ≈ 1 and
cos𝛼2 ≈ 1) and we get𝐹𝑉𝑇 = 𝑇 sin𝛼2𝑇 cos𝛼2 − 𝑇 sin𝛼1𝑇 cos𝛼1 = tan𝛼2 − tan𝛼1. (109)

According to Newton’s second law, the net force must equal
the product of themass ofΔ𝑥 and its net acceleration 𝜕2𝜙/𝜕𝑡2.
If we define the mass per unit length of the string by 𝑚, the
mass of our piece is𝑚Δ𝑥. Using the above for 𝐹𝑉, using (109),
and rearranging terms, we get1Δ𝑥 (tan𝛼2 − tan𝛼1) = 𝑚𝑇 𝜕2𝜙𝜕𝑡2 . (110)

Because the tangents can be written as the slope of the curve𝜙 adopted by the string, we can rewrite the expression left of
the equal sign as1Δ𝑥 (tan𝛼2 − tan𝛼1) = 1Δ𝑥 ( 𝜕𝜑𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥2 − 𝜕𝜑𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥1) , (111)

and for Δ𝑥 → 0, this expression becomes𝜕2𝜙𝜕𝑥2 . (112)

Using this result and substituting propagation speed 𝑣 =√𝑇/𝑚 in (110), we obtain the wave equation𝜕2𝜙𝜕𝑡2 = 𝑣2 𝜕2𝜙𝜕𝑥2 . (113)

Now we add a local spring connected to our little piece of
string, an extra external force and we embed our mass of
the string in a damping environment (e.g., molasses); this
situation is depicted in Figure 19(b). Now we have to include
these forces in Newton’s law for 𝐹𝑉 in (113)

𝑚𝜕2𝜙𝜕𝑡2 = 𝑇𝜕2𝜙𝜕𝑥2 + 𝐹Local + 𝐹Damping + 𝐹External . (114)

The local force due to the spring is proportional to the
position of the spring 𝜙; that is 𝐹Local = −𝐾𝜙, K is a
spring constant and there is a minus sign because a positive
deflection of the piece of string causes a force in the opposite
direction. The damping force is proportional to the vertical
velocity of the piece of string 𝜕𝜙/𝜕𝑡; also in this case there
is a minus sign because a damping force works in a direction
opposite of the velocity:𝐹Damping = −𝐵(𝜕𝜙/𝜕𝑡).Thus both the
local spring and damping forces are restoring forces. Putting
this all into (114) yields.

(𝐾𝑚 − 𝑣2 𝜕2𝜕𝑥2) 𝜙 + 𝐵𝑚 𝜕𝜙𝜕𝑡 + 𝜕2𝜙𝜕𝑡2 = 1𝑚𝐹External . (115)

It can be seen that this result and the one from Jirsa andHaken
[45], (75), are very similar. Equation (75) explicitly includes
a nonlinear component in the force term, whereas 𝐹External
here may be either linear or nonlinear. The result in (115) is
an expression that can explain multiple types of behaviors.
If B (damping) is very large the equation starts to resemble
the diffusion equation 𝜕𝜙/𝜕𝑡 = 𝐷(𝜕2𝜙/𝜕𝑥2) whereas for
very small B the equation resembles more the wave equation𝜕2𝜙/𝜕𝑡2 = 𝑣2(𝜕2𝜙/𝜕𝑥2) [32]. If on the other hand, the
spatial derivative and the external force term dominate, the
expression becomes similar to Poisson’s Equation ∇2𝜙 = 𝑓.

Finally we examine the result (75) from Jirsa and Haken
[45] for a special case, a generalized seizure (e.g., Figures 17(b)
and 17(c)). Since we have generalized activity we assume that
there is spatial homogeneity, and since the seizure sustains
itself we assume there is no external input; due to these
assumptions, the partial derivative term 𝜕2𝜓𝑒/𝜕𝑥2 vanishes
and so does the external input part in the 𝜌 variable (see
(70) for the definition of 𝜌). The Taylor series approximation
of this variable is 𝜌(𝑥, 𝑡) ≈ 𝑎𝑒𝛼𝑒𝜌𝜓𝑒(𝑥, 𝑡). Substituting this
approximation into (75) and using the above considerations,
we can simplify
..𝜓𝑒 (𝑡) + (2𝜔0 − 𝜔0𝑎𝑒𝛼𝑒𝜌)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑏

.𝜓𝑒 (𝑡) + (𝜔20 − 𝜔20𝑎𝑒𝛼𝑒𝜌)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑐

𝜓𝑒 (𝑡) = 0.
(116)

The general solution of this ODE is in the form 𝐴1𝑒−𝜆1𝑡 +𝐴2𝑒−𝜆2𝑡, with 𝜆1,2 = −𝑏/2 ± √𝑏2 − 4𝑐/2. Therefore, we may
expect intrinsic global oscillations only if 𝜆1,2 are imaginary,
that is if the condition 𝑏2−4𝑐 < 0 is satisfied. Now note that in
the simplified equation above 𝑐 = 𝜔0(𝑏 − 𝜔0), if we substitute
this into the condition above: 𝑏2 − 4𝑐 = 𝑏2 − 4𝑏𝜔0 + 4𝜔20 =(𝑏 − 2𝜔0)2. Since the outcome is a quadratic expression, the
condition 𝑏2 − 4𝑐 < 0 will never be satisfied and therefore,
without oscillatory input (e.g., an external network or a set
of pacemaker neurons in the network), oscillations cannot
occur in this generalized and linearized version of the model.

7. Concluding Remarks

In the previous sections, I presented a variety of modeling
approaches used in neuroscience. As shown in Section 6,
mostmodels are capable of explaining aspects of epileptiform
behavior. Interestingly, some of these explanations are coun-
terintuitive (e.g., [96, 106]). Considering the rich repertoire
of model behaviors, it is not surprising that a single approach
to treatment, such as adjusting the excitation-inhibition
balance, is likely to fail. A common theme in the different
models is that oscillatory behavior arises from the force term
in the differential equations; in the neuronal networks, these
force terms may represent membrane currents of the cells
that create an oscillatory input and/or the properties of the
network that embeds them. A logical next step would be
to create a systematic summary of hypothetical mechanisms
leading to epileptiform activity and to examine them in
experimental models and clinical cases.

In general, the interest in and acceptance of modeling
in neuroscience is growing (e.g., [46, 50]). However, an
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important roadblock for the application of modeling is that,
in part due to the complexity of the nervous system, there is
little consensus amongst neuroscientists on what properties
are to be considered critical in a theoretical approach. For
this reason, traditionally, the neuroscientist prefers “realistic
models” in which many experimental details are represented.
Of course, in this sense, the skeptical neuroscientist is right
that all models are wrong, that is, no model fully captures
reality, both by design and because some details are simply
not known. To cite Rosenblueth and Wiener [107], “the
best material model for a cat is another, or preferably the
same cat.” It is obvious that such a “best material model” is
not the most helpful tool for a theoretical study of specific
aspects of cat behavior because it clearly contains too much
detail. Similarly, if one models traffic flow, one probably
would not include some details (e.g., color of the cars)
while including others (e.g., number of traffic lanes between
suburbs and industrial zones). Just like in physics, when
modeling in biology, it is good to recall Einstein’s dictum:
“models should be as simple as possible, but not more so.”
(e.g., [108]). Due to simplifications, models do not include
all possible parameters, but they can nonetheless be very
useful because they allow us to make predictions and they
may generate uncluttered insight into the critical components
of the underlying mechanisms of the modeled process. Of
course, the above general statements are valid for modeling
in neuroscience, whether we deal with models that describe
the microscopic details of cellular function or ones that deal
with themacroscopic networks of billions of nerve cells in the
human brain.

Because of the necessary simplifications required in
modeling, there are limitations in the models reviewed here;
they neglectmany aspects that play important roles. A critical
part of the dynamics of neuronal networks is determined by
synaptic plasticity, that is, the change in network connection
strength. These changes play a crucial role in the process
of learning but, when pathologic, may also contribute to
diseases such as epilepsy. It was more than a half century
ago that Hebb [109] recognized this and postulated his law.
Hebb’s law describes how synaptic coupling strength depends
on local activity. It is often presented in a simplified form
as “neurons that fire together wire together.” Much later,
an experimental approach has confirmed the existence of
activity dependent plasticity at the level of the coupling
between nerve cells, that is, the synapse (e.g., [110, 111]). Here
the plastic changes appeared to depend on the timing of the
action potential (spike) activity of the pre- and postsynaptic
neurons and is therefore also called spike-time-dependent
plasticity (STDP). STDP has been used in simulations to
find appropriate synaptic strength (e.g., [25]), effectively as
a parameter estimation technique. It is fairly obvious that
if connections between excitatory neurons that fire together
alsowire together (i.e., get strengthened) represents a positive
feedback mechanism, which may lead to instability and
possibly seizure-like hyperactivity [112]. Therefore, under
normal physiological conditions, there must be additional
mechanisms counteracting this positive feedback. Recently,
an interesting attemptwasmade to analyze effects of plasticity
of inhibitory synapses at the population level and successfully

relate it to the network’s balance between excitation and
inhibition [113]. Since this model describes strengthening of
the inhibitory connection, the instability issue does not arise
here. Although plasticity is an important aspect of network
behavior, themodels reviewedhere did not include it as one of
the properties. Plasticity and many other aspects involved in
nervous system function, such as the role of glia (e.g., [114]),
remain to be investigated.

Finally, one important conclusion is that there is not “a
best approach” whenmodeling neural function. For example,
nonlinear models can help us to understand specifics such
as sudden transitions, but linear ones are more suitable
to analyze subthreshold properties such as oscillation. The
linearized versions of the models also make it easier to
see similarities between the models across different levels
of organization. Another example: complex models can be
studied with simulations, they are more complete since
they can deal with more parameters than the more abstract
models used for mathematical analysis. However, both have
a place and they can be complementary. Analysis of simplified
mathematical models can generate fundamental insight in
spite of the fact that they lack detail. Simulation can be too
complex to directly generate such fundamental insight into
the interaction of the ongoing processes, but they have the
advantage to be closer to reality. This property appeals to
the experimenter since it may produce data with a temporal-
spatial resolution that is not (yet) feasible experimentally.
In this context, the ultimate goal in understanding neural
networks in physiological and pathological states, is to create
a framework of experimental models, detailed simulations,
and mathematical formalisms that allow us to understand
and to predict dynamics of network activities including
state transitions; that is, results in one model can be used
to inspire work in another type of model. In the case of
analyzing a heterogeneous network disease such as epilepsy,
modeling can provide an overview of hypothetical network
mechanisms involved in ictal activity that can be employed
as a guide for experimental and clinical investigation.

Appendices

A. Linearization of the Hodgkin and
Huxley Equations

In order to linearize the nonlinear equations, we rewrite (2)–
(5) as 𝐶(𝑑𝑉/𝑑𝑡) = 𝑓(𝑉, 𝑚, ℎ, 𝑛, 𝐼Inject) and 𝑑𝑥/𝑑𝑡 = 𝑓(𝑉, 𝑥),
with 𝑥 representing an activation/inactivation variable 𝑚, ℎ,
or 𝑛. Then we linearize about an equilibrium potential 𝑉∗
(either resting potential with 𝐼Inject = 0, or a holding potential
implying 𝐼Inject /= 0). Small variations in the parameters about
this equilibrium are 𝛿𝑉, 𝛿𝑚, 𝛿ℎ, 𝛿𝑛, 𝛿𝐼. Using just the
compact form of (2)–(5), we can evaluate them for small
changes: that is, 𝑑𝛿𝑉/𝑑𝑡 and 𝑑𝛿𝑥/𝑑𝑡. For example, the effect
due to perturbation 𝛿𝑉 is

𝛿𝑓 = 𝐶𝑑𝛿𝑉𝑑𝑡 = (𝜕𝑓 (𝑉, 𝑚, ℎ, 𝑛, 𝐼Inject)𝜕𝑉 )
∗
𝛿𝑉. (A.1)
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The expression in parentheses is evaluated at equilibrium ∗.
Similarly, a perturbation 𝛿𝑥 yields:

𝛿𝑓 = 𝐶𝑑𝛿𝑉𝑑𝑡 = (𝜕𝑓 (𝑉, 𝑚, ℎ, 𝑛, 𝐼Inject)𝜕𝑥 )
∗
𝛿𝑥. (A.2)

Combining the perturbation effects, we obtain a linearized
version of (2)

𝐶𝑑𝛿𝑉𝑑𝑡 = ( 𝜕𝑓𝜕𝑉)
∗
𝛿𝑉 + ( 𝜕𝑓𝜕𝑚)

∗
𝛿𝑚 + (𝜕𝑓𝜕ℎ)

∗
𝛿ℎ

+ (𝜕𝑓𝜕𝑛)
∗
𝛿𝑛 + ( 𝜕𝑓𝜕𝐼Inject )∗𝛿𝐼Inject . (A.3)

Here we simplified notation by using 𝑓 instead of𝑓(𝑉, 𝑚, ℎ, 𝑛, 𝐼Inject), further, using (2), we find
( 𝜕𝑓𝜕𝑉)

∗
= − (𝑔Leak + 𝑔Na𝑚3ℎ + 𝑔K𝑛4)󵄨󵄨󵄨󵄨󵄨∗,

( 𝜕𝑓𝜕𝑚)
∗

= −𝑔Na3𝑚2ℎ (𝑉 − 𝐸Na)󵄨󵄨󵄨󵄨󵄨∗,
(𝜕𝑓𝜕ℎ)

∗
= −𝑔Na𝑚3 (𝑉 − 𝐸Na)󵄨󵄨󵄨󵄨󵄨∗,

(𝜕𝑓𝜕𝑛)
∗

= −𝑔K4𝑛3 (𝑉 − 𝐸K)󵄨󵄨󵄨󵄨󵄨∗,
( 𝜕 𝑓𝜕 𝐼Inject )∗ = 1.

(A.4)

For the gating parameters, using 𝑑𝑥/𝑑𝑡 = (𝑥∞(𝑉) −𝑥)/𝜏𝑥(𝑉) = 𝑓(𝑉, 𝑥), we get the linearized expression:𝑑𝛿𝑥𝑑𝑡 = (𝜕𝑓 (𝑉, 𝑥)𝜕𝑉 )
∗
𝛿𝑉 + (𝜕𝑓 (𝑉, 𝑥)𝜕𝑥 )

∗
𝛿𝑥, (A.5)

with

(𝜕𝑓 (𝑉, 𝑥)𝜕𝑉 )
∗

= 𝜏𝑥 (𝑉) (𝑑𝑥∞ (𝑉) /𝑑𝑉)−
𝛿𝑥⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑥∞ (𝑉) − 𝑥) (𝑑𝜏𝑥 (𝑉) /𝑑𝑉)

𝜏x(𝑉)2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∗
,

( 𝜕𝑓 (𝑉, 𝑥)𝜕𝑥 )
∗

= − 1
𝜏𝑥 (𝑉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∗.
(A.6)

Note that 𝑥∞, 𝜏𝑥 are functions of 𝑉 only, and consequently
the partial differential is replaced by an ordinary one.
Putting it all together and ignoring the nonlinear cross term((𝑑𝜏𝑥(𝑉)/𝑑𝑉)/𝜏𝑥(𝑉)2)|∗𝛿𝑥𝛿𝑉, the above equation simplifies
to𝑑𝛿𝑥𝑑𝑡 = ( 1𝜏𝑥 (𝑉))

∗
(𝑑𝑥∞ (𝑉)𝑑𝑉 )

∗
𝛿𝑉 − ( 1𝜏𝑥 (𝑉))

∗
𝛿𝑥. (A.7)

In the literature, it is common to simplify the notation of
(A.3) and (A.7).

For example in Richardson et al. [52] Equation (A.7) is
simplified by multiplying both sides of the expression by

(𝜏𝑥(𝑉)/(𝑑𝑥∞(𝑉)/𝑑𝑉))∗ and substituting 𝑣 = 𝛿𝑉 and 𝑤𝑥 =𝛿𝑥/(𝑑𝑥∞(𝑉)/𝑑𝑉)∗. This results in

𝜏𝑥 (𝑉) 𝑑𝑤𝑥𝑑𝑡 = 𝑣 − 𝑤𝑥. (A.8)

In the same manner, the notation of (A.3) can be simplified.
The first term of the right hand side of (A.3):

( 𝜕𝑓𝜕𝑉)
∗
𝛿𝑉 = − (𝑔Leak + 𝑔Na𝑚3ℎ + 𝑔K𝑛4)󵄨󵄨󵄨󵄨󵄨∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

−𝑔𝑀
𝛿𝑉⏟⏟⏟⏟⏟⏟⏟
𝑣

= −𝑔𝑀𝑣.
(A.9)

Notation for each of the conductivity termswith𝑚, ℎ, or 𝑛 can
also be simplified. For example the expression for 𝑛 becomes

(𝜕𝑓𝜕𝑛)
∗
𝛿𝑛 = −𝑔K4𝑛3 (𝑉 − 𝐸K)󵄨󵄨󵄨󵄨󵄨∗𝛿𝑛

= ( −𝑔K4𝑛3 (𝑉 − 𝐸K)󵄨󵄨󵄨󵄨󵄨∗) (𝑑𝑛∞ (𝑉)𝑑𝑉 )
∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

−𝑔K

× [[[[
𝛿𝑛(𝑑𝑛∞ (𝑉) /𝑑𝑉)∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑤𝑛

]]]]= −𝑔K𝑤𝑛.

(A.10)

In the above, we multiplied with(𝑑𝑛∞(𝑉)/𝑑𝑉)∗/(𝑑𝑛∞(𝑉)/𝑑𝑉)∗ to allow change of variable
from 𝛿𝑛 to 𝑤𝑛. Similarly, we can simplify the expressions for𝑚 and ℎ in −𝑔Na𝑤𝑚 and −𝑔Na𝑤ℎ. Consequently, (A.3) can be
simplified to (e.g., [52])

𝐶𝑑𝑣𝑑𝑡 = −𝑔𝑀𝑣 − 𝑁∑
𝑥=1

𝑔𝑥𝑤𝑥 + 𝛿𝐼Inject⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼app

. (A.11)

Here 𝑥 is Na, K, and all other ion species included in the
model.

B. Matlab Scripts

The following Matlab scripts were used to create some of
the Figures in this paper. They can be copied in the Matlab
command window, or (via the Matlab editor) saved as an m
file.

B.1. Figure 4 Script

% Bodeplt.m
C=1e-10;
R=2e8;
RL=2e7;
L=2e6;
gam=(1/R)+(RL∗C/L);
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eps=(1/L)∗(1+(RL/R));
B=[1 RL/L];
A=[C gam eps];
w=0 : 1000;
freqs(B,A,w)

B.2. Figures 8(a) and 8(c) Script

% IsingModel.m
% h - external magnetic field
% J and n are coupling strength and number of
% neighbors resp.
clear;
close all;
J=1;
n=1;
%%%%%%%%%%%%%%%%%% Stability Diagram
% To find this diagram we can solve for
% 0=T∗atanh(m) - (J∗n∗m+h) and
% d/dm(T∗atanh(m))=d/dm(J∗n∗m+h)
figure; hold;
i=1;
for mm=-1 : .01 : 1

Tc(i)=J∗n∗(1-mm⋀2);
h star(i)=Tc(i)∗atanh(mm)-J∗n∗mm;
i=i+1;

end;
plot(h star, Tc, ‘k’)
title(‘Stability Diagram’)
xlabel(‘h - Magnetic Field’)
ylabel(‘T - Temperature’)
%%%%%%%%%%%%%%%% 3D
figure; hold;
for mmm=-1 : .01 : 1;

for T=0 : .1 : 1.5;
h=T∗atanh(mmm) - J∗n∗mmm;
plot3(h,T, mmm)

end;
end;
plot(h star,Tc, ‘k’)
axis([-1.5 1.5 -.1 1.5 -1.1 1.1])
title(‘3D diagram - blue; Stability Diagram – black’)
xlabel(‘h’)
ylabel(‘T’)
zlabel(‘m’)
view(-20, 70).

B.3. Figure 11(b) Script

%ModelSpectrum LdS1974.m
% Fig. 8 in Lopes da Silva et al., 1974
clear
% Parameters (see p. 36 in Lopes da Silva et al., 1974)
A=1.65e-3; % in V
B=32e-3; % in V
C1=32;
C2=3;
a1=55;
a2=605;
b1=27.5;
b2=55;
qe1qi1=4.55e6;
P=1; % assume random input (i.e. same for all
% frequencies)
K=A∗B∗C1∗C2∗qe1qi1∗(a2-a1)∗(b2-b1);
n=0;
for f=0 : .1 : 30 % Frequency range

n=n+1;
F(n)=f;
w=2∗pi∗f; % radial frequency
% j∗w substituted for s
V(n)=((a2-a1)∗A∗P∗(j∗w+b1)∗(j∗w+b2))/
((j∗w+a1)∗(j∗w+a2)∗(j∗w+b1)∗(j∗w+b2)+K);

end;
figure;
semilogy(F, abs(V))
xlabel(‘Frequency (Hz)’)
ylabel(‘abs(V(jw))’)
title(‘Fig. 8 Lopes da Silva et al., 1974’).

B.4. Figure 16(b) Script

% netsim.m
clear;
close all
% Parameters and initial values
N cells=10⋀4; % number of cells
N=round((rand(1)/2+.1)∗rand(1,N cells));
% randomized initial state of vector N
AD(1)=sum(N); % initial value for the deterministic
case
alpha=10; % decay rate a -> q (set around 1/100 ms)
f tilde=5; % q -> a (set around 5 Hz)
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dt=.001; % time step for the deterministic model
T=1; % Epoch (in s)
timeD=0 : dt : T; % determinsitic timebase
steps=floor(T/dt); % determinsitic # of steps
% Deterministic model
% - - - - - - - - - - - - - - - - - - -
% this simulation based on kinetic rate equation
%note that equilibrium is at dA=0 - ->A equilibrium
% = f/alpha
for i=1 : steps

dAD=(f tilde∗(N cells-AD(i))-
alpha∗AD(i))∗dt;
AD(i+1)=AD(i)+dAD;

end;
% Equivalent Stochastic model
% - - - - - - - - - - - - - - - - - - - - - - - - - - -
% this simulation based on stochastic model
% Specific parameters and initial values
% background of the method can be found in
% Gillespie (1976, 1977)
count=1; % counter for the AS array
cum t=0; % initial time
timeS(count)=cum t; % stochastic time base
while cum t < T %Main LOOP

AS(count)=sum(N); % Stochastic value of A; #
of active cells
% compute the overall rates in the variables a#
a1=AS(count)∗alpha; % rate for the decay
a2=(N cells-AS(count))∗f tilde; % rate for cells
becoming active
a0=a1+a2;
% pick a two random # from uniform
distribution (following Gillespie’s algorithm)
r=rand(1, 2);
% compute time step tau (based on exponential
distribution)
tau=(1/a0)∗log(1/r(1)); % Gillespie (1977)
% Now we compute the cumulative
distribution of all cells
% this could be done more efficient here in the
all-to-all connection
% case; here we only have two variables to
update Q and A
% However, the following approach of
updating individual cells is more general.
P=N∗alpha; % all active cells multiplied by
alpha

for i=1 : length(P)
if P(i)==0; P(i)=f tilde; end; % all inactive
cells become f

end;
%plot(P)
%pause;
P=P./sum(P); % normalize P
F=cumsum(P); % cumulative function F of all
% probabilities associated with
% the cells in N
% now pick a cell # using the cumulative

% distribution
pick=0;
i=0;
while pick == 0

i=i+1;
if (F(i)>=r(2)); mu=i; pick=1; end;

% Gillespie (1977)
end;
% Update time, cell and counter
if N(mu)==1; N(mu)=0; else; N(mu)=1; end;
% Update cell
count=count+1; % update the counter
cum t=cum t+tau; % update the time
timeS(count)=cum t; % and stochastic time
base

end;
% plot results
figure; hold
plot(timeD, AD, ‘k’)
plot(timeS(1 : length(AS)), AS)
title (‘Deterministic model (black); stochastic (blue)’)
xlabel(‘time (s)’)
ylabel(‘# of Active Cells’).

B.5. Figure 18 Script

%HopfBifurcation.m
% Depict a Hopf Bifurcation in the WC Eqs.
% x - E pop; y - I pop
% P - External input to E pop
clear;
close all;
x(1)=0;
y(1)=0;
P=4.0;
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WE(1)=1;
dWE=.01
dt=.1;
T=300;
N=T/dt;
tim=0 : dt : T-dt;
for i=1 : N-1

He=(1/(1+exp(-1.3∗((WE(i)∗x(i)-12∗y(i)+1.25)-
P))))-(1/(1+exp(1.3∗P)));
Hi=(1/(1+exp(-2.0∗((WE(i)∗x(i)-3∗y(i)+0)-
3.7)))) -(1/(1+exp(2.0∗3.7)));
dx=-x(i)+(1-1∗x(i))∗He;
dy=-y(i)+(1-1∗y(i))∗Hi;
x(i+1)=x(i)+dx∗dt;
y(i+1)=y(i)+dy∗dt;
WE(i+1)=WE(i)+dWE;

end;
figure;
subplot(2, 1, 2), plot(tim, x, ‘r’)
hold;
subplot(2, 1, 2), plot(tim, y, ‘g’)
axis([0 300 -.05 0.55])
subplot(2, 1, 1), plot(tim, WE)
axis([0 300 -135])
title(‘Hopf Bifurcation in theWC Equations: E-red, I-
green, External Input to E-blue’)
xlabel(‘Time’).
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