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Regulatory region of milk protein alpha S1-casein (a«S1-CN) gene was sequenced, characterized, and analyzed to detect variations
among 13 Indian cattle (Bos indicus) breeds. Comparative analysis of 1,587 bp region comprising promoter (1,418 bp), exon-I
(53 bp), and partial intron-I (116 bp) revealed 35 nucleotide substitutions (32 within promoter region, 1 in exon-I, and 2 in partial
intron-I region) and 4 Indels. Within promoter, 15 variations at positions —1399 (A > G), —1288 (G > A), —1259 (T > C), —1158
(T>C), —1016 (A > T), =941 (T > G), =778 (C>T), =610 (G > A), =536 (A > G), =521 (A > G), =330 (A > C), =214 (A > G), =205
(A>T),-206 (C>A),and —175 (A > G) were located within the potential transcription factor binding sites (TFBSs), namely, NF-
kE1/c-Myc, GATA-1, GATA-1/NF-E, Oct-1/POU3F2, MEF-2/YY1, GATA-1, AP-1, POU1F1a/GR, TMF, GAL4, YY1/Oct-1, HNF-
1, GRalpha/AR, GRalpha/AR, and AP-1, respectively. Seventy-four percent (26/35) of the observed SNPs were novel to Indian cattle
and 11 of these novel SNPs were located within one or more TFBSs. Collectively, these might influence the binding affinity towards
their respective nuclear TFs thus modulating the level of transcripts in milk and affecting overall protein composition. The study

provides information on several distinct variations across indicine and taurine aSI-CN regulatory domains.

1. Introduction

Bovine caseins are distinguished into four protein fractions,
namely, alpha S1-casein, alpha S2-casein, beta-casein, and
kappa-casein encoded by genes: aSI-CN, aS2-CN, f3-CN,
and k-CN, respectively [1]. Alpha S1-casein represents the
major protein fraction (31%) among the bovine milk proteins
(caseins and whey) and constitutes up to 40% of total casein
[1]. It is a calcium sensitive and highly phosphorylated
protein. It has an important role in the capacity of milk to

transport calcium phosphate and is organized at 5 -terminus
of casein cluster located on bovine chromosome 6 (BTA6).
Till now, 9 variants (A-I) have been reported in the coding
region of aSI-CN. Amongst these, B and C, differing in
amino acid substitution (Glu/Gly) at position 192 of the
mature protein, are the most common. The variant C has

been reported to be common in zebu breeds, while other
rare variants like A, D, and F have only been reported in
European cattle [2]. These variants are well characterized
and their associations with quantitative effects on milk per-
formance/production parameters have been widely reported
[3, 4]. The results on association studies involving only
coding region variants are not always consistent [5] and this
might be attributed to the presence of intragenic haplotypic
combination of variants in the regulatory and coding regions
[3, 6]. Moreover, casein gene expression is also known to
be differentially regulated by hormones and most of the
potential hormone receptor binding sites occur within the

5,-ﬂanking region of casein genes [6]. Thus, mutations at
these regulatory regions might also have enduring effect
on milk protein gene regulation at transcriptional level [6,
7] either individually or as inter- or intragenic haplotypes.



For aS1-CN, mutations in the promoter region have been
reported to influence the protein-coding efficiency of the
relevant structural gene by changing the binding affinity
towards their respective nuclear transcription factors (TFs)
[8, 9] and can thus be considered as functional candidate

for milk protein content. Additionally, variants of aSI-CN5 -

flanking region (ocS]-CNS,) have also been associated with
economically important traits like longevity and somatic
cell scores in different taurine breeds [3, 10, 11]. Sequence

variation within aSI-CN5 has been widely studied in several
species like cattle involving mainly B. taurus [10-14], yak
[15], buffalo [16], goat [17], and sheep [18]. In contrast to

the studies conducted on aSI-CN5 in B. taurus and few
zebu cattle [12, 19], no systematic study has been made to

reveal the variations and haplotypes existing in «S1 -CN5
among Indian cattle breeds. The Indian native (B. indicus)
breeds are adapted to diverse climatic conditions and range
from good milch (of dairy merit) animals to extreme draught
types. These breeds are known for their survival under inade-
quate feeding and low-input production practices naturally.
Further, due to evolutionary divergence, B. indicus and B.
taurus are expected to have variations in the candidate genes
related to dairy traits. Keeping in view the scanty information
available in Indian native cattle breeds, the present study was

aimed to (i) sequence the full-length aSI-CN5 in 13 Indian
zebu breeds; (ii) search for putative TFs based on the indicine
sequence (sequence specific to Indian zebu cattle); (iii) check
if detected polymorphisms lie within identified TFBSs; (iv)
identify variations within indicine breeds and their compar-
ison with taurine breeds; and (v) identify homologies in the
regulatory domains as well as phylogenetic relationship for

aSI-CN5 from different mammalian species.

2. Materials and Methods

2.1. Sample Collection and Isolation of Genomic DNA. For

characterization of aSI-CN5 and to determine the vari-
ants/haplotypes among Indian zebu cattle, blood samples
of 19 unrelated animals from 13 breeds from diverse agro-
climatic zones were collected from their respective native
breeding tracts. The selected breeds and their respective
sample sizes (given in parenthesis) represented dairy Gir
(1), Tharparkar (2), Rathi (2), Red Sindhi (2), and Sahi-
wal (2), draught Amritmahal (1), Kangayam (1), and Red
Kandhari (2), and dual purpose Deoni (1), Gaolao (1),
Hariana (2), Kankrej (1), and Mewati (1). Genomic DNA
was isolated by enzymatic Proteinase-K digestion (Sigma
Chemical Co. St. Louis, MO, USA) followed by standard
phenol-chloroform extraction procedure [20]. The quality of

isolated genomic DNA was analyzed on SafeView ™ (NBS
Biologicals Ltd., England) stained 0.6% agarose gel and was
quantified through NanoView (GE Healthcare, UK).

2.2. PCR Primers and Pmplification of aSI-CN5 . Primer
pairs aSI1-CN-F1 (5/-CCAATCCAGATATTGAACCTGC-
3) and aSI-CN-R1 (5 -ATAGGAAAGTACCAATACTTG-
C-3') were used to amplify a fragment of 1,639 bp including
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promoter, exon-I, and intron-I region of aSI-CN. The
primers were designed through PRIMER2 software using
cow genomic sequence data available at ENSEMBL database
(BTAU 4.0:6). PCR reaction was performed in 25 yL reaction
mixture containing 100-150 ng of genomic DNA, 5 p mole of
each primer, 200 uM of dNTPs mix, 1X PCR buffer, 1.5 mM
MgCl, and 1.5 unit of Tag DNA polymerase (Invitrogen,
Carlsbad, CA, USA) and was carried out in Mastercycler
ep Gradient thermal cycler (Eppendorf, Germany) using
thermal cycling conditions as initial denaturation at 95°C
for 2 min, followed by 30 cycles at 95°C for 60 sec, 59°C for
45 sec and 72°C for 2.30 min with a final extension at 72°C for
10 min. The amplicons were electrophoresed through 1.2%
SafeView stained agarose gel and were visualized under UV
transilluminator.

2.3. Sequencing, Annotation and Comparative Analysis of

aSI-CN5 . The PCR product from each sample was purified
using Exonuclaese I/Calf Intestinal Phosphatase (Exo-CIP)

enzymatic treatment and used to sequence aS1-CN5 region
using forward primer aSI-CN-F1 and three additional
internal primers (P1F: 5 -GTTCCTGTCATACAACTGTG-
3, P2F: 5 -ACTGGACACGACTTAGAAAC-3, and P3F:
5-CAATGCCATTCCATTTCCTG-3 ) designed on the
1,639 bp amplicon. Sequencing reactions were performed
with BigDye v3.1 cycle Sequencing Kit in an ABI PRISM
3130 Genetic Analyzer (Applied Biosystems, Foster City, CA,
USA). The resulting sequences were aligned and polymorphic
sites identified from sequence comparison were con-
firmed through manual inspection. The transcriptional
factor binding sites were identified using TESS (http://www
.cbil.upenn.edu/cgi-bin/tess/tess/), MATCH [21] (http://
www.gene-regulation.com/cgi-bin/pub/programs/match/bin/
match.cgi/), TRANSFAC [22] (http://www.biobase-interna-
tional.com/), AliBaba2.1 Search engine [23] (http://www
.gene-regulation.com/pub/programs/alibaba2/index.html),
and from the literature [15, 19]. The potential functions of the
putative TFBSs were determined from TRANSFAC database.
PHASE v2.1.1 software [2426] was used to analyze identify
haplotypes. The frequency of variations was calculated as
number of animals with variation/total population size,
whereas breed-wise frequency was estimated as number
of mutations within a breed/total mutations. Linkage

disequilibrium (LD) measures, D' and 2, between all single
nucleotide polymorphisms (SNPs) were estimated using
Arlequin v3.5 software [27]. To determine the homologies

among the DNA binding domain, sequences of aSI-CN5
from major milk producing mammalian species (B. indicus,
B. taurus, B. bubalis, and C. hircus) were extracted from
GenBank and Ensemble databases. Molecular Evolutionary
Genetic Analysis (MEGA) software version 5.0 [28] was
used for the comparative sequence analysis and phylogenetic
sequence analyses employing the Neighbor-Joining (NJ)
method as this method does not require the assumption of a
constant rate of evolution. Genetic distances were estimated
by the p-distance model and standard errors of the estimates
were obtained through 5,000 bootstrap replicates.



ISRN Biotechnology

3. Results

3.1. Sequence Analysis of Flanking Region of Alpha S1-Casein
(aS1-CN5). Sequencing the amplicon of 1,639bp contig

of 1,587bp of aSI-CN5 including 1418bp of promoter
region, 53 bp of exon-I, and 116 bp of intron-I region was
analyzed in the present study. A total of 31 putative binding
sites were identified within the promoter region (Figure 1,
see supplementary Table SI a,b in supplementary material
available online at http://dx.doi.org/10.5402/2013/926025).
Apart from consensus sequences of CAAT box and TATA
box, the promoter region contained dense array of poten-
tial transcriptional factor binding domains as AP (acti-
vator protein), AR (androgen receptor), AREB6 (Atplal
Regulatory Element Binding protein 6), CAAT (CAAT
box), C/EBP (CCAAT/enhancer binding protein), Cart-1
(cartilage homeoprotein 1), c-Myb (cartilage homeoprotein
1), c-Rel (Nuclear Factor kappa B) c-Rel, ER (estrogen
receptor), GATA-1 (GATA-binding factor 1), Gfi-1 (Zinc
finger protein Gfi-1), GR (Glucocorticoid receptor), HNF-
1 (Hepatocyte Nuclear Factor), MEF-2 (myocyte enhancer
factor 2A), MGF/MPBF (mammary gland factor), NF-E
(Nuclear Factor-E), Nkx2-5 (Homeobox protein Nkx-2.5),
Oct-1 (Octamer-binding factor), POU1Fla (transcription
factor 1 (Pitl, growth hormone factor 1)), POU2F1a (POU
domain, class 2, transcription factor 1), POU3F2 (POU
domain, class 3, TF2), PR (progesterone receptor), Sox-
5 (SRY-related HMG-box gene 5), Spl (Specificity Protein
1), TBP (TATA-box-binding protein), TFIID (Transcription
factor I1ID), TMF (TATA element modulatory factor), and
YY1 (Ying-Yang factor). Binding of most of the transcription
factors to their respective sites was associated with basal,
tissue specific developmental, and cis-trans gene regulation
[2, 6, 7, 9]. All the identified sites showed high core match
and matrix match similarity with a minimum value of 83.8%,
80.8% and a maximum value of 100% for each, respectively
(Supplementary Table Sla). The conserved regulatory ele-
ment, TATA box, was located between —22 and —28 bp while
CAAT box was located between —52 and —57 upstream to
transcriptional start site of «SI-CN gene (Figure 1). The
position of TATA box in Indian zebu cattle was found to be
consistent with that of other ruminants like B. taurus, Capra
hircus, and Ovis aries.

3.2. Variation Analysis of aSI-CN5 among Indian Zebu Cat-
tle. Comparative sequence analysis revealed a high mutation
rate of 1 SNP/42bp with presence of 39 variations (36
including four Indels within promoter region, 1 in exon-

I and 2 in the intron-I region) observed within aS1-CN5
in Indian zebu cattle breeds. Of the observed SNPs, 22
(56.41%) and 13 (43.59%) were transitions and transversions,
respectively. The transition/transversion rate ratios were k1 =
3.062 (purines) and k2 = 4.386 (pyrimidines) while overall
transition/transversion bias,R was 1.585, with a total of
1587 positions in aSI-CN5 . Within promoter region, 36
nucleotide substitutions and 4 consecutive Indels (at —224 to
—-221 (TTGT>- - - -) with respect to transcriptional start site)
were observed (Table 1). Throughout the region screened,

variation at =722 (T > A) exhibited highest frequency (0.68)
while 16 variations showed least frequency of 0.05 (Table 1).

Breed-wise distribution of SNPs among the Indian zebu
cattle breeds revealed Gir (dairy breed) to be most polymor-
phic with 62% (24/39) of the observed variations, whereas
Gaolao (dual utility type) with 8% (3/39) variations was least
polymorphic. Across different utility categories (diary, dual
and draught), dairy breeds showing all the observed vari-
ations (100%; 39/39) were the most polymorphic followed
by draught (54%; 21/39) and dual (33%; 13/39) purpose
breeds. None of the variations were specific to breed utility
category. Amongst Indian zebu cattle; 26 out of 39 variations

(67%) observed within «aSI -CN5 were found to be novel
as they have not been reported in any other cattle breeds
(Table 1). For the observed variations, 27 haplotypes were
predicted using software PHASE 2.1 (Supplementary Table
§2). The majority (41%) of these haplotypes were confined
to dairy animals (11/27), followed by dual (33%; 9/27) and
draught (22%; 6/27) purpose animals. Amongst the observed
haplotypes, a single haplotype (AS1_INC20) was shared in
dairy, dual, and draught purpose breeds.

Among 36 variations observed in the promoter region;
15 were located within the putative TFBS influencing the
binding affinity of their respective TFs, thus possibly affecting
the gene transcript. Further, in intron-I, variation at position
82 (T > A) was also located within Gfi-1 TFBS (Table 1). Many
of the observed variations influenced more than one nuclear
factor (Table 1). However, observed deletions in aS1-CN5
did not affect any known TFBS. Across the variations at DNA
binding domains, —1259 (T > C) islocated within the GATA-
1 and NF-E exhibited maximum frequency (0.63).

3.3. Homologies of Regulatory Domains among Major Dairy

Species. Sequence comparison of aSI-CN5 among major
livestock species of dairy purpose (cattle, buffalo, and goat)
revealed divergence at binding domain for several ubiquitous
TFs and motifs specific to mammary gland and hormone
receptors. Amongst the 31 different TFB elements annotated
for Indian zebu cattle, 12 showed variations (Figure 2). These
variable regions included transcriptional activators such as,
ER, MEF, 16bp milk box, and TBP, repressors of gene
regulation such as YY1 and AP-1, while others were related
with basal regulation of gene expression such as GAL4,
GATA-1, Oct-1, POU3F2, Sox-5, and TFIID (Figure 2).

3.4. Genetic Distance and Phylogeny among Different Mam-
malian Species. Analysis of genetic distances at nucleotide
level, using p-distance model based on pairwise deletion,
revealed highest homology of Indian zebu cattle sequence
with B. taurus (99.3%), followed by B. grunniens (99.1%),
Bubalus bubalis (97.2%), Ovis aries (94.8%), Capra hircus
(95.5%), Canis lupus familiaris (60%), Gorilla gorilla (54.3%),
Macaca mulatta (54.2%), Pongo abelii (54.5%), Homo sapiens
(54.8%), Pan troglodytes (54.7%), and Rattus norvegicus
(48.6%). The analysis revealed Indian native cattle to be
closest to B. taurus followed by yak and buffalo and most dis-
tant from Equus caballus (43.8%). Phylogenetic relationship
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FIGURE 1: Promoter region of alpha SI-casein gene in Indian zebu cattle. Sites of variations are marked with IUPAC nucleotide codes,
R: A/G, S: C/G, Y: C/T and K: G/T. Site of deletion among Indian cattle is represented in parenthesis. Region in bold nucleotides marks
5 UTR. Transcriptional start site is marked as +1. Abbreviations: AP: activator protein; AR: androgen receptor; AREB6: Atplal regulatory
element binding protein 6; CAAT: CAAT box; C/EBP: CCAAT/enhancer binding protein; Cart-1: cartilage homeoprotein 1; c-Myb: cartilage
homeoprotein 1; c-Rel: nuclear factor kappa B c-Rel; ER: estrogen receptor; GATA-1: GATA-binding factor 1; Gfi-1: Zinc finger protein
Gfi-1; GR: glucocorticoid receptor; HNF-1: hepatocyte nuclear factor; MEF-2: myocyte enhancer factor 2A; MGF (MPBF): mammary gland
factor; NF: nuclear factor; Nkx2-5: homeobox protein Nkx-2.5; Oct-1: octamer-binding factor; POU1F1a: transcription factor 1 (Pit1, growth
hormone factor 1); POU2F1a: POU domain, class 2, transcription factor 1; POU3F2: POU domain, class 3, transcription factor 2; PR:
progesterone receptor; Sox-5: SRY-related HMG-box gene 5, Sp1: specificity protein 1; TBP: TATA-box-binding protein; TFIID: transcription
factor IID, TATA-box-binding protein; TMF: TATA element modulatory factor; YY1: Yin Yang factor.
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direction and most likely its 5 region controls the transcrip-
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other caseins, aSI-CN5 is the most variable [3] and these
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CN5 among Indian zebu cattle (B. indicus) revealed a dense
region of binding sites for tissue-specific factors, hormone
CN5 . The polymorphic nature of «SI-CN5 has also been

In the present study, sequence characterization of «SI-
reported by Schild and Geldermann [19] with 17 variable sites

tion regulation of other caseins [10]. Further, compared to
variations might influence the encoded transcripts and hence
the milk composition and properties. Evidence for significant
association of mutations within the regulatory region of
casein complex with production traits across different taurine
(B. taurus) breeds has been provided in number of studies
[6,7,9,10].

receptors, and ubiquitary transcription factors with few

overlapping binding sites. Overall 39 variations identified in
Indian zebu cattle breed indicated high variability of aSI-
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CN5 among 15 different mammalian species revealed four
major groups. Ruminants from Bovidae family (cattle, yak,
buffalo, goat, and sheep) were grouped together; members

Variations are highlighted and marked in boxes, whereas gaps are represented by dashes. Only the putative TFBSs affected due to variations
of Hominidae family (human, chimpanzee, orangutan, and

FIGURE 2: Homology between the nucleotide sequences of aSI-CN5’ for buffalo (upper lane), cattle (middle lane), and goat (lower lane).
are marked in shaded regions.

based on UPGMA with 5,000 bootstrap replicates for aSI-
gorilla) and monkey formed another group; rat and mouse
from Muridae family were clustered together, while, horse
from Equidae family was distinctly separated (Figure 3).

Due to close linkage of four casein genes, regulatory domains
of one casein gene might influence the other caseins as well
in addition to the respective casein [29]. It is pertinent to
study variation in aSI1-CN regulatory region as it is located
at the 5" end of casein group with orientation in the sense
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FIGURE 3: Evolutionary relationship of alpha SI-casein gene promoter region across different mammalian species. Databank accession

numbers are given in the parenthesis.

including 2 indels among 13 genetically heterogeneous
groups of cows and Ibeagha-Awemu et al. [12] while analyz-
ingnine B. indicus and three B. taurus breeds from Cameroon
and Nigeria. Out of these 17 variations, 13 were similar to
those observed for Indian zebu cattle in the present study,
while 4 variations at positions =728 (- >T), =733 (T > C),
-774 (C>T), and —-820 (G > A) were unique to B. faurus
(Table 1). Among the 4 variations unique to B. taurus the vari-
ation —728 (- >T) was genotyped using Sspl restriction site
and results suggested significant association of heterozygous
genotype (— > T) with average higher «-S1 protein content in
taurine breeds [6, 7, 9, 19, 30]. This variation at =728 (— >T)
has been observed to have close linkage with —175 A>G
(intragenic haplotype; [4]). Further, intergenic haplotypes

have also been reported for aS 1-CN5 variation —728 (- > T)

with variation in aSI-CN5 —1084 C>T and —186 T>C
and $-CN5 (-109 C> G) [7]. However, in contrast to such
reports, variation/deletion was not observed at position —728
among the analyzed Indian cattle (B. indicus) breeds and
all animals were homozygous for T allele (TT). Another
important variation at —175 (A >G) located within the
binding site of ubiquitously expressed AP-1 TF [19] showed
different genotypic pattern across B. taurus and Indian native
cattle breeds. The particular variation was genotyped across
62 Simmental and 80 German Holstein cows by Kuss et al.
[13, 14] and reflected association of heterozygous AG geno-
type with high aS1-CN protein content. Conversely, none of
the animals in our study showed heterozygous AG genotype
at position —175, as all were either homozygous with GG
or AA genotype. These findings clearly demonstrate the

nucleotide divergence in the regulatory region of aSI-CN5
across Indian and taurine cattle breeds.

Out of 39 variations observed in the present study, 16
were located within putative TFBS, some of which are ubiqui-
tously expressed and involved in regulation of tissue-specific
gene expression. The variations located within transcriptional
activators included —1158 T > C and -330 A > C, positioned
in the potential binding sites for ubiquitously expressed Oct-
1 that could possibly change the transcriptional mechanism.
The —1158 T > C also overlaps with POU3F2 TFBS specific to

nervous system and binds Oct-1 (Figure 1, Supplementary
Table S3). The variation at —1016 A >T was located within
MEF-2 (regulator of cellular differentiation). Among the
group of transcriptional repressors within the cis-acting
elements, observed variation c536 A > G was positioned at
TMF binding domain which represses activation of TATA
box and 82 T > A (intornic region variation) within the Gfil
TFBS (Supplementary Table S3). Some of the variations were
located within the binding sites for TFs with activator and the
repressor activity was; —1016 A>T and -330 A > C within
ubiquitously distributed YY1 TFBS; -610 G > A, —207 A>T
and -206 C > A within GR TFBS while; =778 C> T and -175
A > G within AP-1 TFBS. AP-1 is a known transcriptional
activator, but few studies also suggest its role as repressor for
aSI-CN5 [13, 14].

The variations located within other important TFBS
included -1399 A>G and -1259 T >C, located within
Nuclear TFs (NF-Kappa E1 and NF-E, resp.) (Table 1) which
are nuclear proteins with unknown specific function. —1399
A > G also overlaps with binding domain of c-Myc (Figure
1, Table 1). Similarly, variations —1288 G > A, —1259 T > C,
and —-941 T > G are marked within the GATA-1. Both c-
Myc and GATA-1 are regulators involved in cell proliferation
and cell growth. Under category of tissue-specific TFs, the
observed variations were G-610A located within POU1F1la
that influences secretion from pituitary gland and has trans-
activation activity; —214 A >G within the liver specific
activator, HNF-1 that acts in cooperation with other TFs.
Although not tissue specific, variation at —521 A>G was
sited within the TF GAL4 that mediates transactivation
of gene regulation (Supplementary Table S3). Additionally,
variations at —207 A>T and —-206 C> A overlapping with
the binding domain for GRalpha were located within AR
that mediates androgen-specific gene regulation. Eleven out
of the sixteen above-discussed variations occurring within
important putative TFBSs are specific to Indian zebu cattle
and have not been observed in any other breed>species.
The remaining five variations (-1016 A > T, =53 A > G, —521
A>G, -330 A>C, and —-175 A > G) are common with B.
taurus (Table 1). The effect of these variations, individually
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or in combination, could influence the regulation of aSI-
CN gene expression effectively. The variations from B. faurus
counterpart at genomic level also indicate the possible differ-
ences in milk performance traits of the two subspecies. Also,
homology differences of regulatory sequences among major
dairy species (cattle, buffalo, and goat) might be responsible
for difference at production level. As regulation of gene
expression is under multifactorial control, there is a need to
focus on haplotypes rather than individual variations.

The present study generates the knowledge related to
variations in naturally evolved Indian cattle breeds within
regulatory region of «SI-CN gene, wherein such information
was lacking. The novel variations found in Indian cattle
breeds may be responsible for differential content of milk
components as compared to taurine breeds. This study needs
to be extended further in combination with protein cod-
ing gene polymorphism (intragenic haplotypes) to evaluate
effects of promoter polymorphism on milk production traits.
The ability to link sequence variability to dairy traits in
context of other members of casein family using SNP chip
or other tools could be important. This would lead to efficient
utilization of resources like Indian native cattle impacting the
socioeconomic structure of large population in India.
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