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The important role of histone deacetylase enzymes in regulating gene expression, cellular proliferation, and survival has made
them attractive targets for the development of histone deacetylase inhibitors as anticancer drugs. Suberoylanilide hydroxamic
acid (Vorinostat, Zolinza), a structural analogue of the prototypical Trichostatin A, was approved by the US Food and Drug
Administration for the treatment of advanced cutaneous T-cell lymphoma in 2006. This was followed by approval of the cyclic
peptide, depsipeptide (Romidepsin, Istodax) for the same disease in 2009. Currently numerous histone deacetylase inhibitors
are undergoing preclinical and clinical trials for the treatment of hematological and solid malignancies. Most of these studies
are focused on combinations of histone deacetylase inhibitors with other therapeutic modalities, particularly conventional
chemotherapeutics and radiotherapy. The aim of this paper is to provide an overview of the classical histone deacetylase enzymes
and histone deacetylase inhibitors with an emphasis on potential combination therapies.

1. Introduction

Chromatin is a dynamic structure that, via numerous mech-
anisms including DNA methylation and posttranslational
histone modifications, undergoes remodeling to facilitate
metabolic processes including transcription, replication, and
repair [1]. One of the well-investigated posttranslational
histone modifications is acetylation which was first defined
in the 1960s [2, 3]. Histone acetylation is controlled by the
opposing actions of two groups of enzymes, namely, histone
acetyltransferases (HATs) and histone deacetylases (HDACs)
[4–6]. HATs catalyze the transfer of the acetyl moiety of the
substrate acetyl-coA to the ε-amino group of lysine residues
on histones. This neutralizes the positive charge of histones,
weakening their interaction with the negatively charged
DNA. This results in a more relaxed, transcriptionally per-
missive chromatin conformation [7, 8]. HDAC enzymes
remove acetyl groups from histones resulting in a more con-
densed, transcriptionally repressive chromatin state [4, 5].

The 18 mammalian HDAC enzymes identified to date
are categorized into two distinct groups. The class III HDAC
enzymes which include the sirtuins 1–7 require nicotinamide
adenine dinucleotide (NAD+) to deacetylate lysine residues
[12, 13]. These have been implicated with numerous diseases
and in the process of aging [14]. The remaining 11 enzymes
are typically known as the classical HDAC enzymes and will
be the focus of the remaining of this paper [9]. An intense
interest in function and pharmacological manipulation of
these enzymes rapidly followed the initial cloning and
characterization of the first human HDACs in the 1990s [15–
23]. The different isoforms of the classical HDAC enzymes
have undergone extensive phylogenetic analysis and are
grouped into three different classes (Figure 1) [10]. Class
1 enzymes consisting of HDAC1, 2, 3, and 8 which share
similarity with the yeast transcriptional regulator RDP3
are primarily localized in the nucleus [9, 10]. They are
expressed ubiquitously and have important functional roles
in regulating cellular proliferation and survival [11, 24]. In
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Figure 1: Evolutionary relationship between the classical histone deacetylase enzymes (HDACs). The HDAC superfamily form evolutionary
distinct groups according to their sequence homology to yeast. Class I enzymes share similarity with the yeast, reduced potassium
dependency-3 (Rpd3), and consist of HDAC1, 2, 3, and 8. Rpd3 is most homologous to HDAC1 and HDAC2. The class II HDACs share
homology to the yeast, histone deacetylase-1 (Hda1), and enzymes in this class form two separate subclasses. Class IIa is comprised of
HDAC4, 5, 7, and 9; class IIb consists of HDAC6 and 10. Hda1 is most closely related to HDAC6. The phylogenetic tree shows that HDAC11
does not share enough homology with class I or class II HDACs so forms class IV and shares some identity to both Rpd3 and Hda1. The
percentage of HDAC amino acid sequence identity/similarity to that of Rpd3 or Hda1 is shown in brackets, for HDAC11 the sequence
identity/similarity to Hda1 is shown and to Rpd3 is given in brackets. The HDACs have a conserved deacetylase (DAC) domain with the
C- and N-terminal tails represented as black lines. Nuclear localization signals, the myocyte enhancer factor-2- (MEF2-) binding domains,
and the 14-3-3 chaperone-binding motifs with serine phosphorylation sites are shown. The number of amino acid residues of the longest
isoform of each HDAC is shown on the right, and the chromosomal site of each HDAC is shown in brackets. H. sapiens: Homo sapiens; S.
cerevisiae: Saccharomyces cerevisiae; SE14: Ser-Glu-containing tetradecapeptide repeats; ZnF: ubiquitin-binding zinc finger domain. Adapted
from [9–11].

contrast, class II HDAC enzymes, which share homology
with yeast Hda1, shuttle between the cytoplasm and nucleus,
and they have more restricted tissue-specific expression
patterns and regulatory functions [25, 26]. Class II enzymes
are further subdivided into class IIa (HDAC4, 5, 7, and
9; shuttle between nucleus and cytoplasm) and class IIb

(HDAC6 and 10; mainly cytoplasmic) [25, 26]. The functions
of the different isoforms of HDAC enzymes have been
reviewed recently [25, 26]. Of particular interest is HDAC6, a
major cytoplasmic deacetylase which has been relatively well
characterized, at least in part, because of work with tubacin,
a specific inhibitor [27]. Numerous nonhistone protein
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targets for HDAC6 have been identified including α-tubulin,
cortactin, other chaperones, and peroxiredoxins [28–30].
An important role in cellular proliferation and survival
has made HDAC6 an important target for cancer therapy.
Recent findings have indicated the combined cytotoxic and
apoptotic effects of the specific HDAC6 inhibitor tubacin
with conventional chemotherapeutic agents in cancer but not
normal cells [27]. Further, it has been shown that HDAC6
is an important target for protection and regeneration
following central nervous system injury [29]. HDAC11 is the
only member of class IV sharing similarity with both class
I and class II enzymes [9]. Recent evidence indicates that
HDAC11 has immunomodulatory roles [31].

2. Histone Deacetylase Inhibitors

Several different structural groups of compounds are known
to possess HDAC inhibition activity. The most widely inves-
tigated HDAC inhibitor is the prototypical hydroxamic acid,
Trichostatin A [32]. Trichostatin A is a potent antifungal
antibiotic that was isolated from a metabolite of Streptomyces
hygroscopicus [32]. It is a potent broad-spectrum HDAC
inhibitor with cell-free assays indicating a relatively high
affinity for all of the class I, II, and IV enzymes [4, 33].
Another example of a hydroxamic is the clinically avail-
able suberoylanilide hydroxamic acid (SAHA, Vorinostat,
Zolinza) [34]. Like Trichostatin A, SAHA is a potent broad-
spectrum HDAC inhibitor. Given its potent anticancer effects
and favorable therapeutic window, SAHA was approved
by the US Food and Drug Administration (FDA) for the
treatment of advanced cutaneous T-cell lymphoma (CTCL)
in 2006 [34]. Other hydroxamic acids currently in clinical
trials include belinostat (PXD101), panobinostat (LBH589),
and givinostat (ITF-2357) [26, 35]. This class of compounds
possesses HDAC inhibition activity in the nanomolar to low
micromolar range [26, 35].

The cyclic peptides which include trapoxin and dep-
sipeptide are also potent HDAC inhibitors. Depsipeptide
(Romidepsin, Istodax) has also been approved by the FDA
for the treatment of CTCL in 2009 [36]. Similarly, the
benzamides which include entinostat (MS-275, SNDX 275)
and MGCD0103 are potent HDAC inhibitors with activity
in the low micromolar range [25, 34, 35]. The least potent
class of HDAC inhibitors is the aliphatic acids which possess
activity in the millimolar range [37]. This group includes
valproic acid, a compound that has been used extensively
in the clinic as an antiepileptic drug [38–40]. We have
used another example of an aliphatic acid, sodium butyrate,
to highlight the anticancer effects of histone deacetylase
inhibitors (Figure 2).

Briefly, HDAC inhibitors result in the accumulation of
hyperacetylated histones and have been shown to alter the
expression of approximately 2–20% of genes in malignant
cell lines [4, 33, 41, 42]. Overall, HDAC inhibitors have been
shown to decrease cellular proliferation, induce cell death,
apoptosis, and differentiation, cause cell cycle arrest (G1 at
lower concentrations and both G1 and G2/M at relatively
high concentrations), and decrease migration, invasion, and

angiogenesis in malignant and transformed cell lines [4,
33, 41, 42]. The effects of HDAC inhibitors are much less
pronounced, by at least a factor 10, in normal cells providing
the basis of their clinical utility in cancer [43]. To potentially
improve the therapeutic index of HDAC inhibitors in cancer
therapy, class-selective or isoform-specific compounds have
been suggested. In this context, isoform-specific tubacin
and PC-34051 which selectively inhibit HDAC6 and HDA8,
respectively, are examples. Both compounds have recently
been shown to possess anticancer effects [27, 28, 44].
However, the issue of selectivity remains controversial with
arguments suggesting that the pleiotropic effects of broad-
spectrum HDAC inhibitors, which are generally well tol-
erated, may be advantageous for cancer therapy given the
heterogeneity and adaptability of malignant cells. However,
it is generally accepted that selective compounds will most
likely be more beneficial for nononcological applications
of HDAC inhibitors which potentially include treatment
cardiac hypertrophy, asthma, and various neurodegenerative
disorders [45–52].

3. Combinatorial Therapies with Histone
Deacetylase Inhibitors

Although they possess intrinsic anticancer effects, it is widely
accepted that HDAC inhibitors will be most effective when
used in combination with other cancer modalities. There
are numerous combinations that are currently undergoing
preclinical and clinical evaluation. These include combina-
tions with methyltransferase inhibitors such as azacitidine,
receptor-mediated cytotoxics such as retinoic acid, and
phototherapy [53–57]. To highlight the advantages and po-
tential complexities, here we will focus on combinations of
HDAC inhibitors with the conventional anthracycline chem-
otherapeutics and radiotherapy (Figure 3).

The anthracyclines, typified by daunomycin and its
structural analogue doxorubicin, are front-line cancer chem-
otherapeutic agents with a clinical history spanning more
than 50 years [58]. They are well-known DNA intercalators
and topoisomerase II enzyme inhibitors. The mechanisms of
action of anthracyclines involve inhibition of RNA synthesis,
generation of reactive oxygen species, and accumulation of
DNA lesions including the particularly lethal, DNA double-
strand breaks [58, 59]. A plethora of studies have shown
that HDAC inhibitors can potentiate the cytotoxic effects of
anthracyclines. For example, Trichostatin A has been shown
to augment doxorubicin-induced apoptosis and cell death
in human erythroleukemic K562 cells, anaplastic thyroid
carcinoma, and A549 alveolar adenocarcinoma cells [60,
61]. Similarly, SAHA and valproic acid have been shown
to enhance the sensitivity of malignant cells to the effects
of doxorubicin [62, 63]. HDAC inhibitors induce histone
hyperacetylation, resulting in a more open transcriptionally
permissive chromatin conformation, a phenomenon that has
been verified by MNase digestion assays [64]. In addition, it
has been shown that HDAC inhibitors increase the number
of binding sites and also the affinity of those sites for
anthracyclines in acetylated chromatin [65]. Therefore, it
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Figure 2: Continued.
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Figure 2: Overview of the biological effects of histone deacetylase (HDAC) inhibitors in malignant and transformed cells, using sodium
butyrate (NaB) as an example. (a) Simplified schematic representation of the molecular pathways accounting for the clinical potential of
HDAC inhibitors in cancer therapy. The acetylation status of histones is regulated by the opposing actions of histone acetyltransferases
(HATs) and HDACs. HDAC inhibitors mediate anticancer effects through histone-hyperacetylation-mediated changes (Δ) in the expression
of certain genes and by directly interacting with numerous key intracellular nonhistone proteins including α-tubulin, heat-shock protein
90, and Ku70. HDAC inhibitors result in transcriptional activation and repression of 2–20% of genes; some of which are associated with
differentiation, cell cycle arrest, apoptosis, growth inhibition, and cell death as well as inhibition of cancer cell migration, invasion, and
angiogenesis. (b) Biological effects of sodium butyrate (NaB) in cancer and normal cells. (i) Sodium butyrate causes hyperacetylation of
histones in H9c2 cardiac myocytes. Cells were differentiated with 10 nM all-trans-retinoic acid for 7 days in low serum media, before 24-
hour incubation with 2 and 5 mM sodium butyrate. Total cell lysates were immunoblotted for acetylated histone H3, and unmodified histone
H3 was used as a loading control. (ii) Sodium butyrate causes reduced cell viability in K562 human erythroleukemic cells and H9c2 cardiac
myocytes. Cells were treated with the indicated concentrations of sodium butyrate for 24 hours, and relative cell viability was measured
using the Cell Titer blue (Promega) assay kit. (iii) Sodium butyrate induces apoptosis in K562 cells. Cells were treated with 10 mM sodium
butyrate for 24 hours, and caspase 3/7 activity was measured using the Apo-ONE Homogeneous (Promega) assay kit. (iv) Sodium butyrate
causes K562 cells to arrest in the G1 phase of the cell cycle. Untreated cells (top) and cells treated with 5 mM sodium butyrate (bottom) for
24 hours were stained with propidium iodide, and the cell cycle distribution was examined by flow cytometry.
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Figure 3: Molecular pathways accounting for the additive and/or synergistic effects of combinations of HDAC inhibitors with
chemotherapeutics or radiation. (a) Simplified schematic representation. Additive and/or synergistic cytotoxic effects with the use of
combinations of HDAC inhibitors and chemotherapeutics may be the result of histone-acetylation-mediated changes in chromatin
conformation per se (particularly in the cases where combinations with DNA targeting drugs such as anthracyclines, which require
accessibility to DNA, are used). Similarly, HDAC inhibitors may enhance the cytotoxic effects of ionizing and ultraviolet (UV) radiation
by increasing the accessibility of DNA to damage. A further mechanism involves HDACi-mediated regulation of gene transcription—
in particular decreased expression of genes for Ku70, Ku86, DNA-PKcs, and Rad51 which are key components of double-strand break
repair pathways. Paradoxically, HDAC inhibitors have been shown to protect from the effects of ionizing radiation in vivo by decreasing
the expression of inflammatory cytokines such as tumor necrosis factor, TNF-α, and fibrogenic growth factors such as TGF-β1 and TGF-
β2. (b) Trichostatin A (TSA) augments DNA damage induced by DNA-targeted phototherapeutics (UVASens), ionizing radiation, and
chemotherapeutic agents. In the example shown, DNA double-strand break formation was as assessed by staining for γH2AX foci. Cells
were treated with 1 μM TSA for 24 hours prior to one-hour incubation with 0.1 μM UVASens. Cells were then irradiated with 10 J/m2 UVA

and incubated for a further one hour before staining for γH2AX. Appropriate 10 J/m2 and UVASens only controls are also depicted. In
separate experiments, cells were treated with 1 μM TSA for 24 hours prior to irradiation with 2 Gy (137Cs). Cells were stained for γH2AX
foci one hour after irradiation. In other experiments, cells were treated with 1 μM TSA for 24 hours prior to one-hour incubation with 1 μM
doxorubicin. Cells were washed and incubated for a further 24 hours prior to staining for γH2AX.
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may be speculated that HDAC inhibitors may augment
anthracycline-induced cell death, at least in part, by chang-
ing the chromatin architecture. However, HDAC-inhibitor
mediated changes in gene expression and alteration of
the function of nonhistone substrates is also involved as
highlighted by studies with isoform-selective inhibitors [4,
25–27].

The additive and/or synergistic cytotoxic effect provides
the basis for the clinical trials using combinations of histo-ne
deacetylase inhibitors and anthracyclines for various malig-
nancies [35]. However, potential complications have been
identified. For example, depsipeptide has been shown to
upregulate the MDR1 gene in leukemia cells resulting in
resistance to doxorubicin [66]. Expression of the MDR1-
encoded, P-glycoprotein pump, is well known to result in
multidrug resistance, a major clinical problem in oncology,
and the potential for reversal of repression of the MDR1
gene in malignant cells by a variety of HDAC inhibitors
has been indicated by further studies [67]. In contrast,
other more recent studies have indicated that HDAC
inhibitors may suppress the expression of ABC transporters
highlighting that this issue requires further clarification
[68].

Another potential complication with the use of HDAC
inhibitors is cardiac toxicity. Studies have shown that
broad-spectrum HDAC inhibitors may possess cardiotoxic
activity per se [69, 70]. Further studies have shown that
pretreatment with HDAC inhibitors potentiates the DNA
damaging and cytotoxic effects of doxorubicin in cell
culture systems [71, 72]. It is well known that the dose-
limiting side effect of anthracyclines is irreversible cardiac
toxicity due to the generation of reactive oxygen species
including the damaging hydroxyl radicals and hydrogen
peroxide [73]. Cardiomyocytes are particularly susceptible
given that they have relatively low levels of superoxide anion
and hydrogen peroxide detoxifying enzymes compared to
other cell types [73]. Studies using hypertrophic responses
and induction of DNA double-strand breaks as endpoints
have indicated that the broad-spectrum HDAC inhibitors,
Trichostatin A, valproic acid, and sodium butyrate, aug-
ment the effects of doxorubicin [71, 72]. Similarly, in vivo
studies highlight the controversies regarding the biology
of HDAC inhibitors in the heart. For example, recent
findings demonstrate that Trichostatin A and valproic acid
protect from load- and agonist-induced cardiac hypertrophy
in vivo [74, 75]. However, contrasting findings indicate
that Trichostatin A worsens right ventricular dysfunc-
tion induced by pulmonary artery banding in rats [76].
Given these potential complications, combinatorial effects
of more selective or isoform-specific HDAC inhibitors
with conventional therapeutics may provide a therapeu-
tic advantage. In this context, a recent study identified
that the HDAC6-selective compound, tubacin, potentiates
the effects of doxorubicin and etoposide in transformed
cell lines [27]. Further evaluations in this direction are
anticipated.

4. Combination of Histone Deacetylase
Inhibitors with Radiotherapy

Early studies indicated that the short-chain fatty acid,
sodium butyrate, potentiates colon and nasopharyngeal
cancer cells to the cytotoxic effects of ionizing radiation
[77–80]. Although an unusual mechanism was used to
describe the effect, a further study indicated that the
prototypical HDAC inhibitor, Trichostatin A, also enhances
the radiosensitivity of malignant cells [81]. Further studies
have corroborated these findings indicating that virtually
all broad-spectrum HDAC inhibitors including Trichostatin
A, SAHA, depsipeptide, sodium butyrate, phenylbutyrate,
tributyrin, and valproic acid potentiate radiation-induced
cell death in malignant cells [82–90]. At relatively high
concentrations of HDAC inhibitor, dose modification factors
(ratio of radiation doses in HDAC-inhibitor-treated and
-untreated cells that yield the same level of survival) of ∼2
have been observed [88]. At these higher concentrations, cell
cycle arrest (G1 and G2), inhibition of DNA synthesis, and
induction of apoptosis by the HDAC inhibitors has been
speculated to account for the radiation sensitizing effect [85–
88]. At relatively lower HDAC inhibitor concentrations, a
radiation sensitizing effect is also observed. A number of
studies have established an association between HDAC inhi-
bition and proteins involved in signal cascades in response
to DNA damage [83, 84, 87, 91–93]. In summary, the
radiation sensitizing effects of HDAC inhibitors may involve
the following mechanisms. Firstly, histone hyperacetylation
changes chromatin architecture resulting in a more open
chromatin confirmation, which may be more susceptible
to initial radiation-induced DNA damage. Further, HDAC
inhibitors may interact with key signal transduction proteins
involved in DNA damage response pathways. Finally, HDAC
inhibitors have been shown to regulate transcription of
genes involved in the DNA double-strand break repair
pathway. For example, it has been shown that pretreat-
ment with SAHA attenuates the radiation-induced increase
in the DNA repair proteins Rad51 and DNA-PKcs [90].
Similarly, sodium butyrate has been shown to decrease
the expression of the DNA repair proteins Ku70, Ku86,
and DNA-PKcs in melanoma cell lines [83]. In addition,
using bleomycin, doxorubicin, and etoposide to induce
DNA double-strand breaks as assessed by accumulation of
γH2AX foci, it has been shown that histone deacetylase
inhibitors target Ku70 acetylation resulting in sensitization
[94].

In the context of combinations with radiotherapy, val-
proic acid which has long clinical history in the treat-
ment of epilepsy is important [89]. Preclinical studies
have indicated that the HDAC inhibitor sensitizes human
glioma cell lines to the effects of ionizing radiation (X-
rays) both in vitro and in vivo [89]. As reviewed recently,
valproic acid has been combined with the alkylating
agent temozolomide and radiation for the potential treat-
ment of glioblastoma multiforme. The strategy is cur-
rently undergoing evaluation in a phase II clinical trial
[95].
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5. Radioprotective Effects of Histone
Deacetylase Inhibitors

Paradoxically, emerging evidence is indicating that HDAC
inhibitors possess radioprotective activities. Early studies
indicated that pretreatment with phenylbutyrate offers a
modest radioprotective effect in human normal and cancer
cells [96]. Further studies indicated that phenylbutyrate
protects from cutaneous radiation syndrome in vivo
[97, 98]. The radioprotective properties of HDAC inhibitors
is thought to involve repression of inflammatory
cytokines (e.g., interleukin- (IL-) 1, IL-8, tumor necrosis
factor- (TNF-)α) and fibrogenic growth factors (e.g.,
transforming growth factor- (TGF-)β) [97, 99–101]. These
are known to be involved in the inflammatory response
to radiation and particular, prolonged secretion of TNF-α
and TGF-β from epithelial, endothelial, and connective
tissue cells is implicated in cutaneous radiation syndrome
[102]. In addition to phenylbutyrate, the broad-spectrum
HDAC inhibitors Trichostatin A and valproic acid have been
shown to protect from radiation-induced skin injury and
from radiation-induced lethality in mice [103]. These effects
were also correlated with decreased TNF-α, TGF-β1, and
TGF-β2 expression [97]. Further research in this direction
with phenylbutyrate has indicated that the HDAC inhibitor
can protect mice from acute γ-radiation-induced lethality.
The effects were correlated with an attenuation of DNA
damage and apoptosis [104]. Interestingly prophylactic
and postirradiation administrations of phenylbutyrate
afforded radioprotection presenting interesting potential
clinical applications. Prophylaxis would be appropriate
for radiotherapy prior to exposure to irradiation, and
postirradiation administrations would appropriate in cases
of inadvertent radiation exposure.

6. Conclusions

HDAC inhibitors have emerged as an important new class of
anticancer therapeutics. Although they possess potent cyto-
toxic and apoptotic effects alone, it is anticipated that they
will be most useful when used in combination with other
cancer modalities. This is reflected by the majority of current
clinical trials which predominantly involve combinations of
HDAC inhibitors with conventional chemotherapeutics and
radiotherapy. An important question in the field remains
on whether class-selective or isoform-specific compounds
will have a greater therapeutic efficacy than the classical
broad-spectrum HDAC inhibitors. Broad-spectrum HDAC
inhibitors have pleiotropic anticancer effects, and this may
be advantageous given the heterogeneity and adaptability
of malignant cells. On the other hand, class- or isoform-
selective compounds may offer a greater therapeutic window
with decreased off-target effects. There is currently an intense
research effort aimed at further understanding the function
of HDAC enzymes, and there is an increasing availability of
more specific compounds. Therefore, it is anticipated that
the issue of selectivity will be clarified, perhaps opening

further opportunities for clinical translation of this class of
compounds.
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