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Hematopoiesis is the main function of the liver during a considerable period of mammalian prenatal development. Hematopoietic
cells of the fetal liver exist in a specific microenvironment that controls their proliferation and differentiation. This
microenvironment is created by different cell populations, including epitheliocytes, macrophages, various stromal elements
(hepatic stellate cells, fibroblasts, myofibroblasts, vascular smooth muscle and endothelial cells, mesenchymal stromal cells),
and also cells undergoing epithelial-to-mesenchymal transition. This paper considers the involvement of these cell types in the

regulation of fetal liver hematopoiesis.

1. Introduction

In mammals, the liver serves as the main hematopoietic
organ during a considerable period of prenatal ontogeny. In
murine liver, for example, hematopoietic cells first appear
in 10-day embryos, with hematopoietic function of the
organ reaching a peak on embryonic days 13-14 and ceasing
during the first 2—4 postnatal days [1, 2]. Hematopoiesis
requires specific microenvironment that produces chemical
signals to attract hematopoietic cells and regulates their
proliferation and differentiation via contact and humoral
interactions. The hematopoietic microenvironment of the
fetal liver is created by a complex of cell types, including
epitheliocytes, resident macrophages, and several stromal
cell populations of mesenchymal origin such as hepatic
stellate cells, fibroblasts, myofibroblasts, vascular smooth
muscle and endothelial cells, and mesenchymal stromal
cells (MSCs). Let us consider the roles of different cell
components of this microenvironment in the maintenance
of hematopoietic activity in the developing liver.

2. Liver Epithelium

At early stages of liver development, its epithelium is
represented by bipotent hepatoblasts, which subsequently

differentiate into hepatocytes and cholangiocytes [1, 2]. Hep-
atoblasts can be identified by the simultaneous expression of
both hepatic (cytokeratin 18, albumin) and biliary epithelial
markers (cytokeratin 19) and also of E-cadherin [3]. The
morphology and phenotype of liver epithelial cells change
in the course of development, and these changes correlate
with hematopoietic activity [4, 5]. Cells of the hepatocyte
lineage appear to play an important role in the regulation
of erythropoiesis: they closely interact with erythroblasts [5]
and produce erythropoietic cytokines such as stem cell factor
and erythropoietin [6, 7].

Localization of megakaryocyte lineage cells among hepa-
tocytes described in human fetal liver [8] and thrombopoi-
etin production by some lines of murine hepatocytes [9]
both suggest a contribution of the hepatic epithelium to the
control of megakaryocytopoiesis.

The involvement of the epithelium in maintaining the
hematopoietic function of the liver is confirmed by the
existence of hepatoblast and hepatocyte cell lines capable of
supporting hematopoiesis in long-term culture via secretion
of cytokines [9] or adhesive interactions with hematopoietic
progenitor cells [10]. The biliary epithelium can also support
both long-term proliferation of hematopoietic cells and pro-
duction of committed erythroid or granulocyte/macrophage



progenitors by means of contact interactions via liver-
regulating protein that is expressed on the surface of the
epitheliocytes [11].

3. Macrophages

In the developing liver, macrophages first appear in sinu-
soids. At the stage of active liver hematopoiesis, they migrate
to the parenchyma to form erythroblastic islands consist-
ing of a central macrophage surrounded by erythroblasts
and sparse lymphocytes [12, 13]. The interaction of ery-
throid cells with macrophages mediated by the erythroblast
macrophage protein (Emp) is necessary for their enucleation
[14]. Moreover, macrophages express vascular cell adhesion
molecule VCAM-1, which also mediates their adhesive inter-
actions with erythroblasts [15], and jagged-1, a ligand for the
Notch signal system involved in regulation of hematopoiesis
[13]. The central macrophages of erythroblastic islands
degenerate as hematopoiesis in the liver ceases [12].

Another population of macrophages in the fetal liver
consists of Kupffer cells, which line the sinusoids. Some
recent findings suggest that they derive from the yolk sac
and are not a progeny of definitive hematopoietic stem cells
[16]. Their functions in the maintenance of hematopoiesis
consist in phagocytosis of the nuclei extruded from late-stage
erythroblasts [17, 18] and secretion of erythropoietin [19].
The presence of dividing and maturing erythroblasts in the
vacuoles of Kupffer cells, which has been observed in the
fetal liver [18], may also indicate the role of these cells in the
regulation of erythropoiesis.

4. Hepatic Stellate Cells

The hepatic stellate cells, or Ito cells, are located in the
perisinusoidal space of Disse. Quiescent stellate cells contain
retinoid lipid droplets. When activated, they lose these
droplets and acquire morphological and phenotypic feature
characteristics of myofibroblasts, including the expression of
smooth muscle actin [20]. Activation of stellate cells occurs
upon liver damage [21, 22]. They also become activated in
monolayer cultures but remain quiescent when cultured on
collagen gel [21].

The stellate cells of the fetal liver express desmin [23, 24],
p3-integrin, nestin [24], CRBP-1 [25], N-CAM [26], and
reelin [27]. Some researchers consider that these cells are
derived from mesenchymal cells of septum transversum,
which form the submesothelial layer under the liver capsule
[26, 28, 29], but their epithelial origin cannot be excluded
[30]. The number of hepatic stellate cells increases in the
course of development [25]. In the fetal period, they are
associated with hematopoietic cells [23] and apparently
regulate hematopoiesis by secreting chemoattractants (such
as stromal cell-derived factor-1) as well as by means of
contact interactions mediated by VCAM-1 [24]. Hepatic
stellate cells are also known to secrete erythropoietin [6]
and stem cell factor [31]. Therefore, these cells can be
regarded as an important component of the hematopoietic
microenvironment.
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5. Fibroblasts and Myofibroblasts

In either adult or fetal liver, fibroblasts (myofibroblasts) are
located in the region of portal triads [20, 25], around central
veins, and in the Glisson capsule [22] or, in the fetal liver,
in the submesothelial layer of mesenchymal cells [29]. Portal
myofibroblasts express smooth muscle actin and desmin and
are morphologically similar to activated stellate cells [20, 32].
However, they are not related by origin to hepatic stellate
cells [19, 32]; unlike the latter, they express CD90 [32, 33],
gremlin [33], fibulin-2, and interleukin-6 [34] but do not
express reelin [35].

Perivascular fibroblasts of the fetal liver are cells of meso-
dermal origin [29]. All stromal cells of portal triads at early
developmental stages express smooth muscle actin, but they
are subsequently substituted by fibroblasts characteristically
expressing vimentin (but not smooth muscle actin) [25].
Thus, myofibroblasts disappear during development and are
absent in the normal adult liver [22].

Morphological and immunohistochemical analysis of
fetal liver reveals myelopoiesis mainly around the blood
vessels, that is, in places where the fibroblasts and myofi-
broblasts are located [8, 36]. These findings may reflect their
important role in the regulation of myeloid differentiation.
However, the role of myofibroblasts and fibroblasts in the
regulation of hematopoiesis has not been studied sufficiently.
Some data suggest their involvement in organizing the
hematopoietic microenvironment by producing extracellular
matrix components, including fibronectin and collagen [37].
Adhesion to fibronectin appears to stimulate proliferation
of both hematopoietic stem/progenitor and erythroid cells
[38, 39], which is confirmed by correlation between the
content of this protein in the periportal region and the
activity of hematopoiesis in human fetal liver [40]. In murine
fetal liver, myeloid cells are associated with perivascular and
subcapsular collagen, that may suggest a significance of its
production by stromal cells for supporting myelopoiesis [5].

6. Myoid Cells

Differentiated smooth muscle cells in the human fetal liver
have been found only in the tunica media of hepatic artery
branches [25]. However, the fetal mouse liver has served as
the source of numerous stromal cell lines expressing markers
of different stages of smooth muscle cell differentiation.
Many of these lines, especially those at early or middle
differentiation stages, can maintain hematopoiesis in long-
term culture and probably correspond to pericytes located
around venous capillaries [41, 42]. Immature cells of this
lineage are likely to produce hematopoietic cytokines, as it
has been shown for myoid cells of bone marrow stroma [43],
whereas more mature (contractile) cells may control migra-
tion of hematopoietic cells by modifying the permeability of
intercellular spaces between endotheliocytes [42].
Unexpectedly, the fetal liver in different species has
proved to contain precursor cells of skeletal muscles showing
spontaneous fusion into myotubes in vitro [44—46]. These
cells may enter the liver and other organs of the embryo
when they migrate from the dermomyotome to populate
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areas where skeletal muscles are to be formed. However, in
view of the data that skeletal myoblasts secrete a wide range of
regulatory molecules, including stromal cell-derived factor-
1 and hematopoietic cytokines such as macrophage colony-
stimulating factor [47], their specific role in the maintenance
of liver hematopoiesis cannot be excluded.

7. Vascular Endothelium

The endothelium of blood vessels in different parts of fetal
liver acini differs in structure: it forms a continuous layer
in portal vessels but is fenestrated in central veins [48].
Regarding the hematopoietic function of the liver, of special
interest is the endothelium of sinusoids, which mature blood
cells must penetrate to enter the circulation. The sinusoids
at early stages of development are lined with a continuous
endothelium, but its structure subsequently changes so that
it becomes highly permeable to blood cells and regulatory
molecules. The basal membrane disappears, composition
of the extracellular matrix changes [49], and diaphragmed
or open fenestrae, intercellular fissures, and temporary
migration pores are formed [17, 48]. The porosity of the
sinusoidal endothelium decreases by the end of prenatal
ontogeny, when its structure and phenotype approach those
in the adult liver [48, 49].

Due to the expression of cell adhesion molecules such
as E-selectin and VCAM-1 [50, 51] and chemoattractants
such as stromal cell-derived factor-1 [52], the sinusoidal
endothelium in the fetal liver can control the homing of
hematopoietic cells, their retention in the niche, and release
into the circulation. In the fetal liver, hematopoietic stem
cells interact with the sinusoidal endothelium via activated
protein C. This interaction facilitates self-renewal of the
stem cells and prevents their apoptosis [53]. Moreover,
endothelial cell lines or medium conditioned by them main-
tain in vitro differentiation of erythroid and granulocyte-
macrophage lineage cells [54, 55], which is evidence for
the ability of endotheliocytes to regulate hematopoiesis via
contact interactions with hematopoietic cells and secretion
of cytokines. Fetal liver endothelial cells can also promote B-
lymphopoiesis from primitive hematopoietic cells [51].

8. Mesenchymal Stromal Cells (MSCs)

Multipotent MSCs are plastic-adhesive cells with a specific
antigenic phenotype (for human cells, CD105* CD73*
CD90* CD45~ CD34~ CD14- CD11b- CD79a- CDI19~
HLA-DR™) and potential for osteogenic, adipogenic, and
chondrogenic differentiation [56]. They were first identified
by Friedenstein et al. [57] in the mouse bone marrow,
spleen, and thymus as fibroblast colony-forming units. To
date, MSCs have been revealed in many organs (including
the fetal liver), where they apparently reside in vascular
walls [58]. MSCs of the fetal liver have certain distinctive
features, compared to such cells from other organs. Thus,
they show higher proliferative activity than MSCs from
the adult bone marrow [59, 60], but their osteogenic and
adipogenic potential is lower [61]. With respect to osteogenic
capacity, they are also inferior to MSCs from other fetal
organs [62, 63].

In the course of embryonic development, MSC suppos-
edly migrate to the liver from the aortic-gonad-mesonephros
region [64], although their de novo formation from the
septum transversum mesenchyme is also possible. The
amount of these cells in the liver changes during devel-
opment in correlation with hematopoietic activity [65-67],
which is evidence for their important role in organization
of the hematopoietic microenvironment. The cessation of
hematopoiesis in the liver is accompanied by a decrease in
not only the number of MSCs but also in their proliferative
activity [59] and differentiation potential [67].

In the fetal liver, MSCs are a probable source of stromal
cells similar in their characteristics to smooth muscle cells
[42]; it is also not excluded that they can differentiate into
myofibroblasts [68] and endothelial cells [69]. Apparently,
the role of these cells is not limited to their differentiation
into more specialized components of the hematopoietic
stroma. It has been shown for bone marrow MSCs that
they can produce stromal cell-derived factor-1 [70], interact
with hematopoietic cells via surface molecules (VCAM-1,
cadherins, integrins and, etc.), and regulate their prolifera-
tion and differentiation by secreting wide range of cytokines
[71, 72]. Such regulatory functions are also likely for MSCs
of the fetal liver, although experimental evidence for their
ability to maintain hematopoiesis is as yet scarce [66, 73].

9. Epithelial-to-Mesenchymal Transition (EMT)

In addition to cell populations with distinct epithelial
or mesenchymal phenotypic traits, the developing liver
contains cells undergoing epithelial-to-mesenchymal tran-
sition (EMT), which coexpress mesenchymal markers (e.g.,
vimentin, N-cadherin, Stro-1, osteopontin, collagen type I,
smooth muscle actin), and markers of the liver epithelium
(alpha-fetoprotein, cytokeratins 7, 8, and 18, albumin, E-
cadherin) [74-76]. The apparent sources of these cells
are liver mesenchyme and parenchyma; their origin from
hematopoietic stem cells or pluripotent progenitor cells is
less probable [74]. In particular, coexpression of epithelial
and mesenchymal markers has been described in periportal
liver cells [77], stellate cells [30], and hepatic stem cells [76].

Numerous EMT cells are found in the liver at the stage
of active hematopoiesis, but they gradually disappear during
late prenatal development and are scarce or absent in adult
liver [74, 76]. They are regarded as an important component
of the hematopoietic microenvironment. Thus, cells with
the EMT phenotype maintain the undifferentiated state of
hematopoietic stem cells in vitro [75], and the hematopoietic
supportive ability of EMT clonal cell line AFT024 is lost after
its hepatocytic differentiation induced by oncostatin M [74].
A noteworthy fact is that a major regulatory role is attributed
to fibronectin production by cells of portal triads, which have
certain traits of EMT [77].

10. Stromal Regulation of Hepatogenesis

Hematopoiesis in the fetal liver is coincident with histo-
genesis of its epithelial tissue. Available data indicate that



the stromal cell populations described above take part in
the regulation of hepatogenesis as well as of hematopoiesis.
In particular, there is evidence for secretion of hepatocyte
growth factor by hepatic stellate cells [24], periportal con-
nective tissue cells, and endothelial cells of the fetal liver
[78] and for stimulation of the survival and proliferation of
hepatic stem cells by stellate cells [79] or endotheliocytes [80]
in cocultures. Paracrine signals from stellate cells stimulate
hepatocytic differentiation in vitro [81], and co-culturing
of hepatocytes with a certain fibroblast population induces
them to form hepatic cordlike structures [82]. There is also
evidence that the interaction of portal myofibroblasts and
epithelium is important for the development of intrahepatic
bile ducts [83]. Moreover, hematopoietic cells also affect
hepatogenesis through the production of oncostatin M that
stimulates the functional maturation of hepatocytes [84].

By conclusion, the hematopoietic microenvironment in
the fetal liver is created by a complex of different epithe-
lial and mesenchymal cell types. They produce cytokines,
chemoattractants, extracellular matrix components, and so
forth. and directly interact with hematopoietic cells, thereby
providing for the functioning of the liver as a hematopoietic
organ during a considerable period of prenatal development.
To date, the niche for hematopoietic stem cells in the fetal
liver has been characterized in sufficient detail, but further
studies are needed to gain a deeper insight into the roles of
different cell populations in the regulation of hematopoietic
and hepatocyte differentiation.
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MSCs: Mesenchymal stromal cells
EMT: Epithelial-to-mesenchymal transition.
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