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The possibility of applying the excitonic insulator model to the description of metal-insulator transitions in vanadium oxide
Magneli phases is investigated. Based on the Animalu transition metal model potential, the equation for the constant of Coulomb
interaction in the theory of excitonic insulator is modified. It is shown that this theory allows the transition temperatures of all the
oxides to be calculated. The conformity of the theory with the experimental data concerning the effective mass values for electrons
in vanadium oxides is discussed.

1. Introduction

Studies of metal-insulator transitions (MITs) challenged
the well-established division of materials into metals and
dielectrics according to the type of electron spectrum and
occupation of a band by collective electrons [1]. At present,
one can find quite a few examples of materials “violating”
the abovementioned division. Among those are compounds
exhibiting MITs and revealing properties of either a metal
in certain external conditions (temperature, pressure) or
an insulator in other conditions. The transition between
these two states is generally followed by a drastic change of
electrical conduction (by a few orders of magnitude) as well
as of other physical characteristics.

A lot of transition- and rare-earth-metal compounds
undergo insulator-metal transitions at a particular tempera-
ture, Tt . Of vanadium oxides within the narrow composition
range, from V2O3 to V6O13 (the “Magneli phases” VnO2n−1,
n = 2–9), at least eight show such transitions at different
temperatures [1]. Vanadium dioxide could be formally
included in this pattern with n = ∞, whereas V6O13 belongs
to another homology series (the so-called “Wadsley phases”
V2nO5n−2), the limiting term of which with n = ∞ is
the insulator V2O5.

The surprising thing is that the MIT temperatures in
vanadium oxides, as well as in other oxides of transition
metals, are not calculated in the context of current theories,
unlike superconductivity, where the BCS formula predicts

the value of Tc of many superconducting materials with
sufficient accuracy, at least, for elementary metals and some
compounds, except for the high-Tc superconductors.

In the present work I will try to give some particular
formulae allowing the MIT temperature to be calculated for
transition metal compounds, vanadium oxides, in the first
place. As a matter of fact, there is no end of “true
stories” in the world, in no way remarkable among them.
I would not have bothered the reader with mine, had it
not been for papers [1–4] which played a special part in
all of this. My intention here is to provide some general
formulae for calculating Tt of vanadium oxides on the basis
of the excitonic insulator model [2–8], using the model
pseudopotential concept [8].

2. General Theory of an Excitonic Insulator

To gain an insight into a possible electron spectrum, use
could be made of the scheme offered in [1] that enabled
one to calculate with a high degree of accuracy the Neel
temperature, TN , for all vanadium oxides of the Magneli
series [1, 2]. Each vanadium ion can give for a chemical bond
5 electrons, of which two supplement the p-shell of each of
the (2n− 1) oxygen ions, and, therefore, the number of band
electrons per vanadium atom, ρ, is easy to obtain as

ρ = 5n− 2(2n− 1)
n

= n + 2
n

. (1)
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It is relation (1) that we will apply to calculate the free elec-
tron density (in a metal phase) for each of the compounds in
question.

The concept is based on the excitonic insulator model
often used to describe MITs in various systems, including,
for instance, doped chalcogenides of Sm [9], potassium
molybdenum bronzes [10], and a number of other markedly
different systems [11–14], including vanadium oxides [2–
4, 8, 15].

In the early studies devoted to the excitonic insulator
theory (see, e.g., [5–7] and references therein), it was shown
that the energy gap width of an excitonic insulator is given
by a simple relation that is actually quite similar to the BCS
formula:

Δ = �ω0 exp

(
−1
μ

)
, (2)

where the parameter ω0 is proportional to the plasma
frequency of free carriers, and μ is the constant of Coulomb
attraction. In the weak-interaction approximation in an ideal
model, the latter can be written as [5, 7]

μ = α lnα−2, (3)

where α is a nondimensional variable proportional to ρ−1/3;
in fact, α = (πaHkF)−1, with aH being the effective Bohr
radius, and kF—the Fermi wave vector. Knowing the specific
gravity for each oxide, as well as the value of ρ, it is possible to
determine the charge carrier density from (1), and kF is just
proportional to the latter to the power 1/3.

The precise equation for the constant of Coulomb
interaction is [16]

μ = α
∫ 2kF

0

dk

kε(k)
= α

Ω

4π

∫ 2kF

0
U(k)k dk. (4)

Here ε is the dielectric function of free carriers, and
Ω is a normalizing volume. If we take the potential of
Coulomb interaction between two-point charges as U(k) =
(4π/Ω)/(k2 + λ2), then it is straightforward to obtain an
equation for μ(α) from expression (4). The result is as
follows:

μ = α ln
(

1
α

+ 1
)2

. (5)

Equation (5) virtually agrees with (3) in the limit of
α → 0, but at high values of α (corresponding to low
electron densities), the gap widths obtained from (2) differ
significantly in the cases of μ calculated using (3) and (5), see
[8] and curves 1 and 2 in Figure 1.

Now we consider a system in which the normal ground
state of each atom is a spherically symmetric one-electron
s-state. The exact potential of such an atom is just the empty-
core pseudopotential:

UEC(k) = 4π
k2ε(k)Ω

cos(kR). (6)

Here R is the radius of the empty core (for ordinary electron-
hole interaction, it is equal to the Bohr radius aH if ε
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Figure 1: Δ as a function of α. 1: with μ from (3); 2: (5); 3: (7) with
R = 1 a.u. Curve 3 tends to zero at αc = 0.3-0.4 which corresponds
to the Mott criterion (8).

and m∗/me are equal to unity). The dielectric response
ε(k) characterizes the shielding effect in the Hartree-Fock
approximation with the Lindhard factor g(k) = 1−k2/(2k2 +
k2

F + 2kF/π). Replacing the potential in (4) by the form taken
from (6), we obtain the final form of the constant μ and,
accordingly, the value of the exciton insulator energy gap
width from (2). We thus arrive at the following form of
the constant of Coulomb interaction (introducing another
nondimensional variable x = k/kF):

μ = α

R

∫ 2

0

x cos(Rx/πα)
x2 + 4(α/R)g(x)

dx. (7)

The results of numerical calculations of Δ, with μ taken
from (7), are presented in [8] and shown to comply in this
case with the Mott criterion [14]:

aH

(
ρ

Ω

)1/3

≈ 0.25, (8)

where aH is the effective Bohr radius, and Ω is the volume
per one vanadium atom, that is, (ρ/Ω) is in fact the electron
density. This is where the main difference lies between
the result obtained here and the ones presented in [5, 7] (see
Figure 1 and discussion in [8]).

3. Vanadium Oxides (Magneli Phases)

Next, it has been suggested in [8] that for rather complicated
systems, such as vanadium oxides, it is necessary to use in
(4) a more realistic model pseudopotential (MPP), UMPP(k),
as compared to a simple UEC(k). A model potential of a
transition metal introduced by Animalu [17], for instance,
could act as such a potential, but the effective mass is
not determined in this case and should be considered as a
parameter. Note that m∗ appears in expressions for α, ω0,
and U(k) in (2) and (4).

As was briefly discussed in [8], calculations of the inter-
action constant for vanadium dioxide using (4), with U(k) in
the form of the Animalu MPP for V [17] (see the appendix),
yield the values of Δ in the range of 0.1 to ∼1 eV (depending
on the choice of m∗ in the range of 1 to 10me). This appears
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Table 1: Parameters of vanadium oxides.

Oxide Tt , K α m∗/me

VO Metal — —

V2O3 150 0.462 1.14

V3O5 450 0.505 0.97

V4O7 240 0.526 1.19

V5O9 130 0.541 1.41

V6O11 170 0.551 1.35

V7O13 Metal 0.560 5 (for Tt = 0.1 K)

V8O15 70 0.565 1.67

VO2 340 0.616 1.25

V6O13 150 0.714 1.67
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Figure 2: 1: experimental transition temperatures for vanadium
oxides. 2: calculated Tt ’s using the Animalu potential with m∗ = me,
but with varied valence z (see the appendix). 3: effective masses
(in the units of the mass of a free electron) calculated from the
experimental values of Tt ’s; see also Table 1. 4: parameter α as a
function of the oxygen stoichiometric index, calculated using (1)
and specific gravities of all the oxides.

to be quite an acceptable agreement if the correlation energy
in VO2 is considered to be ∼0.1 eV [15]. It can be shown
that in this case the temperature of the MIT for VO2 is Tt =
Δ/3.53kB = 340 K (which is equal to the experimental value
of Tt [1, 14]) for m∗ ∼ 1.3me. This estimation of m∗ appears
to be quite reasonable (the experimentally obtained values
for vanadium dioxide vary from 0.5 to 3me [1–4, 18, 19]),
and the approach proposed may therefore prove to be an
acceptable model for describing a MIT in vanadium and
other transition-metal oxides. The same is true for lower
oxides VnO2n−1 (except for V7O13): m∗ ∼ (1–5)me, see
Figure 2. The experimental values of Tt for vanadium oxides
are also presented in Table 1, along with the calculated values
of m∗, for the sake of convenience.

Thus, after knowing the effective mass, one can deter-
mine the correlation gap and hence the transition temper-
ature as Tt = Δ/3.53kB, using (4) and BCS-like (2). It should
be however noted that the effective masses are not necessarily
known. Even for the much-studied vanadium dioxide, the
experimental values obtained by various authors differ nearly
by an order of magnitude, as seen above. At the same time
the calculated value of Δ depends rather strongly on m∗ (see
Figure 3). The difficulties and vagueness while determining
an effective mass are well known; these are due to both the
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Figure 3: Transition temperatures calculated with the Animalu
MPP as a function of the oxygen content in vanadium oxides with
m∗ = 1 (1), 1.5 (2), and 2 of me (3).

quality of a sample and the measuring technique. Optical
methods (from measurements of the plasma frequency) and
transport oscilloscopic measurements yield as a rule two
different magnitudes, which is no wonder, since the values
of m∗ of DOS and band m∗ should not necessarily coincide
[19]. Furthermore, in anisotropic substances this physical
quantity depends on direction.

4. Conclusion

It has been shown in the present work that using the
Animalu’s TMMP (transition metal model pseudopotential)
for V , in the context of the excitonic insulator model, it
is possible to calculate correlation energies (from BCS-like
formula (2)) and hence the MIT temperature, Tt = Δ/3.53kB

for vanadium oxides. Fair agreement between the theory
and experiment is observed when choosing the values of
the carriers’ effective mass in the range from 1 to 5 free
electron masses, which does not contradict the well-known
experimental data. The sharp increase of m∗ for V7O13

may be due to the effective mass divergence close to the
MIT (which renders the transition unobservable, drastically
decreasing its temperature nearly to absolute zero).

It is more difficult to apply the technique described
to multicomponent compounds of transition metals, for
example, to CMR manganites or thiospinel Cu(Ir1−xCrx)2S4

[20], where a few kinds of transition metal atoms are
available. In general, it is safe to say that the problem
discussed is in a certain sense more complicated than
the similar problem of Cooper pairing in the theory of
superconductivity, where only two electrons and a virtual
phonon are involved. In the case of an excitonic phase
transition for a d-metal compound, we have to deal with an
electron and not with a point-like positively charged hole (or
an empty core potential), but we should work with a complex
TMMP.

Finally, it should be noted that the problem of the
Mott MIT has recently acquired particular significance (or
“particular popularity”), mainly because of the intensive
studies in the field of MITs in 2D electron gases [21] that
are potentially of great importance for the development of
nanoelectronics. A purely scientific interest should not be
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Figure 4: Transition temperature as a function of α: 1—for z = 5,
2—for z = 1; m∗ = me.

neglected at that. It is important, for instance, to take into
account the results obtained here when studying the effect
of electric field on the Mott MIT in vanadium oxides [22].
As for the transition of a metal to the excitonic insulator
state, it fits well into the framework of a general paradigm
for the Mott MITs.

Appendix

For construction of TMMP, Animalu [17] used the atomic
potential in a modified form of the well-known Heine-
Abarenkov MPP [23]:

VMPP(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−
∑

k

AkPk, for r ≤ Rm,

−z

r
, for r > Rm,

(A.1)

where Pk is a component of the angular momentum
projection operator, and Ak is a parameter representing
the depth of a potential well. These parameters, as well as
Rm and some other constants, were either found ab initio
or fitted from the experimental phonon spectra of transition
metals [17].

The Fourier-image of this potential, UMPP(k) represents
a rather long expression containing the parameters Ak (k =
1, 2, 3), Rm, and a number of other constants which we will
not write here completely. All of these parameters for V were
used in the present work, except for m∗, that is taken in [17]
to be equal to unity for all the metals. Also, the valence z
(which is obviously taken to be equal to 5 for vanadium metal
in [17]) is varied in the present work in compliance with
the real value of z of a vanadium ion in a particular VnO2n−1

compound (see Figure 2, curve 2, and Figure 4).

The calculating procedure consisted in computing Δ
and then Tt for each oxide, using formulae (2) and (4)
with U(k) being the Animalu TMMP, varying m∗ so
that the corresponding adjustment yielded finally the real
(experimental) value of Tt . Note that, in principle, one could
get some unrealistic magnitudes of an effective mass, for
example, 0.001 or 100 of me. Nevertheless, this procedure
yielded, as was said, m∗ ∼ 1me.
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