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The multielectron wave function of an interacting electron system depends on the size of the system, that is, the number of
electrons. Here the question investigated is how the wave function changes for a symmetric Friedel-Anderson impurity when the
volume is doubled. It turns out that for sufficiently large volume (when the level spacing is smaller than the resonance width) the
change in the wave function can be expressed in terms of a universal single-electron state |q) centered at the Fermi level. This elec-
tron state is independent of the number of electrons and independent of the parameters of the Friedel-Anderson impurity. It is even
the same universal state for a Kondo impurity and a symmetric Friedel impurity independent of any parameter. The only require-
ment is that the impurity has a resonance exactly at the Fermi level and that the level spacing is smaller than the resonance width.

This result clarifies recent fidelity calculations.

1. Introduction

In the late 1960s Anderson [1] showed that the potential of a
weak impurity in a metal host changes the total n-electron
wave function of the conduction electrons dramatically.
Actually with increasing number N, of electron states (which
is achieved by increasing the volume) the scalar product
between the wave functions of the n-electron host without
and with the impurity approaches zero. This phenomenon
is generally called the Anderson orthogonality catastrophe
(AOC). In recent years this phenomenon has been somewhat
generalized and decorated with the romantic name fidelity.
The generalization is that one applies the AOC to an arbitrary
system, which depends on one or several parameters A. If
the system consists of electrons then it is described by its
Hamiltonian. The Hamiltonian may contain a term, which is
proportional to a parameter A. Suppose that one can calculate
the ground state of the system for A = 0 and for finite A.
Then the scalar product of the two wave functions is defined
as the fidelity Fy, (0, 1) of the system. Here N. is the number
of conduction electrons states, which is proportional to the
volume. The fidelity depends on the size of the system and
of particular interest is the limit for N, increasing towards

infinity. If Fy, (0, A1) approaches zero in this limit (the thermo-
dynamic limit), then one faces an AOC.

Our group studied recently the fidelity of the Friedel-
Anderson impurity. This is an electron system with a d-atom
as impurity. The energy of the d-electron lies at E; below the
Fermi level. If one removes a d-electron, that is, creates a d-
hole, then the conduction electrons can hop into the empty
d-state with a hopping matrix element V4. The d-hole pos-
sesses a finite life time 74 before it is refilled. Due to Heisen-
berg’s uncertainty principle this life time broadens the energy
level of the d-electron and transforms it into a d-resonance
with a resonance width, which is of the order of h/7;. In
general the properties of a dissolved d-atom are more com-
plicated because the different d-electrons repel each other
due to the Coulomb interaction. In the theoretical investi-
gation of such an impurity one studies (most of the time)
a simplified model of a d-impurity with only two d-states,
a spin-up and a spin-down d-state. Such an impurity was
first studied by Friedel [2-5] and Anderson [6] and I call
it the Friedel-Anderson (FA) impurity. The strength of the
Coulomb interaction U represents a parameter A as intro-
duced in the fidelity. For U = 0 the impurity properties
are much simpler. The impurity has a Friedel resonance at
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FIGURE 1: (a) The electron band of a symmetric Friedel impurity with the d-resonance at the Fermi level. (b) The effective band (density
of states) after turning on the Coulomb repulsion U and setting E; = —U/2. The Friedel resonances are transformed into broad Hubbard
resonances, roughly positioned at E; = —U/2 and E; + U = +U/2, far away from the Fermi level and an extremely narrow Kondo resonance

at the Fermi level.

the d-energy E, in each spin subband and is called a Friedel
impurity.

While the wave function of the FA impurity is quite com-
plex the density of states is simpler and qualitatively sketched
in Figure 1 together with the density of states of a Friedel
impurity. For both impurities the symmetric case is shown.
In the Friedel impurity the resonance is positioned at the
Fermi level (E; = 0). In the FA impurity the d-state energy
is positioned at E; = —U/2 so that E; and (E; + U) lie
symmetrically to the Fermi level. As a consequence there is
an electron-hole symmetry. One obtains two d-resonances at
roughly the energies E; = —U/2 and Eg + U = +U/2 for
spin-up and spin-down. These are known as the Hubbard
resonances, and their width is twice the width of a Friedel
resonance with the same s-d-hopping [7-9]. In addition
one obtains a narrow resonance at the Fermi level, which is
generally called the Kondo resonance (see for example [10]).

Two studies of the fidelity of the FA impurity have been
published recently, one by Weichselbaum et al. [11] and one
by our group [12]. In our investigation we calculated the
fidelity between a symmetric Friedel impurity (E; = 0, U =
0) and a symmetric FA impurity with finite Coulomb repul-
sion U and E; = —U/2. When level spacing 0E is smaller
than the width of the Kondo resonance in Figure 1(b) then
the fidelity did not change any more with increasing N.

In the fidelity calculations one has on one hand to
increase the number of electron states dramatically. On the
other hand one needs to keep the number of states relatively
small because otherwise the numerics requires an unac-
ceptable computer time. These opposing requirements are
optimally fulfilled by an ingenious trick applied by Wilson.
One considers a system with 2V/2 electron states. The con-
duction band is half filled and symmetric to the Fermi level.
For simplicity one assumes a constant density of states and

divides all energies by the Fermi energy. Then the conduction
band extends from (—1 : +1) as shown in Figure 2. In the
next step one divides the lower (and upper) half of the band
geometrically into cells with decreasing, width so that one
obtains an energy frame. In Figure 2 this energy frame has
the values -1, —1/2, —1/4, —1/8, —1/16, —1/32, 0,1/32, 1/16,
1/8, 1/4,1/2, 1 and defines N energy cells &, (in Figure 2 we
have N = 12). The number N is always even because there are
as many negative as positive Wilson states. Each subdivision
adds two states so that the number of subdivisions or
iterations is equal to N/2.

The four energy cells close to the Fermi level (in Figure 2
s, 6, €7, €g) may be considered to possess just one electron
state each. The number of states per cell doubles with each
step away from the Fermi level. (In Figure 2 €, and ¢, have
16 electron states and the whole band has 64.) Wilson reshuf-
fled these electron states in each cell in such a way that one of
them, the state ¢! in the cell ¢,, carried the full interaction
with the d-impurity. The remaining states in the cell have
zero interaction and are neglected. The width of the four
smallest energy cells in the vicinity of the Fermi level deter-
mines the effective energy spacing E = 2~™2D (in units
of the Fermi energy). The effective number of electron states
Nefr is determined by the energy spacing at the Fermi level
and is given by Negg = 2/8E = 2N2 (for details see the
discussion in [12]). According to the construction the num-
ber N of Wilson states in FAIR is always even.

The Wilson states have two great advantages: (i) one can
represent a band of 22 electrons by just N Wilson states and
(ii) one can double the number of electrons by subdividing
the cell directly below and the cell directly above the Fermi
level into two equal halves. So the Wilson spectrum achieves
the trick at doubling the effective number of states by adding
just two states.
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Figure 2: The Wilson description of a conduction band. The
energies are normalized with the Fermi energy. The density of states
is constant. The lower and upper half are subdivided into energy
cells whose size is shrinks by A = 2 towards the Fermi level (at zero

energy).

Suppose that for a half-filled band with (N — 2) Wilson
states we calculate the ground state Wy _, of a given impurity
and then repeat the calculation for a system with N Wilson
states for the same physical parameters, again half filled. The
occupation of each spin band is either (N — 2)/2 or N/2
which I define as n = N/2. The ground state with N Wilson
states has one additional spin-up electron and one additional
spin-down electron. The ground state Wy_, can be easily
expressed in the new basis. If we denote for a moment the
two energy cells next to the Fermi level in the (N — 2)-basis
by €_ and &, then these cells are each split into halfin the N-
basis. Consequently, the amplitude in each of the new states
is just 1/+/2 of the amplitude in the original basis state. So
the state ¥ _, is exactly transferred into the N-state Wilson
basis.

The question in this paper is the following: what is the
relation between ¥y_, and Wy in the range of N where
the fidelity is constant? I arrive at the following result: for
sufficiently large N there is a single-electron state q' such that
Yy ~ q;rqf‘IfN,z with remarkable accuracy. This conclusion
will be derived in detail below. (In this paper I denote single-
electron states such as |q) by their creation operator g.)

The Kondo and the FA-impurity problem have been
exactly solved with the Bethe ansatz [13, 14]. I am told
that it is very hard to extract the wave function from the
Bethe-ansatz. The presently most frequently used numerical
method for the investigation of the FA impurity is the
numerical renormalization group (NRG) theory, which was
developed by Wilson [15] 35 years ago and first applied to the
FA impurity by Krishna-murthy et al. [16] in 1980. It derives
the ground state through a large number of renormalization
steps (of the order of 50 to 100 steps). In each step the
number of Slater states is increased by a factor of 16. (A Slater
state is defined as the product of n single-electron states.)
This yields a huge number of Slater states for the ground state
and only a small number of the order of a few thousand Slater
states are finally included in the calculation performed.

2. Theoretical Background

For the actual calculation I use the FAIR ground state for the
different impurities [17-19]. The FAIR technique has been
developed during the past few years by the author. FAIR
stands for Friedel artificially inserted resonance. The FAIR
ground state represents a very good approximation for the
Friedel-Anderson and the Kondo impurities. It has repro-
duced a number of numerical results with good accuracy and
produced a number of new results, such as the polarization of
the Kondo cloud [20], oscillations in the Kondo cloud [21],
Friedel oscillations of the FA impurity [22], and, in the
magnetic pseudo-ground state, the magnetic moment [23],
which roughly corresponds to the mean field result with half
the Coulomb energy U because of the reduced density of
states in the d-resonances [9]. A review of the FAIR theory
is given in [24].

The singlet ground state of the FA impurity, which
consists of eight Slater states, was used to calculate the fidelity
between the symmetric Friedel and the symmetric FA impu-
rity [12]. Its wave function is essentially the superposition of
two magnetic states Wys with opposite magnetic moment.
The magnetic state (with net spin-up) has the form

Wnst = [Aagrbgl + Bag,d| + Cd b, +Ddid” 1041051 ),
(1)

where al, and b{, are two artificial resonance states or fair
states in the spin-up and spin-down bands. It is defined and
investigated in [9, 23] within FAIR formalism. Its magnetic
moment is |B2 — C?| in units of yp.

The composition, for example, of af, in terms of the N

Wilson states ¢!, is

N
agr = 2“8‘3;' (2)
v=1

The fair states assume the effective interaction with the
impurity. Since the electron system has two spin subbands
one needs two fair states, the state al, for the spin-up
subband and the state b, for the spin-down subband. The
remaining states a}; in the spin-up subband are made ortho-
normal to each other and to al,. In addition their free elec-
tron Hamiltonian matrix (a?T Q|HO| a} Q) is subdiagonalized
(excluding the row and column with al, matrix elements). As
a result the state a, becomes an artificial Friedel resonance.
The fair state al, (and b{,) determines uniquely the remain-

ing band states al, (and b)) for i = 1 which form a new
conduction band with one less electron (for each spin). The
half-occupied bands are represented by

n—1 n—1

04101) = [ [al [ [l @, (3)

i=1 i=1

where n = N/2.
The FA ground state is the normalized superposition of
the magnetic states with net spin-up and net spin-down:

Wss = Wmst + Pust- (4)



The state Wys, is obtained by reversing all spins in (1) (the
spins are ordered in the same fashion as in (1)). The main
numerical task is to find the optimal fair states aj and b]
(which occur now in both spin directions). When this is
achieved by variation the full wave function can be easily
constructed.

The FAIR technique has a number of advantages. (i) Two
single-electron states, the fair states ab and bl, determine the
full bases of the electron bands parallel and antiparallel to the
impurity spin. Each fair state requires only a small number
(of the order of 40) of coefficients agy of Wilson states. (ii) The
ground states for the FA and the Kondo impurity consist of
a small number of Slater states. (iii) The d-state occupations
in the different Slater states are well separated insofar as each
Slater state possesses either zero, one, or two d-electrons.

So far the error margins of the FAIR technique have not
been quantified. However, the quality of reproducing previ-
ous results justifies the use of this rather transparent method
to predict new phenomena and uncover relationships and
coherences, which were not transparent before.

3. Calculation and Results

In this paper I denote the singlet ground state Wss in the basis
of N Wilson states by Wx. For the FA-impurity Wy can be
written as a sum of (eight) Slater states with N/2 spin-up and
N/2 spin-down states. Each Slater state S is the product
of N/2 spin-up and N/2 spin-down electron states (creation
operators applied to the vacuum state (3) and has a coeffi-
cient ag,,. I denote the sum of all these Slater states including
their coefficients by ALQ = Wy. Similarly one can express
the ground state for the (N — 2)-Wilson basis as Wn_, =
Bl ,Q. Then one can multiply the state ¥y with the adjoint
operator of Bf;_,, that is, the corresponding annihilation
operators and form the state

T
[Bl.] ALQ = By 24L0 = aeQl0. (5)

This procedure yields a two-electron state agQiQ with
one electron in each spin. (g is the amplitude and Q} is
normalized.) In the final step I try to express the two-electron
state Q} as the product of a spin-up and a spin-down single-
electron state ¢ and q| with identical orbits:

QI Q — a2qiql Q. (6)

The value ay is the amplitude of the (normalized) state g/.
The absolute value |ag]| is less than or equal to one. This can
be seen in the following way: we form the N-particle state
B;{,,Z QI Q and take the scalar product between B;{,,ZQ; Qand
ALQ =Wy

(Bi_.Qla1a}Q) = (Qla|By.al0)

(7)

(Qla | agQi0) = aq,

where (5) is used. The scalar product is equal to aq. The
absolute value of the scalar product between two normalized
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N-electron states is less than or equal to one. Therefore one
has |ag| =< 1. Under optimal conditions the two-electron
state Q;f can be factored into two single-electron states, that
is, ocQQzT = (aqq;r)(ocqqf)ﬂ. One expects that the coefficient
lag| is also less than or equal to one.

After the two ground states ¥y and Wy, are constructed
in form of eight Slater states the calculation of BN,ZA;{,Q
consists mainly of scalar products between different (n — 1)-
electron states (n = N/2). The latter are determinants of
single-electron scalar products. The resulting coefficients of
(xQQ;rQ form a quadratic (N + 1) X (N + 1)-matrix in terms
of N Wilson states plus one d-state for each spin. In the last
step the two-electron state agQlQ is split into the product
(ocqq;r)(ocqq:r)Q. This procedure is remarkably easy. Already
the square root of the diagonal elements in ag QI Q yields the
absolute value of the coefficients of (ocqqf)ﬂ, and the sign
follows from the nondiagonal elements.

Table 1 shows the value |a| for a number of systems. The
first column gives the impurity, the second the s-d-hopping
strength, and the third column the number N of Wilson
states. There are three different values of N used, N = 42, 32,
and 22. The corresponding values of the smallest energy
spacing are 272 ~ 107, 271° % 3 x 107%,and 271 =~ 103,

For the FA impurities I used U = 1 and E; = —0.5. In all
these cases the split of the two-particle state ocQQ;r Q into two
identical single-particle states with opposite spin worked
very well. The coefficient «, in column four is very close
to one. The fifth column gives the Gaussian deviation E,,
between aqQiQ and (aqqf)(ocqqf)Q. Obviously as soon as
the smallest energy in the Wilson spectrum §E is sufficiently
small compared to the resonance width of the impurity at
the Fermi level then the state gt is well defined and almost
perfectly normalized. This means that the state Wy can be
constructed from the state Wy_; by the relation

Yy = qiq ¥yoo. (8)

In all cases the extracted state gt is mainly composed of
basis states close to the Fermi level. In Table 1 the two last
columns give the amplitudes of the state ' below and at the
new Fermi level in terms of Wilson states. These amplitudes
agree almost perfectly.

Figure 3 shows the coefficients of gt with respect to the
Fermi level for pure Friedel impurities with N = 42 and
very different s-d-hopping strengths |Vi4|®. It also shows
the corresponding coefficients of g for FA impurities with
N = 42 and different | Vy|?* (which yield many orders of
magnitude of different Kondo energies). In addition Figure 3
shows the effect of different N for a FA impurity with
[Val® = 0.05, U = 1, and E; = —0.5. The Kondo energy is
about 3.9 x 107. For N = 22 the smallest energy spacing
is about 1073. Still the N = 22 curve is relatively close to the
universal curve although Table 1 shows that its |ag| = 0.979
is less close to one than for larger N. For values of N where
the smallest level spacing is of the order of the Kondo energy
or larger the value of a; decreases. Then the state ¥y can no

longer be expressed as g! g/ Wy _, and the splitting of Q} into
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TasLE 1: The first column gives the impurity, the second the s-d-hopping strength, the third column the number N of Wilson states. The
fourth column gives the coefficient |a,| of the extracted state q'. The next column gives the Gaussian deviation E,,. The following two

columns are explained in the text.

Impurity

2
|Vsd‘

N

A

Err Cq(_l) Cq(o)

Friedel
Friedel
FA
FA
FA
FA
FA

1074
0.03
0.03
0.04
0.05
0.05
0.05

42
22
42
42
22
32
42

0.995
0.995
0.990
0.998
0.979
0.997
0.998

Kondo J =0.10 42

0.992

1078 0.814

1078 0.813
3 %104 0.814
5x107° 0.814
2x10° 0.812
2x107* 0.814
2x107° 0.812
2x107* 0.8062

—0.528
—0.529
—0.525
—0.528
—0.504
—0.527
—0.533
—0.533

Friedel

0.5

Coefficients

0.5

N =42, |Vy|?

—e— F1x102 <« FA0.03
—s— F1x1073 > FA 0.04
—v— F1x1074 FA 0.05

o FA |Vg4l? =0.05,N =22
* K J=001,N =42

*

Figure 3: This figure shows the coefficients of the state gt for
three different impurities, F: Friedel, FA: Friedel-Anderson, and K:
Kondo. The coefficients are counted from the Fermi level. Most
curves are for N = 42, but one curve is for a FA impurity with
[Vl = 0.05 and N = 22. The curve shown is super-universal
because it is independent of the kind of impurity (F, FA, K),
independent of N, and independent of | V4> and other parameters
as long as there is a resonance exactly at the Fermi level.

two single-electron states with opposite spin becomes mean-
ingless.

I also performed the same calculation for a Kondo
impurity. The parameters are collected in Table 1 as well. The
same behavior is observed. Figure 3 includes the coefficients
of a Kondo impurity with /] = 0.10 and N = 42 as open stars.

The interpretation of the above results is that the com-
plexity of the solutions of the FA and the Kondo impurity
is not felt at energies sufficiently below the Kondo energy.
We know from Wilson’s renormalization calculation that the

structure of the ground state changes dramatically when the
smallest level spacing & is of the order of the Kondo energy.
After this metamorphosis the renormalization approaches
a fixed point. From this behavior Nozieres [25] developed
the Fermi liquid theory of the Kondo impurity (which
applies also to the FA impurity). The present calculation
provides quantitatively a universal state g}, which has to be
incorporated into the ground state for both spins when the
Wilson basis is increased by 2 states. The fact that this is the
same state for any impurity with a resonance at the Fermi
level demonstrates that the Kondo and FA impurities have a
resonance at the Fermi level. The result suggests an induction
rule for the ground state with increasing number of Wilson
states.

The accuracy of relation (8) is given by the scalar product
between the left and right side. This is for the FA impurity
and N = 42 already 0.996 (i.e., equal to |a, |2) and approach-
es the value one with increasing N.

The fact that q' is the same state for any impurity with
a resonance at the Fermi level is at the heart of our earlier
discussed fidelity calculations. The fidelity is the scalar prod-
uct between the ground states of the symmetric Friedel and
FA impurities, (‘{’IF\, | ‘I’IF\?), which is compared with the
corresponding scalar product in the (N — 2)-basis (¥ _, |
WA ,). (In both cases the bands are half-filled.) According to
our present result we can express the latter as

(¥R 1WR) = (qlql¥hos 1 alql¥RY,) = (Whoy 1 9RY,).
9)

This relation confirms that the fidelity between the sym-
metric FA and the symmetric Friedel impurity approaches
a finite value with increasing N and does not experience an
Anderson orthogonality catastrophe. Equation (8) yields an
asymptotic recursion formula to construct ¥y from a given
Wn,, where Nj is sufficiently large so that the smallest level
spacing in the Ny-Wilson basis is smaller than the Kondo
energy.

4. Conclusion

In the Wilson basis one can easily introduce two new states
by splitting each of the states directly below and above the
center of the band into two states of equal weight, creating



out of two old states four new ones. This reduces the smallest
energy spacing by a factor of two and increases the effective
number of states N by a factor of two. The relation between
the ground states ¥n_, and ¥y of the two half-filled bands
is investigated for several symmetric impurities, the Friedel,
the Friedel-Anderson, and the Kondo impurity. The ground
states are calculated with the FAIR technique. We observe
that for sufficiently large N the ground state Wy can be
obtained from ¥y_, by multiplying Wyx_, by two single-
particle states g/ and g!. The composition of these states
q" with respect to the Fermi level is independent of N (for
sufficient large N') and is independent of the resonance width
of the impurity. This qualifies the state q' to be called
universal. The state g is not just universal for a given kind
of impurity. It is superuniversal because it is even indepen-
dent of the kind of impurity as long as the impurity has a
resonance directly at the Fermi level. In particular it is inde-
pendent of the complexity of the ground state of the FA or
the Kondo impurity. All the complexity happens further
away from the Fermi level. This result gives a simple confir-
mation and explanation of our previous fidelity calculations
[12]. A similar investigation for the asymmetric FA impurity
is in progress.
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