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Distributed consensus building promises to improve the robustness and reliability of sensor networks and thus is an active topic
of research. Whereas extensive study has been done on the theoretical analysis of the asymptotic behavior of consensus building,
one important issue that is crucial to the practical implementation of sensor networks was rarely explored, namely, the criteria to
determine whether consensus has been attained. In this paper, we propose an approach that allows each node in a network to make
the decision by itself, based on the second derivatives of its own state. The approach does not rely on the states of other nodes,
leads to substantial saving of communication resources, and is resilient to connection failure. We perform a systematic analysis
of the approach and, as a consequence, derive the optimal parameters that minimize the upper bound of the number of required

iterations to reach consensus.

1. Introduction

In past decades, sensor networks have been widely applied in
civilian, military, and industrial systems. Despite tremendous
efforts that have been devoted to sensor techniques, it re-
mains a great challenge to build a sensor system that works
reliably and responsively under varying conditions. Distrib-
uted consensus building has emerged as an approach to ad-
dress such shortcomings. Each individual node updates its
“state” (e.g., view of local or global sensed values, actions
to be taken, and/or network conditions) while exchanging
information with others, until consensus of the state is at-
tained. While individual sensors could have unreliable infor-
mation or be vulnerable to environmental or network dy-
namics, all sensors in the network, via effective cooperation,
can produce decisions that are higher in reliability because
of the reached consensus. Since such consensus building
enables the network to act locally based on distributed inter-
actions, we contend that this approach can benefit networks
that also involve actuation or otherwise interact with the
physical world.

In previous work, there has been extensive theoretical
study of the distributed consensus building problem. Xiao
and Boyd [1] considered the convergence of a distributed av-
eraging problem and proposed to seek the optimal updating

weights by solving a semidefinite optimization problem. We
note that the derivation in this work was based on the
symmetric communication link assumption, which is not
always satisfied in real networks. Olshevsky and Tsitsiklis [2]
performed a more comprehensive investigation of this prob-
lem and derived lower bounds on the worst-case convergence
time for different types of distributed consensus methods.
Based on the theoretical analysis, they also developed an al-
gorithm whose convergence time can essentially match these
bounds. Olfati-Saber et al. [3, 4] developed a theoretical
framework of information consensus over a multiagent net-
work. They inspected various theoretical aspects of the prob-
lem and established the connections between the spectral
properties of complex networks and the convergence rate of
the consensus algorithms.

Whereas this previous work has laid down a solid theo-
retical foundation for the research on distributed consensus,
it mostly focused on the analysis of asymptotic behaviors. As
a consequence, practical issues, which are equally important
to the effectiveness of sensor networks, have received less
attention. In this paper, we particularly study one of these
issues, namely, how might an individual node determine
whether consensus (within a tolerable range) has been at-
tained. This is motivated by the consideration that if the
consensus status can be detected as soon as it is reached,



the sensor network can then be put to rest earlier, which
should lead to considerable energy saving.

Specifically, our goal here is to develop a consensus deter-
mining scheme with two desirable properties. First, it is self-
aware, namely, each node in the network decides whether this
scheme has reached consensus solely based on its own state,
without resorting to the communication with other nodes.
Compared to the schemes that detect consensus via infor-
mation exchange with other nodes, a self-aware scheme does
not consume extra communication bandwidth and tends to
be more responsive. Second, the scheme should be resilient
against noise as well as the variation of propagation delay
and link weights. Our approach to achieve this target is
inspired by the continuous-time work of Barbarossa et al.
[5-7]. In their work, the network consensus is defined with
respect to the first derivative of the states, rather than the
states themselves. They showed that this new definition can
result in improved robustness against noises, delays, and even
topology changes. Hence, we adopt this formalism as the
basis of our work.

The work presented here extends our earlier work [8]
which initiates the basic idea of our approach. In that paper,
we derived a discrete-time counterpart of the continuous-
time formulation given in [5], making it implementable in
physical, discrete-time hardware. We also verified the meth-
od through both numerical analysis and hardware imple-
mentation. In this paper, we further extend our previous
exploration. Particularly, we consider the self-aware criterion
given by

Ix(6)]l <&, (1)

where x(¢) is the state of a node as a function of time and ¢
is the tolerance threshold. With this criterion, we obtain an
upper bound of the number of iterations needed to achieve
consensus and thereon derive the optimal step coefficient §
that minimizes this bound. Moreover, we examined how the
optimal solution is related to different factors, including the
spectrum of the graph Laplacian as well as the tolerance
range, via both theoretical analysis and numerical simula-
tion. We note that our analysis is not restricted to symmetric
network, as opposed to some previous analysis, such as that
in [1].

To sum up, the main contributions of this paper lies in
the following aspects. First, we develop a self-aware criterion
to detect consensus based on the discrete-time formulation
presented in our earlier work [8]. It is simple, cost-effective,
and robust to noises as well as network changes. Second, we
perform theoretical analysis of the criterion for both sym-
metric and asymmetric networks and thereon obtain an up-
per bound of the number of iterations needed to reach con-
sensus. Third, we derive an optimal updating weight and ex-
amine its relations to the spectral structure of the network as
well as the tolerance threshold.

A brief outline of the rest of the paper follows. In
Section 2, we formulate a discrete-time consensus model and
analyzes its asymptotic behavior. In Section 3, we obtain an
upper bound of the convergence time based on this model
and thereon derive the optimal choice of 8. In Section 4, we
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FiGURE 1: Schematic diagram of a sensor network with N = 12
nodes.

give some numerical examples, illustrate the influence of ¢ to
the consensus for both symmetric and asymmetric scenarios,
and verify the analytical solution of §. Finally, Section 5
concludes this work and identifies areas of future research.

2. The Formulation of Consensus Model

In this paper, we consider a sensor network with N nodes
(e.g., N = 12 in Figure 1). Each node receives input from its
sensors, and combines it with the states of its neighboring
nodes to adjust its own state. These N nodes constitute a
dynamical system. Specifically, for each node i, its dynamical
behavior can be described by the following equation:

() =y + Y aij(x;(0) - x(8)). (2)

JEN(i)

Here, x; is the state of node i as a function of time, y; is the
corresponding input signal, N (i) is the set of neighboring
nodes of i, and a;; is the coupling coefficient that reflects the
contribution of node j to the evolution of node i. Note here
that the coupling coefficients need not to be symmetric (a;; =
aj;) in general. In this model, the change of x; is driven by a
linear combination of the input signal and state differences
from its neighbors. For simplicity, we assume that the input
signals are static, that is, y;(t) = y; foreachi=1,...,N.

The model given in (2) can be rewritten into the follow-
ing vectorized form:

x(t) = —Lx(#) +y. (3)

Here, x(t) = [x1(),...,xn()]", y = [y1,...,yn]", and L
denotes the Laplacian matrix of the communication graph
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whose edge weights are given by the coupling coefficients a;;.
Particularly, we have

Z aij (i=7j),
JEN()
L(iaj) = —aij (] € N(i))) (4)
0 (otherwise).

We note that L is symmetric if and only if the coupling coeffi-
cients a;; are symmetric. A symmetric system implies that all
communication links are bidirectional. However, this is not
always the case due to packet drops, and different transmit
powers and receiver sensitivities of the hardware.

2.1. Discrete-Time Formulation. To implement (3) on physi-
cal, discrete-time hardware, we reformulate the problem un-
der discrete-time setting, via finite difference approximation,
as

x(n) =x(n—1)+6x(n—-1)

(5)
= (I-dL)x(n — 1) + dy.

We note that the updating at each step is controlled by
an updating weight 8. Through recursively expanding the
formula above, we find the analytic expression for x(#), as

n—-1
x(n) = ®"x(0) + 8 > @y, (6)
k=0

where ® = I — §L. From this, we further obtain a discrete
version of the first derivative, as

%5(n) £ <(x(n) = x(n ~ 1))
)
= ®" ! (-Lx(0) +y).

Here, %, refers to the discrete derivative obtained with updat-
ing weight J.

2.2. The Conditions of Convergence. According to Barbarosa’s
definition, the consensus is attained when the first derivatives
of the states of all nodes converge to stationary values, which
we denote by a vector w*, as illustrated by Figure 2. However,
as we will show below, convergence is guaranteed only under
specific conditions, but not in general.

Lemma 1. The first derivatives of the system given by (7) con-
verge to stationary values w* with arbitrary inputy if and only

if
p(®@) < 1. (8)

In this case, ® = lim, . . ®" is finite, and the vector of sta-
tionary values w* is given by

w* = —O%Lx(0) + ®y. 9)

In particular, when [|®“L]|| = 0, one has w* = @y, which is
independent of the initial states x(0).
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FIGUre 2: Convergence of the state of the sensor network in
Figure 1.

Here, p(®) is the spectral radius of @, that is, the maxi-
mum absolute value of its eigenvalues.

Proof of Lemma 1. If p(®) < 1, ®" is a convergent sequence
and thus so is X5(n) due to continuity of linear operation.
Otherwise, if p(®) > 1, there exists an eigenvalue A of ® such
that |A| > 1. Since y is arbitrary, we can choose y such that
—Lx(0) +y = e, where e is the eigenvector associated with
A. As a result, X5(n) = A" le, which diverges. Therefore, the
system converges for every y if and only if p(®) < 1.

The fact that ®" converges implies that ®% is finite.
Again, by continuity of linear operation, we obtain
lim @™ (~Lx(0) +y)
= (Jim @) (~1x(0) +y) (10)
= @ (-Lx(0) +y).
This completes the proof of the second statement. O

Based on this lemma, we derive the conditions of conver-
gence, which as we will see are closely related to the eigen-
values of L, denoted by A4, ..., Axy. Without losing generality,
we assume that [A;] < --- < |Ax]. The properties of these
eigenvalues are summarized below.

(1) rank(L) = N — K, where K is the number of connect-
ed components of the communication graph. The
number of null eigenvalues indicates the number of
connected components.

(2) L has a null space which contains 1, that is, L1 = 0.
In particular, when K = 1, the null space is a one-
dimensional space spanned by 1.

(3) [An| = p(L), the spectral radius of L.

(4) When L is symmetric, A1,..., Ay are nonnegative real
values.



The eigenvalues of ® = I — §L are then given by 1 —
OA1,..., 1 — 6AN. Hence, the spectral radius of @ is given by

p(®) = max{|l - dAil:i=1,...,N}. (11)

This immediately leads to an important condition of conver-
gence, as given by the following corollary.

Corollary 2. The system given by (7) converges if and only if
[1-6A] <1, Vi=1,...,N. (12)

In particular, when L is symmetric, all eigenvalues are real, and
thus this condition is equivalent to

oAy < 2. (13)

Proof of Corollary 2. By Lemma 1, the system converges if
and only if p(®) =< 1. By (11), this is equivalent to
max;—1, N|1—384;| < 1, thatis, |1—38A;| < 1 for each i. When
L is symmetric, all eigenvalues are real; hence, the maximum
here can be either |1 — 6A;] or |1 — dAy]. Recall that A} = 0,
thus [1—8A;| = 1. Therefore, the condition holds if and only
if [1 — dAn| < 1. Considering that Ay > 0, this is equivalent
to Ay < 2. O

Suppose that the condition of convergence given above is
satisfied; we have the following discussions in regard to the
matrices @ and ®~.

(1) Since L1 = 0, we have ®1 = (I - 6L)1 = 1, implying
that @ has an eigenvalue 1, which is associated with
an eigenvector 1.

(2) Suppose that the number of connected components
of the communication graph is K, then the geometric
multiplicity of the eigenvalue 1 of @ is K, meaning
that the dimension of the eigenspace corresponding
to the eigenvalue 1 is K.

(3) @"1 = 1foreachn = 1,2,.... Taking this sequence to
the limit leads to an important result, namely, ®*1 =
1.

These results provide necessary basis for our later derivation.

2.3. Consensus over Connected Networks. In this paper, we fo-
cus on the case where the communication graph is connected
and L is diagonalizable. For this case, we derive the following
results that characterize the asymptotic behavior of the dy-
namical system.

Lemma 3. Suppose that L is the Laplacian matrix of a connect-

ed graph and is diagonalizable, ® = I1— 8L such that p(®@) = 1,
then

o~ =1y, (14)

where y is a left eigenvector of ® associated with the eigenvalue
1 that satisfies yT1 = 1.
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Proof of Lemma 3. Since @ is diagonalizable, it can be written
as

® =PDP !, (15)

where D is a diagonal matrix with D;; = 1 — dA;, and P is
a matrix whose columns are the corresponding eigenvectors.
Hence,

®" = PD"P . (16)

Note that D" is also a diagonal matrix with D% = (1 — 8A;)".
Under the condition of convergence, as n — oo, DY| remains
1, while all other entries converge to 0. Consequently,

@ = (P), (P))]. (17)

Here, we use the notation (-); to indicate the first column of
a matrix. The first column of P is the eigenvector associated
with the eigenvalue 1 — §A; = 1, which is 1, while the
first column of P~! is a left eigenvector associated with the
same eigenvalue, which we denote by y. Consequently, we
can write ® = 1pT. Moreover, as we have discussed above,
®~1 = 1, thus 1y”1 = 1, which implies that 71 = 1. The
proof is completed. O

Following this lemma, we derive the following results that
characterize the asymptotic behaviors of the dynamical sys-
tem on a connected communication network.

Theorem 4. Suppose that the dynamical system given by (7)
is on a connected network and the Laplacian matrix L is
diagonalizable. If § is chosen such that p(®) < 1, then the first
derivative of each node converges to a common stationary value
w* given by

N
w* =yly = Zy,-y,-. (18)

i=1

Here, y = [yl,...,yN]T is a left eigenvector of ® associated
with the eigenvalue 1 that satisfies >~ y; = 1.

Here, convergence to a common stationary value means
that all entries of w* are the same, that is, w* = [w*,...,
w*] T In addition, we can see that the value w* is a weighted
average of the input signals, which reflects the global consen-
sus formed over the sensor network.

Proof of Theorem 4. From Lemma 3, we can see that, under
the condition of convergence, ®" converges to ®* = 1yT as
n — oo. And since L1 = 0, L®® = L1y” = 0. By Lemma 1,
we know that the states converge to stationary values given
by

w* = 0%y = 1yly. (19)

Let w* = pTy; this can be further rewritten as w* = w*1.
The proof is completed. O
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2.4. Determining Consensus. For any practical implementa-
tion, the stationary value w* is not available in advance;
hence, one has to resort to other means to determine whether
a sensor network has reached consensus. A natural idea is to
compare the first derivatives of all nodes and see whether
they are close to each other. However, implementation of
this strategy might require a centralized process to collect
information from every node, which could be expensive or
even infeasible in practice.

In this paper, we take a different approach. Instead of
relying on the first derivatives to detect consensus, we con-
sider the second derivatives. Based on our discrete-time for-
mulation, we define the vector of second derivatives to be

%3() = 5 (5(n) ~ %a(n — 1)) -

= LO®" % (Lx(0) - y).

Suppose that the dynamical system is on a connected
communication network with diagonalizable Laplacian ma-
trix L; we have L®" — 0asn — oo. It immediately follows
that

mes(n) =0. (21)

This observation suggests that we may decide whether
consensus has been attained by examining whether the sec-
ond derivatives vanish. Specifically, we devise the following
rule. Given a tolerance threshold ¢ > 0, a sensor network is
regarded to reach consensus if

%s(n)llo <& (22)

Here, || - |l denotes the infinity norm. Intuitively, the net-
work is considered to attain consensus when the magnitude
of the second derivative at each node is below the given
threshold e.

It is worth noting that this rule is self-aware, meaning that
each node can decide whether it meets the condition locally,
without talking to other nodes. Compared to other rules, its
main advantages are three-fold: (1) simplicity of implemen-
tation, (2) no consumption of extra communication energy,
and (3) resilience to the changes of network conditions.

3. Convergence Time and Optimal §

In the previous section, we have derived the conditions under
which a sensor network is guaranteed to converge to the
consensus status. The next important question is how long
does it take to converge? In this section, we are going to seek
an answer to this question.

For discrete-time implementations, the convergence time
is measured by the number of iterations n needed to reach
consensus. Generally, it is impossible to obtain the exact
value of this number in design stage, as it depends on both
the initial states and the input signals. It is nonetheless pos-
sible to derive upper bounds, which would provide guidance
for us to choose the optimal design.

Recall that we have obtained the analytic expression of
the second derivatives, as given by

%5(n) = L(I - 8L)" " (Lx(0) — y). (23)

Given a tolerance threshold ¢, our goal here is to derive
an upper bound M(¢) such that

IXs(n)llw <& Vn>M(e). (24)

However, directly working with X; is difficult in general. Our
basic idea is to first seek an upper bound U(n; §) of [|x5(n)l|
and then find M(¢) such that

Un;d) <e, Vn>M(e). (25)

Note here that we introduce ¢ as an argument of U for
the purpose of emphasizing the fact that such an upper
bound is often closely related to the updating weight §. Since
IX5(n)ll < U(n;d), the condition given by (25) implies the
one given by (24).

3.1. Upper Bound Based on Spectral Analysis. Our approach
to obtain an upper bound is based on the concept of induced
norm. Given a matrix A, its induced norm, denoted by [|All,
is defined as follows:

Al £ sup [Ax]|. (26)

x:[Ixll<1
From this definition, we can immediately see that
llAx]l < Al - lIx. (27)

The induced norm is related to the spectral radius. In general,
we have [|A]l = p(A). Particularly, when A is symmetric, the
equality holds, that is, [|A]| = p(A).

For induced norm, we also have the following result,
which is important for our derivation.

Lemma 5. Given a real square matrix A and oy, ay,...,0x €
R, one has
K K
k
aol+ D> oAkl < ag + > lak Al (28)
k=1 k=1

This is a well-known result of linear algebra, which states
that the induced norm of the matrix obtained by applying
a polynomial to a matrix A is upper bounded by the corre-
sponding polynomial of || Al with the coefficients replaces by
their absolute values.

Coming back to our problem and considering the norm
1% (1) Il, we have the following result.

Theorem 6. Let x be the states of a dynamical system on a con-
nected network whose Laplacian matrix L is diagonalizable.
Then, one has

o)l < [|1— oL — 1| ULl - Ihi 29)

Here, y is a left eigenvector of L associated with the eigenvalue
1 that satisfies y'1 = 1, and h = Lx(0) —y.



Proof of Theorem 6. We first rewrite X5(n) as follows:

%5(n) = L(I - L)" *h
= L(I —0L—-1yT + 1yT)Hh (30)

=L(1-4L- 1yT)Hh.

Here, we make use of the fact that L1yT = 0yT = 1. With this
expression, (29) in this theorem immediately follows from
Lemma 5 and (27). The proof is completed. O

From this theorem, it is not difficult to show that when

loglIL|| +logllhll +log(1/¢)
log(1/[[T - 6L — 1y7]|)

+ 2. (31)

The right-hand side of this inequality gives an upper bound
of the number of iterations needed to attain consensus.

3.2. Optimal Choice of 8. To minimize the upper bound
given by (31), one can choose the optimal updating weight

0 that minimizes [T — L — 1y7]|, as

S = argminHI - 0L - lyTH. (32)
6=0

3.2.1. Symmetric Cases. We first consider the cases where the
underlying communication network is symmetric. In these
cases, the Laplacian matrix L is symmetric. Let 0 = A; <

- < Ay be the eigenvalues of L, which are all nonnegative
real values. Since the component 1y that corresponds to the
eigenvalue 1 of @ is subtracted, the eigenvalues of I — 6L —
lyT are 0,1 —6A,,...,1—8Ay. Since L is symmetric, we have

HI ~SL— lyTH =p(1-0oL-1y7)

(33)
= max{|1 — 6Az], |1 — SAnI}.
Hence, the optimal choice of § is given by
8= argminmax{|l — dA,|, |1 — SAn|}
>0

34

B (34)

B /\2 + /lN.

Note that § < 2/An. According to Corollary 2, it follows, that
with such an optimal choice, convergence is guaranteed. We
also note that Xiao and Boyd [1] obtained similar results in
different context.

3.2.2. Generic Diagonalizable Cases. In real applications the
communication topology is not always symmetric due to
difference of devices and deployment environment. Hence,
the spectral radius does not necessarily equal the induced
norm, we use the spectral radius in place of the induced
normy; leading to the following objective in choosing optimal

:

5= argminp(l - 0L - lyT). (35)
320
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In generic cases, the spectral radius is given by
p(1-0L—1p7) = max{|1 - M| :i=2,...,N}. (36)

The eigenvalues here can be complex numbers. When solving
this problem, it is important to contain the solution within
the domain such that convergence is guaranteed. The domain

is defined by
M-8\l <1, Vi=2,..,N. (37)

Suppose that A; = «; + i3;; we have that |1 — §A;| < 1 if and
only if

20
0<d6 =<5, (38)
Al
Therefore, the valid range of ¢ is
. 2061'
0<d=< IzrgnnNW (39)

We note that there exists no analytic solution to this problem.
However, the objective function is a piece-wise quadratic
function, which can be readily solved by first delimiting the
pieces and then comparing their respective minimum.

The derivation above provides an upper bound of the
convergence time and a guideline for choosing the optimal
0. We can see that they are closely related to the spectral
characteristics of the Laplacian matrix L. In general, the net-
work converges rapidly when the eigenvalues of I- 3L (except
the one that equals 1) are small.

3.3. More Accurate Analysis of the Convergence Time. As men-
tioned above, the actual convergence time also depends on
the initial states x(0), and the input signals y, as well as the
tolerance threshold . Here, we take a close examination of
such dependency.

Suppose that L is diagonalizable with eigenvalues 0 =
A < Ay < -+ < Ay. Let e; be the eigenvector associated
with the eigenvalue A; for each i = 1,...,N. Since L is
diagonalizable, these eigenvectors span the entire state space,
and as a consequence, the vector h = Lx(0) — y can be ex-
pressed as a linear combination of them, as

N
h= Eciei. (40)
i=1

Let R(L) = {Lv : v € RN} be the range space of L. Since
the underlying network is connected, the null space of L is
one dimensional. Hence, R (L) has dimension N — 1 and is
spanned by ey, . .., ey. Clearly, the second derivatives X5(1n) =
L(I-8L)" *h € R(L) and thus can be expressed to be a linear
combination of ey, ..., ey, as

N
Xs(n) = Zci/\i(l ) (41)
im

We can see that the ith term decreases geometrically with shr-
inking ratio |1 — §\;|. Asymptotically, the term with greatest
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shrinking ratio, namely, the one that attenuates most slowly,
will dominate in a long run.

Let C : R(L) — R(L) be a coordinate transform that
maps each vector in R(L) to the coefficients with respect to
the basis {ey,...,ex}. This is a bijective linear map. For each
vector v € R(L), we define

[IVlleo/c = ICV) | - (42)
It can be easily shown that || - [|w/c is @ norm on R(L). To
characterize the relations between || - ||o/c and || - ||, we
define
a 1Vl
Kc = (43)

ver@ IVlleo/c”
In other words, x¢ is the greatest real value that satisfies
IVlle < kcllVlloc, Vv e R(L). (44)

By the equivalence of norms on a finite dimensional vec-
tor space, we have 0 < k¢ < +oo; that is, k¢ is a finite
positive value. Consider the second derivatives X5 (7). To have
[I%s5(n)ll& < &, it suffices to have

. €
[1%5 (1)l o/ < P (45)

From the definition of || - ||«/c and (41), we get

5 ()l oy = max [edi(1=82)" | (46)

As a result, when

log(xclcidil/e)
"> A Tog(1/1 - oN) T2 (47)

IX5(n)ll < &, implying that the sensor network attains the
consensus within the tolerable range. Based on this bound,
the optimal choice § is given by

2 . log(kccidil/e)
0 = argmin max 1o (/11— oAD)" (48)
This result indicates that with the knowledge of input signals,
one can derive an improved upper bound, and a proper
choice for 8, which relates not only to the underlying graph,
but also to the initial states, input signals, and the tolerance
threshold e.

However, directly applying this result in practice is infea-
sible, as the input signals are unavailable in advance; other-
wise, we do not even have to deploy a sensor network to
measure them. The true significance of this result lies is that it
suggests that we can incorporate domain-specific knowledge
to make a better design of the sensor network.

Specifically, while the exact input is unknown before we
really perform the measurement, we generally have some
rough knowledge about what the input might be, which
could be formulated as a prior distribution of the input
signals and then be exploited to guide the choice of §. From
such a prior model, one can derive the prior distribution of
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FIGUrE 3: Minimal number of iterations for a N = 12 symmetric
network with different consensus criteria €’s.

the coefficients ¢ = [c3,...,cN] T, denoted by p(c). Then, we
obtain an upper bound of the expected convergence time, as

N log(xclcidil/e)
Ur(%p) = JiinZ,.a..),(Nlog(l/H —Sh)

With this model, one can choose an optimal § that minimizes
Ur(8; p). Though it might be difficult to directly solve this
problem, one can resort to various techniques to make fur-
ther approximation.

p(c)de. (49)

4. Simulation

In this section, we will illustrate the following key results.
First, the consensus rate and the choice of optimal iteration
weight & are dependent on the self-aware criterion ¢ for a
sensor network where communication links are symmetric
and asymmetric. Second, the analysis of determining the op-
timal & provided in previous section is consistent with the
simulation result with various &’s, which greatly helps design-
ing efficient and energy-saving sensor network for different
topologies.

4.1. Symmetric Topology. We first consider the symmetric
network shown in Figure 1, which has 12 nodes and 24
links. This network was randomly generated with arbitrarily
chosen initial state value x(0) and input y as follows:

x(0) = [0, 10,20,...,110],
(50)
y = [30, 30, 30, 30, 70, 70, 70, 70, 50, 50, 50, 50].

The coupling coefficient a;; is defined to equal 1 if there is
signal transmitted from node j to node i; otherwise, a;; = 0.
For the network shown in Figure 1, Figure 3 shows through
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FIGURE 4: Minimal number of iterations versus ¢ for a symmetric
topology.

simulation the number of iterations required to achieve con-
sensus as a function of the weight parameter (§—x-axis) and
the self-aware criteria (e—various curves). For this network,
the best iteration weight found from earlier work by (34)

is 8 = 0.3802 (illustrated in Figure 3 by the vertical line).
However, we can see from Figure 3 that the three curves with
e = 0.001, ¢ = 0.01, and ¢ = 0.1 reach the lowest point at
about 0.37, 0.36, and 0.35, which means setting the iteration
weight & to each of those values would get convergence
by fewest iterations based on each network operator e.
Consensus with these values is achieved in significantly fewer
iterations, and, most importantly, convergence is determined
by local criterion. As ¢ increases, the whole curve moves
to the left slightly. Though the change in the selection of
§ is comparatively small with different threshold ¢, we can
find that the minimal iterations for reaching consensus drop

largely, from 124 to 85, then fall off to 40. If one uses 5 =
0.3802 as determined by (34) and the criteria presented in
[1], the system would require much more than 200 iterations
to achieve consensus.

By solving (41) as a function of criterion ¢, we found the
relation between ¢ and minimal number of iterations and
the relation between ¢ and optimal §. As shown in Figures
4 and 5, the analytical results are very consistent with the
simulation. we can see that the minimal number of iterations
decreases as the threshold ¢ increases. When ¢ goes from
0.001 to 0.1, the minimal number of iterations keeps drop-
ping from 125 to 40, which shows that achieving consensus
with slightly different e would make a difference in the num-
ber of communication iterations. There is a tradeoff between
the consensus precision and the number of communications,
or energy consuming. Realizing that, it is desirable to choose
a larger criterion ¢ to make sensor nodes live longer, as long
as it meets the specific application requirement of the sensor
network.
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FIGURE 5: Optimal iteration weight & versus ¢ for a symmetric to-
pology.

FIGURE 6: Schematic diagram of a asymmetric network, N = 12;
degree = 2.

4.2. Asymmetric Topology. Next, we consider another 12-
node network shown in Figure 6 with an asymmetric com-
munication topology. Using the same initial value and input
as the above example, we show that the optimal iteration
weight & as well as the minimal number of iterations varies
with different network operators €’s in Figure 7. Similar to
the symmetric example, it can be seen that as ¢ increases, the
corresponding ¢ would be reduced slightly, while the mini-
mal number of iterations would decrease in a big way. For
this asymmetric network, the theoretical best weight found
from (35) is 0.3466, which is also denoted in Figure 7 by the
vertical line. Again, this theoretical “best weight” is obviously
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FIGURE 8: Minimal number of iterations versus ¢ for an asymmetric
topology.

different with the real practical best choice of §; applying
the “best weight” to the practical systems would yield many
more iterations for network to reach consensus. As illustrated
by Figures 8 and 9, the performances of minimal number
of iterations and optimal § with ¢ for asymmetric topology
present similar behaviors as those of symmetric topology.

5. Conclusion

In this work, the problem of achieving consensus among
distributed sensor nodes has been considered. In particular,
a potential answer to the question on how do individual
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FIGURE 9: Optimal iteration weight & versus ¢ for an asymmetric
topology.

nodes “know” when consensus is achieved is presented. The
work introduces a local “self-aware” criterion, &, which in
practice is consensus rate of the parameter under consider-
ation. The work illustrates (1) that ¢, as expected, will influ-
ence the number of iterations required but more importantly
(2) that existing criteria for the weighting functions is not
appropriate for that will lead to an increased number of
energy-consuming iterations. The work also considers the
impact of nonsymmetric links on achieving consensus. These
results address practical considerations regarding imple-
menting distributed consensus building in “real” sensor net-
works. As such, it is hoped that this work will motivate others
to consider implementation issues in this domain.
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