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A typical feature of huge, random network topologies is that they are too large to allow a fully detailed description. Such enormous,
complex network topologies are encountered in numerous settings and have generated many research investigations. Well-known
examples are the Internet and its logical overlay networks, such as the World Wide Web as well as online social networks. At the
same time, extensive and rapidly growing wireless ad hoc and sensor networks also lead to hard topology modeling questions. In
the current paper, we primarily focus on large, random wireless networks but also consider Web and Internet models. We survey a
number of existing models that aim at describing the network topology. We also exhibit common generalizations of various sets of
models that cover a number of known constructions as special cases. We demonstrate that higher levels of abstraction, despite their
very general nature, can still be meaningfully analyzed and offers quite useful and unique help in solving certain hard networking
problems. We believe that this research area can and will generate further significant contributions to the analysis of very large

networks.

1. Introduction

Many of the communication networks that we use today, or
expect to use in the future, have enormous size. This applies
not only to the physical networks, including the Internet as
well as emerging ubiquitous wireless networks and large scale
sensor networks, but also, or even more, to logical overlay
networks, such as the World Wide Web. For example, the
number of web pages, according already to a 2006 article [1],
was as high as 53.7 billion, already at the time of writing that
study. Out of the 53.7 billion, 34.7 billion web pages were
indexed by Google. Since then, these numbers grew even
further. Beyond the sheer size, the usage of these networks is
also expected to be extremely heterogeneous, encompassing
a huge number of different applications, traffic patterns,
diverse requirements, and areas, including business, science,
learning, entertainment, and social networking. At the same
time, their physical basis is also heterogeneous, including
wired, wireless, and optical subnetworks. All this is expected
to eventually merge into a ubiquitous, global sociotechnical
infrastructure.

To understand and reason about huge socio-technical net-
works, including methods for designing/optimizing them,
the traditional network analysis and modeling approaches

are generally insufficient, due to their limited scalability.
Simulation is usually feasible only up to a rather limited net-
work size. Conventional analysis methods, such as teletraffic
theory queuing network modeling, and also face an uphill
battle, quickly losing ground in huge networks. At the same
time, modeling and analysis are still indispensable, since one
may not be able to experiment with the different variants of
a new solution via large-scale practical deployment, as it can
have a prohibitive cost.

This situation, in which one deals with networks of prac-
tically infinite size, has naturally led to the emergence of
novel analysis and modeling approaches. They can generally
be characterized by having a more abstract, “bird’s eye” view
of the network and often relying on asymptotic analysis on
the mathematical side. The special advantage of the asymp-
totic analysis is that it converts the growing size from a
foe to a friend: the larger, the better, from the asymptotic
point of view. While it is clear that such methods cannot
help much in local technical tasks, such as configuring a
specific router, they have their important place in the higher
layers of the network modeling hierarchy. We survey the
models and results in this area, with primary focus on large
wireless networks with no infrastucture (ad hoc and sensor
networks), based on the extensive literature and the author’s



own earlier work [2-26]. As a first step, in the next section we
briefly survey how the random network modeling approach
emerged.

2. Historical Retrospective: Emergence of
Random Network Models

2.1. Internet and Web Topology Models. The first major wave
of work in the considered direction was the statistical analysis
of the Web graph, in which the nodes are web pages and the
edges are the hyperlinks. Similar investigations were made
regarding the physical Internet topology as well. Below, we
summarize some of the major directions.

2.1.1. Experimental Statistical Analysis. Several research
groups in the late 90s independently observed that the node
degrees in this graph are distributed according to a power law
(Kumar et al. [27], Barabasi et al. [28, 29], and Broder et al.
[30]). Similar phenomena were observed by Faloutsos et al.
[31] in the physical Internet topology.

The power law degree distribution means that if ny
denotes the number of nodes with degree k, and n = > ny,
then

=k kA, 1)

where ~ denotes asymptotic proportionality, and f is called
the power law exponent. The typical measured values of f3
are between 2 and 3. All this was in sharp contrast with
traditional random graph models that have independent
edges and exhibit (asymptotically) Poisson node degree
distributions. The latter models are known as Erdds-Rényi
random graphs.

To describe the observed network structure, Barabasi and
Albert [28] coined the term “scale-free network”, based on the
observation that in a power law distribution the rescaling
of the considered quantity preserves the same power law,
changing it only with a constant factor. This quickly became
very popular and triggered the statistical analysis of “scale-
freeness” of network topologies not only in (physical or
logical) communication networks, but also in networks that
arise in biology, genetics, epidemiology, linguistics, electric
power distribution, social sciences, and in many other areas;
see, for example, the books [32-36] and hundreds of further
references therein.

In retrospect, one may say that “scale-free networks” gen-
erated somewhat more hype than substance. It was rightfully
pointed out, for example, by Li et al. [37] and Alderson et al.
[38] that the power law degree distribution alone can easily
fall short from adequately modeling the Internet topology, if
no other domain specific knowledge is applied.

2.1.2. Generative Models. A parallel major wave of research
was to create generative models. In contrast to experimen-
tal statistical analysis, generative models aim at explain-
ing the observed network structures, providing algorithmic
approaches to generate them, and also offering the opportu-
nity for in-depth mathematical analysis. The first such model
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that became well known was the Preferential Attachment
model of Barabasi and Albert [28]. This model generates a
graph such that new nodes are more likely to get connected to
those that already have a higher degree. Although the authors
did not provide a rigorous analysis, only an approximate
reasoning, based on the mean-field approach of physics, the
model certainly had intuitive appeal (“the rich get richer”
principle). This model had an explanatory power and gene-
rated scale-free graphs, so it triggered many follow-up inves-
tigations. The first truly rigorous formulation and deep ana-
lysis of a preferential attachment model, called Linearized
Chord Diagram (LCD) model, was provided by Bollobas
etal. [39].

Since then, numerous static and evolving graph models
of networks have been proposed and analyzed, both exper-
imentally and with serious mathematical rigor, primarily
focusing on asymptotic properties. A few examples are: the
ACL model of Aiello et al. [40]; the copying model of Klein-
berg et al. [41]; the growth-deletion model of Chung and
Lu [42]; the self-similar Kronecker-graph model of Leskovec
et al. [43]; the compressible Web model of Chierichetti et al.
[44]; the forest fire model of Leskovec et al. [45]; the geo-
metric preferential attachment model of Flaxman et al. [46];
the spatial preferential attachment model of Aiello et al. [47];
the random perturbation model of Flaxman [48]; a large
number of other models and variants, with a lot of intellec-
tual power in their analysis.

As an example of such models, consider the following,
which is due to Chung and Lu [49]. It is motivated by the fact
that since the degree distribution may vary, and it appears
a significant issue in characterizing a random graph model,
therefore, it is important that any feasible degree distribution
can be efficiently generated. This is accomplished by the
model of Chung and Lu [49], which is a static (i.e., not
evolving) random graph model, having the advantage of high
flexibility, in the sense that it can exhibit any possible degree
distribution (including power law with any exponent) in the
expected node degrees. The model is built as detailed below.

Letd = (dy,...,d,) beany degree sequence. For example,
it may be chosen to exhibit power law with exponent f3. In
that case, the number k is included in the sequence ny times
such that ng/n ~ k™F. Then between any nodes i and j, an
edge is drawn independently with probability

o did;
bii = Zzzl di’

(2)

It is not hard to show that in the arising random graph, the
expected degree of node i will indeed be d;. In this sense,
any possible degree distribution can be represented. Note
that in this model, the degree values are preselected, only the
edges are random. The random edges are drawn such that the
arising expected degrees obey the given degree sequence.

As a highly nontrivial feature of this model, Chung and
Lu [49] prove, among other things, the following property.
Let G be the arising random graph, and let L(G) denote the
average hop distance between two randomly chosen nodes.
Then (under some minor technical conditions for which we
refer to the original article [49]) the following holds.
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If the expected node degrees are distributed by a power
law distribution with exponent 2 < 5 < 3, then the average
hop distance is bounded as

L@ = @2+ 0(1)) 28108 ()

og(1/(B-2))’

where 0(1) means a function of n that tends to 0, as n — 0.

This is a useful result, as it provides a nontrivial upper
bound on expected hop distances that otherwise would be
hard to obtain. For example, assume we consider a piece of
the Web graph with 10 million web pages, and we measured
that it has a power law degree distribution with exponent
B = 2.5. From this information alone, can we say something
about the average hop distances between web pages? By the
cited result (assuming that with n = 107 we can approxi-
mately take o(1) = 0), we have

log log 107

UG =2 fog/25 - 2))

~ 8, (4)

which is a reasonably low-specific bound on the average hop
distance. It would clearly be much harder to obtain the same
via direct computations on a graph of 10 million nodes.

2.2. Scalability of Large Wireless Networks. About the same
time when the Web and Internet topology investigations
began, another independent wave of asymptotic network
modeling was initiated by Gupta and Kumar [50]. This
direction focused on analyzing the scalability of large wireless
networks, primarily ad hoc and sensor networks, from the
viewpoint of fundamental limits for transport capacity and
related properties. This line of research also attracted much
attention. Interestingly, and unfortunately, most of the
results are negative. Specifically, they show under various
conditions that the achievable per node throughput tends
to 0 with growing network size, which we call the van-
ishing throughput effect. Even maintaining global network
connectivity is impossible under rather general conditions,
if we want to apply nodes with finite processing capacity, see
Farago [6].

2.2.1. The Vanishing Throughput Effect. To explain this phe-
nomenon, let us review some fundamental results in this
direction. The most important result in the paper of Gupta
and Kumar [50] considers the achievable throughput per
source-destination (S-D) pair in a large random network,
where n nodes are placed independently and uniformly at
random in a planar disk of unit area. Thus, the network
topology is random but static. The nodes have the same
transmission radius, which can be chosen arbitrarily. They
can transmit with a fixed maximum rate (bit/sec), but they
are allowed to divide the channel into subchannels without
any constraint, in any domain (e.g., frequency, time, and
code). The nodes communicate using arbitrary protocols for
channel access and routing, with the only restriction that
there is a minimal requirement of interference avoidance in
the same (sub)channel to ensure successful receptions. The
considered traffic pattern is that each node has a randomly

chosen destination in the network. The authors prove that in
this general model, the achievable throughput per S-D pair is

o ) "
\nlogn

Regarding scalability, the key message of this result is
that the achievable throughput per S-D pair tends to zero as
the network size grows to infinity. This is what we call the
vanishing throughput effect. It means, the network is funda-
mentally not scalable, since it becomes unable to usefully
operate when it grows extremely large.

It is then a natural question to investigate how robust is
the vanishing throughput effect under changing the model. Is
it merely an artifact due to some special modeling assump-
tions, or is it a fundamental phenomenon that remains true
in any reasonable model?

Already in their original paper [50], Gupta and Kumar
point out that if the area where the nodes are located is the
surface of a sphere rather than a planar disk, the results still
remain in effect. They also show that no essential change
results even if instead of random node placement, the nodes
are located optimally and their transmission radiuses are also
chosen optimally. For 3-dimensional network topology (ran-
dom node placement in a unit cube), Toumpis and Gold-
smith [51] show that, although the rate of vanishing is dif-
ferent, the per node throughput still tends to zero. Similar
results are obtained by Gupta and Kumar in [52].

Various other static network scenarios were also analyzed
by different authors. For example, Yi et al. [53] show that
the use of directional antennas, although can increase the
capacity, still does not invalidate the vanishing throughput
effect. Peraki and Servetto [54] prove that even if the nodes
can generate multiple beams in parallel, aimed at multiple
receivers, the achievable improvement is still insufficient to
sustain positive per node throughput in the limit. Kozat and
Tassiulas [55] consider the scenario when the ad hoc network
has infrastructure support, that is, besides the ad hoc opera-
tion, it can also use a cellular-like infrastructure. They show
that although this support can bring an exponential impro-
vement in the capacity, yet the per node throughput still
asymptotically vanishes, although at a much slower rate.
Infrastucture-based hybrid scenarios were also considered by
Liu et al. [56] and Toumpis [57], all pointing at the direction
that vanishing throughput remains in effect, given that the
infrastructure size is not overwhelming compared to the ad
hoc network size.

2.2.2. Escapes from the Vanishing Throughput Effect. At this
point one may wonder: has any model been found at all
for large random ad hoc networks in which constant (i.e.,
nonvanishing) per node throughput can be maintained in
the asymptotic regime? The answer is yes but, unfortunately
with serious reservations.

One possibility is to consider the effect of mobility, since
all the above results refer to random but static networks.
Grossglauser and Tse [58] analyze the mobile version of the
Gupta-Kumar [50] model, assuming that the nodes move



randomly and independently with uniform stationary dis-
tribution over the unit disk. The key advantage of mobility
in this setting is that either a source node can get close to
its destination and send the data directly, or it can spread
the packets among other nodes, which relay the data to the
destination whenever they get close to it. A typical general
state of this network is that each node buffers many packets
destined to different destinations, and whenever a node gets
close to another node, it sends the data, if any, waiting for
that destination. Grossglauser and Tse [58] prove that in
this setting, it is possible to maintain asymptotically constant
per session throughput. The problem, however, is that it
comes at the price of infinitely growing delay. El Gamal et al.
[59] analyzed the trade-off between throughput and delay
and found that with bounded node movement speed (it is
certainly bounded at least by the speed of light) the average
delay grows to infinity with the network size. Note that each
packet travels at most 2 hops in this network (either directly
to the destination or through a single-relay node), so the
delay is due to waiting for getting close to the destination.
Another problem is that mobility in the Grossglauser-Tse
model is not an option, it is an obligation: essentially, the
nodes must be on the move all the time to make the solution
workable.

Another possible escape from the vanishing throughput
effect is to restrict the traffic pattern in the random static
network. Li et al. [37] argue that the random destination
scenario in Gupta-Kumar model can be regarded as a worst
case traffic distribution. The authors find that if the traffic
tends to be local, in the sense that the expected route hop
length is bounded, then constant throughput can be main-
tained in the static random network. This is still not suf-
ficiently reassuring, however, since it would be desirable that
the network can handle any traffic pattern, rather than only
a small subset of the possibilities. Furthermore, if we do not
want to replace the network with a multitude of small local
networks that are disconnected from each other, then the
problem of the infinitely growing node degrees still remains
there.

Another approach to improve the asymptotic throughput
scaling is to apply more sophisticated physical layer tech-
niques such as MIMO. A paper of Ozgiir et al. [60] shows that
with intelligent, hierarchical node cooperation and MIMO
techniques, it is possible to achieve an aggregate throughput
of Q(n'~€) for n randomly placed nodes, where € > 0 is
an arbitrarily small, but positive, constant. This translates
into a per S-D pair throughput of Q(1/n€). If € is chosen
small enough, then it is close to the ideally sought constant
throughput per node. Nevertheless, since € must be a fixed
positive constant, therefore, no matter how small it is, the
per node throughput will still vanish as n — oo.

2.2.3. Why Does the Throughput Vanish? To better under-
stand a fundamental reason for the vanishing throughput, let
us briefly discuss what causes it and how in the Gupta-Kumar
model [50].

One may observe that the transmission radius r of nodes
has two opposite effects. If r is small, then more hops are
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needed to deliver a packet to its destination, since in each
hop the packet can advance at most a distance of r towards
its destination. Therefore, small r causes a growing burden
of nodes to serve as relays, which decreases the end-to-end
throughput. This would justify choosing r as large as possi-
ble. On the other hand, large transmission radius increases
the interference, which causes the throughput to decrease
again, so interfence reduction would require choosing r as
small as possible.

The detailed analysis of the above conflicting tendencies
in [50] shows that the forwarding burden is proportional
to 1/r, since the average route hop length is proportional
to 1/r. On the other hand, the interference increases
quadratically with the radius, due to the area involved, which
is proportional to r2. Balancing the two effects yields the con-
clusion that r has to be chosen as small as possible, as the
interference reduction, due to its quadratic nature, brings
more benefit than what is lost by longer routes. Specifically,
the joint effect results in the formula

o) (6)

nr(n)

An) = o(

where 7 is the number of nodes, A(n) is the throughput in
bit/sec for each S-D pair, and r(n) is the transmission radius
(as a function of n). It is clear from (6) that if we want to
avoid A(n) — 0, then r(n) has to tend to 0 at least as fast as
1/n, so that nr(n) does not grow to infinity.

There is, however, an effect that does not allow to choose
the transmission radius arbitrarily small. This is the require-
ment that the network topology must be connected, since oth-
erwise communication between certain endpoints becomes
impossible. The discussed model uses an earlier result of
the same authors [61] about the needed transmission radius
for asymptotic connectivity. They show that if the nodes are
placed uniformly at random in a unit disk, then the network
is connected with probability approaching 1 if and only if the
transmission radius satisfies

,  Inn+c(n)
nrt = ————=
n

, (7)

with ¢(n) — 0. According to this, it is necessary for connec-
tivity that

s jmn 8)
n

holds for all large enough values of n. Combining it with (6),
we obtain

1 1
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clearly showing the vanishing throughput effect.
Nevertheless, as we have already mentioned earlier, there
are notable exceptions, utilizing various effects, such as
mobility (Grossglauser and Tse [58]), restricted traffic pat-
tern (Li et al. [62]), using infrastructure (Liu et al. [56]), or
relaxing the condition of full connectivity (Dousse et al. [63]
and Farag6 [10]), to recall only a few examples. Therefore,
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the issue of wireless network scalability is still under further
research.

It is worth mentioning, that the graph models that are
used in the wireless network investigations are very different
from the Internet and Web models. The random graphs in
wireless network analysis are based on geometric conside-
rations and termed geometric random graphs. They also
have a rich set of analytical results, see, for example, the
books of Franceschetti and Meester [64] and Penrose [65]. In
a sense, geometric random graphs are between the classical
Erd6s-Rényi model and those graph models that are used
to describe the Internet and Web topologies. Specifically,
geometric random graphs have (asymptotically) Poisson
node degree distributions, just like the Erdés-Rényi random
graphs. That is, geometric random graphs (modeling wire-
less network topologies) do not exhibit scale-free behavior.
On the other hand, their edges are not independent, just like
in the Internet/Web models, so they have many properties
that are distinctively different from the Erd6s-Rényi random
graphs.

2.3. The Current Situation. As briefly reviewed above, there
exists a vast and rather diverse body of various graph based
network models that are mostly analyzed from the viewpoint
of asymptotic properties. Note that beyond the theoretical
advances, they also have emerging practical applications,
such as Internet topology generators, search engine opti-
mization, protocol design, and optimization in wireless net-
works.

The current situation on the model development and
analysis side (which is our primary interest) can be charac-
terized with the following.

(i) The diversity of models also led to the diversity of
analysis methods. With minimal exaggeration, one
can say that a new analysis method has to be invented
almost each time when a new model is proposed.
There is a sense of missing unification and a lack of
general methods that apply to large families of dif-
ferent models.

(ii) The analysis is often very hard and typically cannot
rely on the well-developed methods of classical ran-
dom graph theory, as pointed out by leading experts
in the theory of random graphs (Bollobds and
Riordan [66]).

(iii) Despite the existence of emerging applications, there
is still a large gap between analysis results of descrip-
tive nature and methodology/algorithms that provide
meaningful help in network design problems.

(iv) Validation of models is a problem. As pointed out
by Flaxman [48]: “Unfortunately, it is much easier to
propose a generative model than to refute one.”

3. Large, Multihop Wireless Networks

Wireless networks of large size, random topology and no
supporting infrastructure, such as ad hoc and sensor net-
works, are expected to play an important role in the future.

The random network topology of these systems is frequently
described by various random graph models, most often by
some variants of geometric random graphs. First we review
some of the typical classes of graphs that are used in this
context.

3.1. Frequently Used Graph Classes. An important class is the
Unit Disk Graph (UDG) [67] model of the network topology.
A UDG is a graph that is defined by the (planar) geometry of
node positions. It is assumed that each node has the same
transmission radius r, and two nodes are connected by a
link if and only if they are within distance r (which is often
normalized to r = 1, hence the name). In other words, the
radio range of each node is just a circular disk. As a critical
difference from the physical model, in a UDG it does not
matter where the rest of the nodes are located and how much
interference they generate.

A clear advantage of UDGs is that a number of important
algorithmic problems that are NP-complete for general
graphs become solvable in polynomial time for this special
class [68], thus allowing much more efficient protocols.

Unfortunately, the UDG model is quite simplistic, it is
rather far from accurately reflecting the actual radio network
topology. A refinement is the Quasi-Unit Disk Graph (Q-
UDG) model [69], in which a shrink factor p is added, with
0 < p < 1, for describing the radio range of a node by two
concentric circular disks, the outer one with radius r and
the inner one shrunk by the factor p, yielding radius pr. If
two nodes are at most pr distance apart, then they are always
connected by a link. If they are more than r apart, then they
are never connected. Finally, if the distance is between pr and
r, then the link may or may not exist. Geometrically, this
means that the radio range of a node can have arbitrary shape
but moderated by the requirement that it should be between
a circumscribed circle of radius r and an inscribed circle of
radius pr.

A nice feature of Q-UDGs is that, while providing a
more general network topology model, they still preserve the
algorithmic advantages of UDGs, at the price of an additional
1/p?* factor in complexity [69]. Thus, if the shrink factor p is
a not too small constant, then most of the UDG advantages
carry over, with only a constant factor penalty in complexity.

Another natural issue is that different nodes may trans-
mit with different power or have different spectrum-depen-
dent attenuation of the transmission signal [70]. This leads
to the concept of Disk Graph (DG), which differs from the
UDG in that each node i has its own, possibly different,
transmission radius 7, and two nodes are connected by an
undirected link if they are mutually in each other’s range.
DGs are somewhat less friendly from the algorithmic point
of view than UDGs and Q-UDGs but still better than general
graphs and still allow efficient solutions or approximations
for a number of algorithmic problems, as we investigated in
[26].

Similarly to the generalization that leads to the Q-UDG
concept, one can also introduce Quasi-Disk Graphs (Q-DG),
by adding a shrink factor p that allows to refine the radio
range description as for Q-UDG.



All the above graph models can naturally be extended to
higher dimensions, replacing the disks by balls in the appro-
priate space.

A common nontrivial generalization of all these graphs,
the Bounded Independence Graph (BIG) model, is also worth
mentioning [68]. (It is also referred to as Bounded Growth
Graph [71].) This class is defined by the requirement that
the maximum number of independent nodes (a set of nodes
in a graph is called independent if there is no edge between
them) within the k-hop neighborhood N (v) of any node v
is bounded by a polynomial of k. Although this definition
is based purely on the graph structure and does not have a
direct geometric meaning, it can still be related to geometry
through the concept of doubling metric spaces [68]. These are
metric spaces in which any ball of radius r can be covered
by a finite number of balls of radius /2. This property does
not hold for all metric spaces, although it holds for Euclidean
spaces of any finite dimension (radio propagation properties
may lead to a “radio-distance” that is quite different from
Euclidean). It can be shown that if a geometric graph is
defined in a doubling metric space, in analogy with UDG or
DG, then it is always a bounded independence graph [68]. A
nice feature of this class is that a number of hard algorithmic
problems become efficiently solvable in it [71].

So far, we have described these classes deterministically,
ignoring randomness. Of course, from each graph class one
can generate random members, according to various prob-
ability distributions. These are usually defined indirectly,
through some generating mechanism. For example, if we
pick the node positions uniformly at random in a planar
domain, for example, a square, and then construct a UDG
over these nodes, then we get a random unit disk graph.

All these graph classes are related to some kind of geo-
metric insight. It is not surprising, since geometry and
distance play a key role in forming the radio network topol-
ogy. On the other hand, radio propagation (with possible
obstacles and other irregularities) can induce much more
complicated distances that may not satisfy the mathematical
distance axioms, primarily the triangle inequality. Never-
theless, even in this more complicated situation, it is still
possible to meaningfully analyze geometric-like graphs and
prove nontrivial results about important properties, such as
connectivity, as we are going to see in connection with our
Abstract Geometric Random Graphs.

3.2. Some Results on Geometric Random Graphs. In our
context, the typical model in the literature is the following. n
nodes are placed randomly and independently in a regularly
shaped domain, which is most often a square or a disk in
the Euclidean plane. Each node has a transmission radius
of r, and two nodes are connected with a link if and only if
their distance is at most 7. The radius is typically a function
of n in the asymptotic analysis. Note that this geometric
random graph model is different from the more traditional
independent-edge random graph model (often called Erdds-
Rényi random graphs), since in the geometric setting the
edges are correlated. While many deep results are available
for the traditional model (see, e.g., [39]), they are not directly
applicable to ad hoc networks.
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As one of the early results on ad hoc network connectiv-
ity, Philips et al. [72] proved the following. Assume the nodes
are chosen in a square of area A from a planar Poisson process
of constant density D. (This is asymptotically equivalent to
choosing the points independently at random from the uni-
form distribution over the domain.) The area A of the square
grows to infinity, while the density remains constant, so the
number of nodes also grows to infinity. A result of [72] is that

for any € > 0, if
r<+/(1-€)lnA/nD, (10)

then the network gets disconnected with probability approa-
ching 1, as A — oo. It implies that the transmission radius r
cannot remain bounded if we want connectivity with a grow-
ing number of nodes that are placed with constant density in
a growing area. If we want to keep the entire domain cons-
tant, it can be achieved by normalizing the quantities with
the domain size.

Gupta and Kumar [61] analyzed the situation when the
nodes are placed uniformly at random in a unit disk in
the plane. They investigated the critical transmission range,
that is, the minimum transmission radius needed for con-
nectivity. They obtained that the network is asymptotically
connected with probability 1 if and only if the transmission
radius satisfies

, _Inn+c(n)
nrt= ———=
n

(11)

with ¢(n) — oo. Wan and Yi [73] extended the results to k-
connectivity on a unit disk and square.

The above result of Gupta and Kumar [61] can also be
deduced from Penrose’s formula [74, 75] on the asymptotic
distribution of the longest edge of a minimum spanning tree
in a random geometric graph, since the longest edge length
in a minimum spanning tree is known to be equal to the
critical transmission range [75]. Penrose analyzes a rather
general setting, including a large class of probability density
functions, allowing that the nodes are placed in an irregularly
shaped area, in a (possibly) high-dimensional space. It is
assumed, however, that it is a normed space, thus the con-
sidered distance is not arbitrary. It is derived from a norm,
which does not apply to every distance metric.

The node degree required for connectivity was analyzed
by Xue and Kumar [76] in a somewhat different model. They
place n nodes uniformly at random in a unit square in the
plane, but the edges are not defined via a transmission radius.
They consider the graph that arises if each node is connected
to its ¢, nearest neighbors. That is, an edge between nodes
i, j exists, if either i is among the ¢, nearest neighbors of
j or j is among the ¢, nearest neighbors of i. The arising
graph is denoted by G(#, ¢,,). Note that this model is some-
what different from the transmission radius-based geometric
random graph model. For example, in the latter it may
happen with positive probability that a node is isolated. On
the other hand, by definition, no node can be isolated in
G(n, ¢y,) for ¢, > 0. This captures the situation when each
node adjusts its transmission radius individually until it has
the desired number of neighbors. It is shown in [76] that



ISRN Communications and Networking

G(n, ¢,) is asymptotically almost surely connected (i.e., the
probability that it is connected tends to 1 as n — o0), if
¢, > 5.17741Inn. On the other hand, if ¢, < 0.0741n n, then
the graph will be asymptotically almost surely disconnected.
Thus, the critical number of neighbors is on the order of
Inn, but the gap between the upper and lower bounds is
significant, their ratio is close to two orders of magnitude.
The upper bound was improved by Wan and Yi [73] to
aeln n, where e ~ 2.718 is the base of the natural logarithm
and « > 1 is any real constant.

The issue of connectivity is closely related to the min-
imum degree in geometric random graphs. Penrose [77]
shows that if the points are chosen uniformly at random in
a d-dimensional unit cube (d > 2) and the edges are added
one by one in the order of increasing length, then the graph
becomes k-connected almost surely whenever all nodes reach
degree = k. This can be interpreted that for large geometric
random graphs, almost surely, the sole reason for not being
k-connected is the trivial reason that at least one node does
not have sufficient degree. For simple connectivity, it means
that the graph is connected asymptotically almost surely if
and only if the transmission radius is chosen large enough
so that there are no isolated nodes. All this holds not only
with the Euclidean distance, but also for all [,,1 < p < oo,
distances.

For the I, distance, Appel and Russo [78] determined
the exact asymptotics of the minimum transmission radius
r» needed to eliminate isolated nodes. They obtain

1/d
o (3in) 12

where d > 1 is the dimension of the space in which the nodes
are chosen uniformly at random from the unit cube. The
combination of this with the above mentioned results of
Penrose on the degrees yields precise asymptotics for the
needed transmission radius for k-connectivity, if the nodes
are placed uniformly at random in a d-dimensional unit cube
(d = 2) and the distance is based on the maximum norm (/.
distance). For Euclidean distance in the plane, the asymp-
totics for the needed transmission radius for simple connec-
tivity (k = 1) was derived earlier by Dette and Henze [79].

4. Generalizations of Geometric
Random Graphs

4.1. Premetric Random Graphs. In real networks, the radio
coverage area is often more complicated than a simple disk,
since signal propagation may depend on various factors, such
as terrain, foliage, and weather and atmospheric conditions.
Therefore, the range can be direction and location depen-
dent. In other words, the existence of a link between two
nodes is not necessarily determined by their distance alone.
Moreover, the status of a node can possibly be characterized
not only by its random spatial coordinates, it may include
other random variables, as well. For example, one may also
include the traffic load, processor load, queue length, jam-
ming level, battery level, or any other parameter. If the
condition of link existence is expressed such that a distance

function based on the variables does not exceed a threshold,
then it is not surprising that this (abstract) distance will not
be a metric in the traditional sense. To capture this com-
plexity, a generalized model was proposed in [8]. It is based
on a space that is much more general than what is used in
other models.

Definition 1 (premetric space). A premetric space is a pair
M = (S,p), where Sisasetand p : S X S — Ris a real-valued
function, such that for every x, y € S the following hold:

(i) p(x, y) = 0,
(ii) p(x, y) = Oifand only if x = y,

(i) p(x, y) = p(y,x).

The difference between a pre-metric space and the usual
concept of a metric space is that in the pre-metric space, the
well-known triangle inequality p(x, y) < p(x,z)+p(z, y) does
not have to hold. Thus, p(x, y) is not necessarily a distance
in the usual sense. Still, to help visualization, we refer to it
as distance, keeping in mind that it can be a more general
function.

The nodes in this model are chosen randomly and
independently from a pre-metric space. Their common pro-
bability distribution, however, does not have to be uniform at
all. In principle, it can be arbitrary. A totally arbitrary distri-
bution over an abstract set, however, can have pathological
mathematical properties. Therefore, to avoid unnecessary
technical difficulties, it is assumed that all considered sets are
measurable with respect to the probability measure and all
considered expected values exist. Otherwise, the distribution
is arbitrary. Note that while it is mathematically possible to
create pathological examples that do not satisfy these con-
ventions, they never occur in practically meaningful cases.

Let us now define the pre-metric random graph model. In
the definition N and R, denote the set of natural numbers
and positive reals, respectively.

Definition 2 (premetric random graph model). The model is
given by a triple § = (M, r,P), where M = (S,p) is a pre-
metric space, 7 : N — R, is a function, and P is a probability
measure on M. A random graph is generated by the model in
the following way. For some n € N random points Xj,...,X,
are drawn from the pre-metric space independently at ran-
dom, according to the probability measure P. These points
are the nodes of the graph. The edges of the graph are defined
by connecting any two different points X;, X; if and only if

p(XiX;) < r(n). (13)

In the above definition, the function r(n) represents the
transmission radius, which may depend on the number of
nodes for normalization purposes, as it is typical in most
models. The arising grap intends to capture the network
topology in a general setting. The interesting thing is that
even in this general model, one can prove highly nontrivial
properties. Since the details are rather technical, we skip
them here and refer to the article Faragé [8].



4.2. Abstract Geometric Random Graphs. We have analyzed
an even more general model in [6, 10]. Since it allows proving
surprising results, we present it in more detail.

4.2.1. Starting with the Most General Setting. In order to
build up our modeling approach, let us first explain what we
mean by random graphs and a random graph model in the
possibly most general sense.

In full generality, by a random graph on a fixed number
of nodes (1), we mean a random variable that takes its values
in the set of all undirected graphs on n nodes. We are going
to denote by G, a random graph on # nodes. At this point, it
is still completely general, possibly generated by any mecha-
nism, with arbitrary dependencies among its parts, it is just
any graph-valued random variable, taking its values among
undirected graphs on n nodes.

Having introduced general random graphs, a random
graph model is given by a sequence of graph-valued random
variables, one for each possible value of n:

M = (Gp; neN). (14)

Next, we introduce some general features that apply to any
random graph model.

4.2.2. Degrees and Connectivity. Let G, be any random graph
on n nodes and let us denote by e(G,) the number of edges in
the graph. We characterize the degrees of G, by the expected
degree of a randomly chosen vertex, which we call he expected
average degree of G,,. It is denoted by d(n) and defined by

d(n) = (15)

2E(e(Gp))
” .
It is based on the fact that the actual average degree in any
graph G on n nodes is 2e(G)/n. Often the expected degree
of each individual node is also equal to d(n) but in a general
model it may not hold. (Note that even if the expected degree
of each node is equal to the expected average degree, it does
not mean that the actual random degrees are also equal.)
Ideally, we would like a random graph model, in which
d(n) remains bounded by a constant, and the model is
asymptotically almost surely (a.a.s.) connected, meaning

){n}oPr(Gn is connected) = 1. (16)
Note: whenever we write down a limit, such as the one above,
we also assume that the limit exists.

Since asymptotic connectivity in most models requires
unbounded degrees, therefore, one may hope that if we
accept less than full connectivity, then there is a better chance
to keep the node degrees bounded. To this end, let us define
a weaker version of connectivity.

Definition 3 (f-connectivity). For a real number 0 < f3 < 1,
a graph G on n nodes is called S-connected if G contains a
connected component on at least S nodes.

When we consider a sequence of graphs with different
values of n, then the parameter § may depend on n. When
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this is the case, we write 3,-connectivity. Note that even if
Bn — 1, this is still weaker than full connectivity in the limit.
For example, if 8, = 1 — 1/./n, then we have 8, — 1, but
each graph on n nodes can still have n— f3,n = \/n nodes that
are not part of the largest connected component.

4.2.3. Building the Model. Let us now introduce a very gen-
eral model class that reflects a typical feature of geomet-
ric random graph models. This feature is that in geometric
random graphs, the primary random choice is picking
random nodes from some domain, and then the edges are
already determined by some geometric property (typically
some kind of distance) of the random nodes. We elevate
this approach to an abstract level that includes many special
cases of interest. The most general version of our abstract
geometric model is built using the components detailed
below.

Representing the Nodes: Node Variables. The nodes are repre-
sented by an infinite sequence X, X5, . .. of random variables,
called node variables. They take their values in an arbitrary
(nonempty) set S, which is called the domain of the model.
In most practical cases, the domain is a simple subset of the
Euclidean plane or of the 3-dimensional space. In general,
however, S can be any abstract set from which we can choose
random elements (to avoid mathematical complications that
would only obscure the main message, we assume that all
considered sets, functions, etc., are measurable with respect
to the used probability measures and all considered expected
values exist. This is satisfied in every practically relevant
model). When we want to generate a random graph on n
nodes, then we use the first n entries of the sequence, that is,
Xi,...,X, represent the nodes in G,,. It is important to note
that we do not require the node variables to be independent.

Representing the Links: Edge Functions. We denote by Yl-(j") €
{0, 1} the indicator of the edge between nodes X;, X; in the
random graph G,. Since loops are not allowed, we always
assume i# j, without repeating this condition each time.
The (abstract) geometric nature of the model is expressed
by the requirement that the random variables Y,-(]-") are deter-
mined by the nodes X;,. .., X,, possibly with additional inde-
pendent randomization. Specifically, we assume that there

exist functions f,-;"), such that

Yi(jn) :fi;n)<X1:---7Xn>€ij)) (17)

where &;; is a random variable that is uniformly distributed
on [0, 1] and is independent of all the other defining random
variables of the model (i.e., the node variables and all the
other & variables). Henceforth, the role of &;; is referred
to as independent randomization (note that the specified
distribution of fij does not impose a restriction, since the

functions f,é”) are arbitrary). The undirected nature of the
graph is expressed by the requirement Y,»(j”) = YJ(,” ), which
can simply be enforced by computing all values for i < j only
and defining the i > j case by exchanging i and j.
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4.3. Specific Classes within Abstract Geometric Random
Graphs. Before turning to results, let us present some exam-
ples to show the usefulness and comprehensiveness of the
generalization provided by our abstract geometric random
graphs. These examples illustrate that most practically rele-
vant models for wireless network topologies fit in the com-
mon generalization that we provided by introducing abstract
geometric random graphs.

Geometric Random Graphs. All the usual geometric random
graph models fit naturally in our general framework. For
example, the base set S can be chosen as a unit disk or square
in the plane or a unit ball or cube (or any other domain) in
higher dimension. Let us choose i.i.d. points X;, X,,... from
S, according to some probability distribution. Let p(x, y)
denote the distance of the points x,y € §, it can be any
distance function. Finally, let r > 0 be a radius (possibly
depending on 7). Then the edge function

1 ifp(Xi X)) <7

0 1fp<X1,X]) >r (18)

£ (%0 X 85) = 1

defines a geometric random graph in the usual sense. (The
independent randomization is not used here, so the edge
function does not depend on &;;.) It is clear that this includes
all the usual geometric random graph models, allowing any
metric space as the basis. Moreover, we can also use non-
independent points, such as the “clustered uniform” example
in the previous section, as long as the distribution is exchan-
geable.

Erd6s-Rényi Random Graphs. The by now classical random
graph model of Erdgs and Rényi (see, e.g., [80, 81]), where
each possible edge is included independently with some
probability, p is also included as a direct special case. We can

set S = {1,...,n} and for X;,X; € §
1 ifé&i<p
m(x. v. £.) = J
£ (XX, &) {0 e > p (19)

Note that now the edge function depends only on the inde-
pendent randomization, so indeed each edge is included
independently with probability p.

A Geometric but Nonmetric Example: Battery Levels. In
geometric random graph models, p satisfies the triangle
inequality. This, however, cannot capture all situations that
occur in ad hoc or sensor networks. As an example, assume
the nodes are located in the plane. Let x;, y; be the coordinates
of the ith node. Furthermore, we also characterize a node
with its battery level E; > 0. E; represents the remaining
energy, assuming the node is not fully out of energy. Thus,
a node is represented by a triple X; = (x;, y;, Ei). Let d(E;)
be the distance over which a node can communicate, given
its energy level E;. (The function d(E;) can be derived from
the physical characteristics of the node and from radio

propagation conditions.) Now, a possible example of such a
“distance” function is

\/(Xi_xj)z"'(yi_yf)z. (20)

min{d(E:),d(E;) }

pr (X0 X)) =

If we take r = 1 and use the above p; function in (18), then
it expresses the condition that a link exists if and only if its
end nodes are at most at a distance that can be bridged by
the energy levels of both nodes. Note that the above function
p does not satisfy the triangle inequality, so it does not lead
to a geometric random graph model in the usual sense. On
the other hand, it still fits in our framework, as in (18) we did
not require the triangle inequality to hold for p.

Another Non-Metric Example: Link Blocking. We can capture
some features of traffic-dependent network characteristics
as well. Let each node i be characterized by a triple X; =
(x5 yisAi), where x;,y; are planar coordinates and A; is
the traffic demand of the node. Let B;; be the blocking
probability of the link (4, j), given that the link exists. We
may compute Bj; as a function of A;,A; from some traffic
models. For example, if we use Erlang’s well-known formula,
assuming a capacity of C units on the link and its load is taken
as the sum of its end nodes’ trafficload A;+1 , then we obtain

(M +Aj)C/C!
Bj= i (21)
S0 (Mi+Ay) /i

(Of course, we may use other traffic models, as well; this is
just an example.) Now we can take the “distance” function

pz(X,',Xj) = l—lBij\/(xixj)2+<yiyj>2 (22)

and use it in (18) with some radius r. We can observe that
for small blocking probability (B;; < 1) p2(X;, X;) will be
approximately the same as the Euclidean distance. On the
other hand, as B;; approaches 1, the factor 1/(1 — B;;) tends
to infinity, and, therefore, high blocking probability makes
the existence of the link in the model less likely, even if
the physical distance is small. This example also violates the
triangle inequality, so it is not a geometric random graph.

Log-Normal Shadowing. A typical phenomenon in the radio
environment is fading. An example of fading is a relatively
slow random fluctuation in the signal strength, which occurs
even if the locations are fixed. Measurements show that this
random variation can be accurately modeled by a log-normal
distribution (see, e.g., [82]). Hence, the name log-normal
shadowing, is widely used for this phenomenon. A way to
capture it in our model is this. Let us characterize a node i
by a triple X; = (xi, yi, i), where x;, y; represent a random
position in the plane, and each #; is an infinite sequence of
independent, log-normally distributed random variables:

= (s j=ii+1i+2,...). (23)
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The “distance” is defined as

p3(Xi)Xj) = m(,“)\/(xi —xj)z + ()’i - )’j)z’ (24)

where a = min{j, j} and b = max{j, j}. (The reason for
we need an infinite sequence of log-normal random vari-
ables is that this way we can have independent log-normal
shadowing for every link.) This distance can express the
fact that from the radio communication point of view, we
really perceive an “effective distance”, which is a log normally
modulated random variant of the physical distance. Using
this ps in (18) leads again to a random graph that is not
geometric, as p does not satisfy the distance axioms.

Directional Antennas. We can also represent directional
antennas in the model. As a simple example, let Y; be the
position of a node in the Euclidean plane, o; be the angle
(with respect to some fixed coordinate axis) at which its
antenna is directed, and &; be the angular width of the beam
(assuming an idealized directional antenna). Let us represent
the node by the variable X; = (Yj, a;,0:). Let S(X,a,6)
denote the planar angular sector pointed at X, with its axis
of symmetry directed at « and of angular width §. Further,
let || - || denote the Euclidean norm. Then we can introduce
the following “distance”:

|vi-v| ifxies(x;a;8),
pa (X X)) = X; € S(X;, i, &), (25)
0 otherwise.

If we use this function p4(X;, X;) in (18), then we get a
model of a random ad hoc network topology with directional
antennas.

Terrain Variations, Obstacles. Another example is to take
into account uneven radio propagation characteristics due
to terrain variations or propagation obstacles. For example,
let us assume that the nodes operate in a frequency band in
which only line of sight communication is possible (such as
infrared). Then two nodes can only communicate if there is
no obstacle covering them from each other. This feature can
also be built into the model. Let X; be the plane position of a
node. Assume there exists a set R = {R,R,,...} of random
obstacles in the area. Let s(X;,X;) be the line segment
connecting the points Xj, X;, and let L(X;j, X;, R) be the “line
of sight” function:

L(X,X), R) = {io

To express that only those nodes can communicate that are
in line of sight of each other, let us introduce the “distance”

if (X X;) N Re = @ (V)

26
otherwise. (26)

ps (X X)) = ||Xi - X;|[L(X5 X5, R). (27)

If this is used in (18), then we get a network topology model
that can deal with radio propagation obstacles.
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Combinations. The various conditions in the preceding
examples can be combined into more complex models. For
example, if we want that all the conditions expressed by the
P1s...»ps functions are satisfied, then we can use

p(X X)) = max{pi (X, X;),...ops (X X;) ] (28)

in (18).

5. Results on Abstract Geometric
Random Graphs

5.1. Restrictions. Regarding the abstract geometric random
graph model in the presented very general form, it is clear
that allowing totally arbitrary node variables and edge func-
tions offers little hope for meaningful analysis. Therefore,
next we introduce some restricting conditions. Later we are
going to see that one has to make only surprisingly mild res-
trictions to meaningfully analyze the trade-off between node
degrees and 5-connectivity.

Locality. Up to now, we allowed that an edge in G, can
depend on all the nodes, and the dependence expressed by

the fl-;”) functions can be arbitrary and different for each
edge. To get a little closer to the usual geometric random
graph model, let us introduce the following property, called
locality. Informally, it restricts the dependence of an edge to
its endpoints, in a homogeneous way but still via an arbitrary
function.

Definition 4 (locality). An abstract geometric random graph
model is called local, if for every n and i, j < n the existence
of an edge between X;, X; depends only on these nodes.
Moreover, the dependence is the same for every i, j, possibly
with independent randomization. That is, there are functions
£ such that the edge indicators are expressible as

Yi<jn) = f" (Xi,Xj,fij), (29)

where &;; represents the independent randomization.

Name Invariance. Our second condition called name invari-
ance refers to the joint distribution of nodes. If we allow
totally arbitrary joint distribution, then it offers little chance
for meaningful analysis. On the other hand, restricting
ourselves only to independent, identically distributed (i.i.d.)
node variables would exclude important cases, such as
clustering. For the aforementioned reasons, we use a more
general condition, rather than assuming independent, iden-
tically distributed node variables. To introduce it, let us
first recall a useful concept from probability theory, called
exchangeability.

Definition 5 (exchangeable random variables). A sequence of
random variables is called exchangeable if for any k > 1, it
holds that if we select any k of the random variables, the joint
distribution of the selected random variables depends only
on k, but is independent of which particular k variables are
selected, and in which order.
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Note thati.i.d. random variables are always exchangeable,
but the converse generally does not hold, so exchangeable
random variables form a larger family.

Now let us introduce the condition that we use to restrict
the arbitrary dependence of node variables.

Definition 6 (name invariance). An abstract geometric ran-
dom graph model is called name invariant, if its node
variables are exchangeable.

We call it the name invariance of the model because it
means the names (the indices) of the nodes are irrelevant in
the sense that the joint probabilistic behavior of any fixed
number of nodes is invariant to renaming (reindexing) the
nodes. In particular, it also implies that the individual node
variables are identically distributed, but they do not have to
be independent.

Name invariance is naturally satisfied with the most
frequently used random node choices, such as uniform
independent random points in a planar domain, a Poisson
point process in the plane, or in higher dimension. We allow,
however, much more complex node generation (over an
arbitrary set!) since dependencies are not excluded by name
invariance.

A simple example for a dependent, yet still name
invariant, node generation process is a “clustered uniform”
node generation. As an example, let S be a sphere in 3-
dimensional space, that is, the surface of a 3-dimensional
ball. Let R be the radius of the ball. Let us first generate a
pivot point Y uniformly at random from S. Then generate
the nodes X;, X5, . .. uniformly at random and independently
of each other from the neighborhood of radius r < R of the
random pivot point Y (on the sphere). It is directly implied
by the construction that exchangeability holds. Moreover,
any particular X; will be uniformly distributed over the entire
sphere, since Y is uniform over the sphere. On the other
hand, the X; are far from independent of each other, since
they cluster around Y, forcing any two of them to be within
distance 2r. The setting can be generalized to applying several
pivot points and nonuniform distributions, creating a more
sophisticated clustering.

5.2. Threshold Function for Partial Connectivity. We define
a concept that will characterize the trade-off between node
degrees and the type of partial connectivity that we intro-
duced as -connectivity in Definition 3. For notational con-
venience, the set of nonnegative real numbers, extended with
co, will be denoted by R§’. Real functions are also extended to
00 by f(c0) = limy . « f (x), whenever the limit exists (it will
always exist in our cases). The value of § is always assumed
to be in [0, 1].

Let us first explain the threshold function concept infor-
mally. We define a threshold for -connectivity, such that
whenever f is above the threshold, then it is impossible to
achieve a.a.s. f-connectivity for any model in the considered
family of random graph models. On the other hand, if 8 is
below the threshold, then this is not the case anymore, that
is, there is at least one model in the family that achieves a.a.s
p-connectivity with this . Thus, the threshold separates the
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cases when a.a.s. f-connectivity is impossible, from the cases
when it is possible. Since the threshold will depend on the
expected average degree, we call it threshold function.

Now let us present the formal definition. Recall that the
expected average degree in a random graph G, is defined as
d(n) = 2E(e(G,))/n.

Definition 7 (threshold for 3-connectivity). Let ¥ be a fam-
ily of random graph models. For any model M € ¥ let G,
denote the random graph on n nodes generated by M and let

Dy = lim supa(n) (30)
be the limiting expected average degree. A function f : Ry —
[0,1] is called a B-connectivity threshold function for # if
the following two conditions are satisfied.

(i) For any model M € ¥ and for every 8 > f (D)

lim Pr(G, is B-connected) < 1 (31)

holds, where G, is generated by M.

(ii) If B is below the threshold, then (i) does not hold
anymore, in the following sense. For every € > 0, there exists
amodel My € F and a

B=f(Dn,) -6 (32)
such that

’}ingoPr(Gn is B-connected) = 1, (33)
where G, is generated from M.

The importance of this concept is the following. If for a
considered class # of random graph models we can find out
what the corresponding 3-connectivity threshold function is,
then we can tell precisely what range of expected average
degrees allow a.a.s. f-connectivity for a given . Or, con-
versely, if we know the (asymptotic) expected average degree
for a particular model M in the considered class, then we
can decide what level of connectivity can be asymptotically
achieved for this model.

5.3. Computing the Threshold. Now we state the theorem
that conveys the surprising message that for the very general
class of abstract geometric random graph models, we can
still find the precise f-connectivity threshold function, if we
assume that the models satisfy the conditions of locality
and name invariance. The previously presented examples all
satisfy these conditions, so they show that even with these
restrictions, we can still include many complex and practi-
cally important models. For the proof of the theorem, see
[7, 10].

Theorem 8 (threshold function for local and name invariant
abstract geometric graphs). Let & be the family of local and
name invariant abstract geometric random graph models. For
any model M € F set

Dy = lim sup d(n). (34)

n— o0
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Then the B-connectivity threshold function for ¥ is

f(Dy) =1—ePx, (35)

5.4. Consequences for Full Connectivity. It is worth men-
tioning that the definition of the threshold function and
Theorem 8 directly imply that bounded expected average
degrees in ¥ exclude a.a.s. §,-connectivity when 8, — 1. As
a result, a.a.s. full connectivity, which corresponds to 8 = 1,
is also excluded. These claims are formally stated below, the
proofis a direct application of Theorem 8.

Theorem 9. Let 3, — 1 be an arbitrary sequence in [0, 1].
Then for any local and name invariant abstract geometric
random graph model M, it holds that if Dy < oo, then the
random graphs generated by M cannot be a.a.s. f3,-connected.

The interpretation of this result is that (asymptotically)
the requirements of full connectivity and bounded degrees
are incompatible, in the broad class of models we have con-
sidered.

At this point, one may wonder whether there is any
meaningful random graph model at all, in which a.a.s.
full connectivity is possible, yet the node degrees remain
bounded. Note that our results do not exclude this, since
they only apply to local and name invariant abstract geo-
metric random graph models. Although this class is quite
comprehensive, it does not contain all meaningful models.

A nontrivial example worth mentioning here is the
(random) Euclidean minimum spanning tree (MST). Let
us choose # i.i.d. random points in the d-dimensional unit
cube and view them as vertices of a complete graph, where
each edge is assigned a weight that is equal to the (random)
distance of its endpoints. Let T, be the MST of this graph.
Note that T, is unique with probability 1. It is clear that T,
is connected, as, by definition, it is a spanning tree. More-
over, the following nontrivial fact is known: for every fixed
dimension the maximum degree of the Euclidean MST is
bounded by a constant, depending only on the dimension,
but not on # (see, e.g., [83]). Thus, the model M = (T,;; n €
N) has the property that it is fully connected, yet its node
degrees remain bounded.

It is clear that the Euclidean MST model is name invari-
ant, since nothing depends on how the nodes are indexed.
Does it then contradict to our results? No, because it does
not satisfy the requirement of locality. Of course, the usual
definition of the MST is indeed not local. But now our results
imply that the nonlocality is unavoidable in this case, as long
as we want to preserve name invariance. In other words, it is
impossible to define the Euclidean MST in a local way, such
that, at the same time, the model is also name invariant.

Note that the fact that the Euclidean MST cannot be
defined locally, with name invariance, is nontrivial. For
example, one might try to define new node variables that
contain enough information to decide for any pair whether
an MST edge connects them, without looking at other
nodes. A possibility is to introduce new node variables Y; =
(Xiy. .., X X15...,Xi—1), with edges that connect two such
new nodes if their first components are connected by an MST
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edge, among the original X; variables. In this way, we can
create a locally defined MST model, since one can decide
from Y;, Y; alone, whether X;, X; are connected by an MST
edge, as the information about all the original nodes is
available in each of the new node variables. Thus, in the
transformed domain, we have a local model. The MST over
the Y; variables will be isomorphic (with probability 1) to
the MST over the X; node variables, so the new model is
equivalent to the original, yet it is local. Then, however,
the name invariance would be destroyed. Even though each
Y; individually has the same distribution (since it does not
matter in what order the X; are listed), the joint distribution
of Y7 and Y, will not be the same as the joint distribution
of Y7 and Y;. The reason is that the first coordinate of
Y, = (Xi,...,X,) is the same as the last coordinate of
Y, = (X3,...,X,, X)), but such a relationship does not hold
between Y7 and Y3 = (X3,..., X, X1, X3).

Generally, it follows from our results and from the afore-
mentioned properties of the Euclidean MST that no matter
how tricky local definition we invent for this random graph
model, it cannot preserve name invariance. The fact that
name invariance excludes the possibility of a local Euclidean
MST definition appears to be hard to prove without our
results.

6. Physical Models and Their Relationship to
Graph Models

6.1. The SINR Concept. The Signal to Interference and Noise
Ratio (SINR) model (see [84], and further references therein)
captures the physical conditions of receiving the radio signal
with a satisfactory quality.

Let vy,..., v, be radio nodes and, with a slight abuse of
notation, let each v; also represent the position of the node
(in the plane, for simplicity). Let d(x, y) be the Euclidean
distance and assume that node v; transmits with power P;.
Then, the reception zone of node v; consists of all those
points x in the plane, where SINR;(x) = f holds with some
parameter f3, where

Pid(vi,x)”*
N+ Zj?éind(vj,x)ﬂx

In the simplest case, the parameters 8, N, and « are assumed
known constants; « is called path loss exponent and it usually
falls in the range 2 < a < 6. The meaning of the SINR;(x) >
B condition is that the received power of v; at x is at least
B times larger than a noise power N, plus the interference
from all other nodes at x, assuming that attenuation is pro-
portional to a power of distance.

Now, one may ask the natural question: what kind of
network topology arises from this model? We can define it by
connecting any two nodes v;, vy whenever both SINR;(vx) >
B and SINRk(v;) = f3 hold, that is, they are mutually in each
other’s reception zone, so they can communicate. This gene-
rates a graph (network topology) that describes which pairs
of nodes are capable of communicating.

The arising (undirected) graph, however, does not seem
to belong to any special class with nice properties, since

SINR;(x) = (36)
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the existence of any given edge depends, in a complicated,
nonlinear way, on all the node positions and transmission
powers, not only on the end nodes of the particular link. For
example, if any single node v; changes position or power,
then all SINR;(x) values change, so the whole graph may
become different. The effect may not remain local, in sharp
contrast with the philosophy of graph models. Thus, the
SINR approach does not seem to offer any good opportunity
to apply the special graph classes and properties, along with
the rich treasury of results that build on them. Next, however,
we show the surprising and unexpected fact that it is still
possible to build bridges between the “different worlds.”

6.2. A Bridge between SINR and Graph Models. Building on
the involved analysis of [84] about the geometry that the
SINR condition (36) generates, we can prove a result (see
[20]), which shows the unexpected fact that the “messy”
SINR based topology is in fact not too far from a simpler,
standard graph model, at least for some choice of the para-
meters.

Theorem 10. Assume that all nodes transmit with the same
power and the path loss exponent is « = 2. Then, for arbitrary
B = 1 and for arbitrary node positions, the network topology
that arises from the SINR model is a Quasi-Disk Graph with
shrink factor

JB-1
B+

This theorem shows the unexpected fact that despite the
messy “everything depends on everything” nature of the
physical SINR model, the arising graph still belongs to a
special class that is part of the toolkit of multihop wireless
network modeling.

(37)

6.3. Trade-Off between SINR and Global Properties of the
Network Topology. Equation (37) implies that with § — oo
the Quasi-Disk Graph in Theorem 10 approaches a Disk
Graph, since p tends to 1. Depending on the node positions,
however, it may not be a Unit Disk Graph (UDG), only a Disk
Graph (DG). On the other hand, if the node positions are
random (chosen independently from the same distribution),
then, by symmetry considerations, each node will have the
same expected radius r. Due to independence, one can also
expect a strong concentration of the actual random r; values
around their common expected value r. Taking into account
that with large enough S, the shrink factor will be p = 1,
we obtain that, under these conditions, the SINR generated
network topology can asymptotically be well approximated
by a UDG.

This fact is encouraging from the viewpoint of analysis
of network level properties, such as the connectivity of the
network topology, since much is known about these issues
in the UDG model. Additionally, in the random setting, it
is known that if n nodes are placed uniformly at random
in a unit disk, then the network will be connected with
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probability approaching 1, as n — oo, if and only if the
transmission radius r satisfies

12 logn + c(n)
n

where ¢(n) is an arbitrary function with c(n) — oo [61].
Various generalizations are also known in this direction, see,
for example, [6, 8]. It is also important that both DGs and
UDGs have efficient routing and labeling schemes, as well as
spanners and separators, and so forth, with good properties
(see [85] for definitions and further references).

These considerations point to the unexpected fact that
the “messy” SINR generated network topology and the
abstract UDG model are in fact not as far from each other
as one might expect. This may allow the extension of a lot of
useful analytical and protocol design results from UDGs to
SINR based models.

6.4. A Common Generalization of SINR and Graph Models.
The SINR model, in particular, its special case used in
Theorem 10, is only the simplest version of this type of
physical models. In reality, there are a good number of addi-
tional complications that need to be taken into account for a
faithful representation of the radio environment. For exam-
ple, the transmission power of each node may be different
and randomly changing. The received power may be subject
to fading. The noise level may be time and location depen-
dent and randomly changing. The path loss exponent may be
different from « = 2; it may also depend on direction, time,
and location. The distance may not be Euclidean, to reflect
additional effects, such as obstacles to radio propagation.

The formal introduction of such effects into the SINR
model, in order to making it a more faithful description of
the radio network, is not too hard in itself, since one can
use the results of the extensive research that has been done
in accurately modeling the physical radio environment. It is
much more difficult, however, to avoid hopeless messiness
from the viewpoint of networking protocols. In other words,
it is very desirable to develop the more complex models in a
way that still preserves a meaningful relationship with graph
models, so that we can build further bridges in the spirit dis-
cussed previously.

In a more complex scenario, it seems unlikely that
Theorem 10 would directly carry over. Therefore, let us
intro-duce a more general graph model that opens a new
direction to capture the network topology, and, in a sense,
serves as a common generalization of SINR and graph
models. We call it Weight Ratio Graph (WRG) model. It is
a graph characterized by the following parameters.

(1) A set of nodes {vi,...,V,}.

(ii) A positive weight w; ; for each pair (v;,v;) of nodes
(i#j).

(iii) A parameter 3 > 0, which will play a similar role to
the 8 parameter of the SINR model.
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With these parameters the actual graph is defined in the fol-
lowing way. First, we say that node v; can receive node vi’s
transmission if

Wk,i

S oW =, (39)

that is, the weight wy;, perceived as the power that reaches
v; from v, is at least B times larger than the power that
reaches v; from all other nodes. Finally, there is a link between
two nodes if they can both receive each other’s transmission,
according to the above definition.

It is not hard to see the connection between the SINR and
WRG models. If we take w; ; = P;id(v;, vj)fa and use the same
B in both models, then WRG will produce exactly the same
network topology as the SINR with N = 0. Therefore, at first
it seems that WRG can only represent the special case when
the noise is zero. A closer look reveals, however, that this is
not true. In fact, surprisingly, the WRG model essentially has
universal expressive power, as shown by the following result
[20].

Theorem 11. Let G be an arbitrary graph with no isolated
nodes. Then the parameters of the WRG model can always be
chosen such that the model will generate precisely the graph G.

As we have seen, the WRG model can generate any graph
with no isolated nodes, which, of course, also includes the
SINR topology with nonzero noise, assuming there is no
isolated node. As a result, we obtain the following direct, but
interesting consequence.

Theorem 12. For an SINR model, it is always possible to elim-
inate the effect of noise by transforming it into another SINR
model with N = 0 that generates the same network topology,
given that it contains no isolated node. The transformation can
be achieved by adjusting the transmission powers from P; to
some P and possibly the value of 3, with no other change in the
model. That is, some positive P, ' values can always be chosen
such that

Pid(vi, i) * > B (40)
N+ 5, Pid (v, ve)
holds if and only if
Pid(viove) * g -

Zj#iP{d(vj,vky
Moreover, this equivalence holds for all i, k simultaneously.

It is worth noting that while Theorem 12 follows
Theorem 11 as an immediate consequence, it appears to be
harder to prove Theorem 12 directly, building only on the
SINR model. The achieved shortcut shows the power of
Theorem 11.

7. Networks with Multiradio Nodes

The growing importance of wireless networks is a major
and lasting trend in the networking landscape. It also comes
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hand in hand, however, with the increasing diversity of
wireless networking solutions and standards. Some of them
are already widely used, such as variants of IEEE 802.11
wireless LANs (802.11a, 802.11b, and 802.11g), others are
emerging, such as IEEE 802.15 personal area networks, Zig-
bee, Bluetooth, broadband wireless (IEEE 802.16), and a
variety of sensor networking solutions.

Another well visible trend is that radio interfaces are
rapidly getting more and more inexpensive and physically
small. It is now technically and economically quite feasible to
equip wireless network nodes with several radio transmitters/
receivers. This creates an environment, where the network
effectively has multiple physical layers. For example, it is
already quite common that a laptop or a PDA has both an
IEEE 802.11 card and a Bluetooth interface. Given the ten-
dency of decreasing price and shrinking physical size, it is
quite likely that the trend of having multiple radio interfaces
will get even more prevalent in the future. Thus, many of
the ubiquitous wireless network nodes will likely be capable
of operating with multiple physical layers. A few examples,
present and future.

(i) Multiradio nodes (e.g., laptops with multiple radio
interfaces, as mentioned above).

(ii) Multichannel radio environments that logically act as
multiple radios. Note that the IEEE 802.11 standard
defines multiple channels that are only partly utilized
today.

(iii) Multiple antenna systems that implement several
independent channels via sophisticated physical layer
techniques, such as beamforming, Space Division
Multiple Access (SDMA), cooperative coding, and
multiple-input/multiple-output (MIMO) systems.

(iv) Combination of radio and infrared interfaces in a
node.

(v) Utilization of low-power wireless technologies, such
as RFID solutions with energy harvesting and various
wireless sensor platforms.

(vi) Combinations of radio and other potentially possible
wireless transmission technologies, such as free space
optical transmission and laser beams.

Thus, while the technical possibility of multiple physical
layers is already quite clear today, it is much less obvious
how can it be efficiently utilized to gain significant improve-
ment in the overall network performance. Or, from the
practical/economical point of view, the ultimate question is:
Will the multiradio network development lead to sufficient
performance improvement that justifies the investment?

We present a general network topology model to analyze
multiradio networks. The model is based on the mathe-
matical concept of multigraphs. First, however, let us do a
short literature review about what is available regarding the
multiradio environment.

The availability of multiple radio interfaces and multiple
channels per radio in multihop networks have raised sig-
nificant interest in the academic and industrial community
due to the design and deployment of mesh wireless networks,
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that is, multihop networks where some of the nodes, usually
less mobile, provide backbone connectivity to mobile end
users [86, 87]. As a consequence, whether related directly
to mesh networking or just considering generic multiradio
systems, a good number of papers have been published at
networking conferences in this area. Apparently, all works on
multiradio/multichannel systems suggest and demonstrate
the advantage of exploiting the radio diversity provided by
multichannel/multiradio systems, and in general, of hav-
ing multiple radio interfaces for considerable performance
improvement.

Various solutions have been proposed for multirate
(but singleradio) systems. Some technologies, such as I[EEE
802.11a/b/g, have multiple transmission rates, so that they
can accommodate multiple channel conditions, enhance
throughput, and decrease interference losses. For example,
in the work by Awerbuch et al. [88] it is shown that the
minimum-hop routing strategy, which is usually deployed
in single rate networks, is suboptimal in multirate networks.
Therefore, the authors propose a different link selection
metric (Medium Time Metric, MTM) that favors shorter,
higher throughput, and more reliable links instead of the
longer links that regular routing would select. Interference-
aware topology control and routing is discussed in [89],
where single-radio (IEEE 802.11b) nodes are considered. By
taking advantage of the multiple channels of the radio, the
authors define a way of choosing channels so that the result-
ing topology is “interference-minimum” among all possible
k-connected topologies. For splitable traffic demands, the
authors then present the Bandwidth-Aware Routing (BAR)
protocol, which is demonstrated to outperform routing on
a single-channel topology. Chandra et al. [90] advocates the
use of single-radio systems in a multi-LAN environment.
A wireless device could connect to multiple wireless LANs
simultaneously despite having a single-radio card. The paper
describes a software layer approach to this problem, called
MultiNet, that virtualizes a single wireless card and facilitates
parallel multiple connections.

The capacity of wireless multiradio, multichannel net-
works has been addressed, for example, by Kyasanur and
Vaidya in [91]. In networks with n static nodes, each with
m radios and ¢ channels, 1 < m < ¢, this work shows that
the capacity of the network exhibits bounds that are different
from those established by Gupta and Kumar [50] on single-
radio/single-channel systems. In particular, the multiradio,
multi channel bounds depend on the ratio between ¢ and
m. A characterization of the achievable rates in a mesh
network with orthogonal channels is given in [92], where
the authors determine necessary and sufficient conditions for
achieving a rate vector in systems where the channels do not
interfere with each other. By extending a former solution of
theirs [93], the authors derive joint routing and scheduling
algorithms for systems that are full duplex and equipped with
multiple radios.

Routing for a multiradio network with static nodes (like a
wireless community network [94]) has been presented in [95].
The authors propose a new metric for routing in networks
with multiradio nodes, taking into account loss rate and
link bandwidth and define a corresponding path metric

15

that also considers interference among links using the same
channel. The performance of the new metric is demonstrated
via a 23-node testbed with nodes mounting two IEEE
802.11a wireless cards. The same testbed is also described
in [96], where general design guidelines are provided for
building multiradio systems. This work also revisits the
standard problems in wireless networking in light of having
nodes with multiple radio cards. The advantage of using
multiradio nodes has also been demonstrated in [97], where
a single-hop wireless system is presented, termed MultiRadio
Diversity (MDR), which uses path diversity to improve loss
resiliency. The paper demonstrates the multiradio advantage
by showing throughput gains up to 2.3 over single-radio
communication schemes (their testbed is based on nodes
supporting multiple IEEE 802.11a wireless cards). Shin et al.
[98, 99] advocate the use of multiradio to increase the capa-
city and performance of cellular networks. The idea in this
case is to exploit the best available link to the base station.
The authors envision an environment in which relay net-
works are dynamically formed so that whenever no accep-
table direct links are available from a mobile node to the
base station, a multihop path can be found. Algorithms for
efficient formation of multihop relay networks are presented
and evaluated for latency, signal overhead, gateway load
(network formation), path length, and link sharing (relay
network functions).

Channel assignment and routing for multihop wireless
mesh networks is formulated mathematically as a joint opti-
mization problem, by Alicherry et al. in [100]. The authors
consider interference constraints, the number of channels
per radio, and the number of radios per node. By solving the
corresponding mixed integer linear programming model a
centralized algorithm is proposed that optimizes the overall
network throughput subject to fairness constraints. Distri-
buted channel assignment in multihop, multiradio networks
has been explored in [101]. The problem is shown to be NP-
hard even if the paths between any two nodes are given. A
randomized assignment scheme is then proposed (Skeleton
Assisted partition FrEe or SAFE) that maintains network
connectivity. A method for interference-aware cannel assign-
ment has been proposed by Ramachandran et al. [102]. By
modeling interferences between each mesh multiradio router
via a newly defined multiradio conflict graph, a new channel
assignment algorithm is designed that addresses explicitly
the interference problem. Simulations and testing on a IEEE
802.11 testbeds are performed, which yield performance
gains in excess of 40% with respect to static (non-interference
aware) channel assignment solutions.

In order to ease the application access to multiradio
cards on a single-node, the Multiradio Unification Protocol
(MUP) has been proposed by Adya et al. [103]. The goal of
MUP is coordinating the operations of the different (IEEE
802.11) cards tuned to nonoverlapping frequency channels
by optimizing local spectrum usage. The advantage of using
this kind of software interface has been demonstrated via
ns2-based simulations. Results show that TCP throughput
and user perceived latency significantly improve under dyna-
mic traffic patterns over realistic topologies.



16

7.1. The Multigraph Model. Our model of the network topol-
ogy for a network with multiple physical layers is a multi-
graph. As it is well known, a multigraph differs from an
ordinary graph in that multiple edges can connect any pair
of vertices. Naturally, the vertices represent network nodes,
while the edges represent the links in the various physical
layers, generated by the different radio interfaces.

As graphs have long been used to model network topolo-
gies, one may rightfully ask the question at this point: Can a
multigraph lead to any essential new insight? In what follows
we show that this model yields interesting and nontrivial
novel problems.

Consider a wireless multihop network with omni-direc-
tional antennas and let its network topology be represented
by a graph G;. Assume that we equip the same nodes with
another physical layer, such as a second radio with beam-
forming capabilities. This second physical layer generates
another network topology, denoted by G,. If we put them
together, we obtain the topology of the combined system,
which is a multigraph G.

Let us call the above merging operation of graphs the
multigraph sum of G; and G,. The operation will be denoted
by w. Thus, we obtain G as

G= G] W Gz. (42)

The operation can be extended to more components in a
natural way, so we can take the multigraph sum of any num-
ber of graphs or multigraphs: WY ,G; = G W G, ¥ - - - & Gy.

Having introduced the multigraph sum, let us now con-
sider a curious property of it, which we call multigraph
advantage. We explain it through an important graph para-
meter, the edge-connectivity (for short, we simply call it con-
nectivity), denoted by A(G). This is the minimum number of
edges that can disconnect the graph, when these edges are
deleted. In other words, this is the size of a minimum cut
in the graph. In case G is a multigraph, the parallel edges
are all counted when we consider the size of a cut. The
connectivity provides an important characterization of the
network topology. For example, it tells how vulnerable the
network to link failures. It also shows how rich the network
is in link-disjoint routes. Now one can easily see that

/\(Gl W Gz) > /\(Gl) +/1(Gz) (43)

always holds. More generally, we have
N N
Mo 6)= SAG) (44)

The reason is that the size of any given cut in the multigraph
sum is just the sum of the sizes of the corresponding cuts
in the components. Thus, the connectivity of the multigraph
sum cannot be smaller than the sum of the connectivities
of the components. In fact, from the above reasoning, one
might first expect that actually the inequalities (43) and (44)
always hold with equality. This is, however, not the case. It
can happen that

MG1 @ Gy) > A(Gy) + MGy), (45)
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that is, the inequality may be strict. (As an exercise, the reader
is advised to construct some simple examples!)

This is what we call multigraph advantage. Regarding
connectivity, it means that the connectivity of the multigraph
sum can be strictly larger than the sum of the connectivities
of the components. Thus, the network topology has a quan-
tifiable extra benefit from taking the multigraph sum, rep-
resenting multiple physical layers.

One may reasonably ask at this point: is this behavior
just the consequence of specially chosen examples or is it
somehow typical? The following section shows that it is quite
typical.

7.2. Analysis of Multigraph Advantage. Mobile wireless net-
works are often modeled by various types of random graphs.
In what follows, we first discuss the choice of the considered
random graph model, then we formally state the theorem
showing that it exhibits significant multigraph advantage.

The type of random graph that is most frequently used
to model mobile wireless networks is the random geometric
graph [65]. In the simplest case, it is generated by randomly
placing points in a planar domain, typically a regular one,
such as a square. The points represent the randomly posi-
tioned network nodes. Any two points are connected with an
edge (representing a network link), whenever their distance
is at most a given value r, that stands for the transmission
radius.

There are various generalizations of the above simple
model. For example, the domain can be irregular and it
may be part of a higher dimensional space, possibly with a
different metric. It can even be elevated to a more general
and abstract level, as discussed in earlier sections.

On the other hand, the oldest and most studied random
graph model is the one in which all edges are chosen inde-
pendently with the same probability [39]. This model is
referred to as independent-edge random graph, Erd6os-
Rényi random graph, or sometimes Bernoulli random graph.
While this model lacks the edge correlations induced by
geometry, nevertheless it has a number of important advan-
tages, beyond the fact that it is much more amenable to
mathematical analysis.

(i) In situations where the transmission radius is compa-
rable with the domain diameter, the main reason for
a missing link is not the distance, it is the presence
of random obstacles or random variations in the
radio propagation. In such case, an independent edge
model can be adequate, or even more accurate than a
geometric random graph.

(ii) Some studies have found (see [104, 105]) that if the
radio propagation model is more realistic, that s, it
takes into account statistical variations around the
mean power, then it tends to decrease link correla-
tions, and the random graph becomes similar to the
indepedent-edge model.

(iii) If the network applies power control, it tends to
counterbalance the effect of distance, especially if the
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distances are not too large. This again points to the
applicability of the independent edge model.

The above reasons justify that we choose the indepen-
dent-edge model for investigating the multigraph advantage.

Let us consider the following situation. Let G, , denote
a random graph on n nodes, with edge probability p. Note
that typically p is a function of #, that is, p = p(n), and we
are interested in asymptotic properties, when n — oo.

A well-known property (see [39]) is that G, , is con-
nected asymptotically with probability 1 if and only if

p(n) = M (46)

where w(n) is any function that tends to infinity with n.
Informally, this means that the edge probability of (logn)/n
is the minimum requirement for connectivity, as w(n) can
tend to infinity arbitrarily slowly.

We investigate the multigraph advantage in a situation
when the network is moderately dense in the sense that the
average degree is constant times higher than the minimum
needed for connectivity.

Definition 13. The random graph G, is said to be in the
moderately dense regime if there exists a constant ¢ > 1, such
that

clogn

p(n) = (47)

holds.

Now we consider the following situation. Let G, p, and
Gyp, be two independently drawn random graphs on the
same set of nodes, with edge probabilities p; and p,, res-
pectively. Assume that they are both in the moderately dense
regime. Let us compare the connectivities A(Gyp,) and
MGy, p,) and the multigraph connectivity A(G,, p, W Gy, ). We
can prove the following result (see [12]) about the multi-
graph advantage regarding connectivity.

Theorem 14. Let G, and G, p, be independently drawn ran-
dom graphs in the moderately dense regime, on the same set of
nodes. Let their edge probabilities be

alogn

pi(n) = 0 p2(n)

_ blogn (48)
I/l b

with constants a, b > 1. Then there exists a constant ¢ =
c(a,b) > 0, such that the asymptotic multigraph advantage
regarding connectivity is at least clog n. That is,

lim Pr ( A(Gwl ? Gn’PZ) > 1)
ne e /\(Gwl) +A(Gn,p2) +clogn

Thus, as shown by Theorem 14, the multigraph advan-
tage is quite significant in the moderately dense regime, for
two reasons. First, it tends to infinity as the graphs grow.
Second, since it is known [39] that in the moderately dense
regime, the connectivity of the random graph is O(logn),

1. (49)

17

therefore, the gain in connectivity is of the same order of
magnitude as the connectivity of the component graphs
itself. In other words, there is a guaranteed constant percent-
age of relative gain, and this percentage does not vanish as
n — oo,

8. The Issue of Connectivity in
Wireless Networks

Due to the random network topology, it is not at all guaran-
teed that any two nodes can send messages to each other. To
guarantee that all nodes can reach each other, a minimum
requirement is that the network topology (which is usually
represented by an undirected graph) is connected. Unfortu-
nately, the connectivity requirement is not as innocent as it
may look, due to random node positions and limited wireless
transmission ranges. It turns out (see, e.g., Gupta and Kumar
[50, 61]) that in typical cases, such as placing the nodes in
a planar disk independently and uniformly at random, the
price of connectivity is very high: the transmission range
needs to be set such that it asymptotically results in an
infinitely growing number of neighbors.

This phenomenon is a serious threat to scalability in these
networks. After all, one cannot expect that a small wireless
node with limited power and modest capabilities can serve
an unbounded number of neighbors.

One might hope at this point that for different modeling
assumptions, the situation may perhaps improve. For exam-
ple, one may try different deployment domains, different
probability distributions, different distance metrics, and so
forth. Unfortunately, however, it has been proven in very
general models that none of these can relieve the scalability
bottleneck, see Faragéd [8, 10]. It appears that unbounded
node degrees are unavoidable whenever full connectivity is
required in the limit in a random, geometrically induced
topology. This is, of course, bad news for hoping a scalable
implementation.

It is therefore of keen importance whether better scala-
bility can be achieved if we are willing to give up full con-
nectivity and substitute it with the milder requirement of
partial connectivity. This means that, as a price for keeping
the node degrees bounded, we accept that only most, but not
all, nodes are in a connected component. The motivation is
that in many potential applications, such as a network of
randomly placed sensors, it is acceptable to have only a
majority (say, 99%) of nodes in a connected component and
the rest are possibly disconnected.

Next, we show through two case study examples that
our abstract geometric random graph model and the related
results can serve as powerful tools to analyze the situation,
even when that would be very hard to do via the traditional
methods.

9. Case Study 1: A Sensor Network Problem

9.1. Problem Setting. Let us consider a large sensor network.
Due to the limited processing capabilities of the small sensor
nodes, each one is capable of maintaining connections only
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two at most three other nodes in our example. The existence
of wireless links depends on distance, but the actual form
of the dependence is unknown. Moreover, random obstacles
to radio waves are also present, and two nodes can only
communicate if no such obstacle separates them.

The sensor nodes are distributed in space independently,
according to a common, but unknown probability distri-
bution. The locations of the random obstacles are also
independent of each other and of the node locations, but
otherwise the position, size, and shape of each obstacle can
have an arbitrary probability distribution, which is again
unknown. We only assume that the events that links are
blocked by an obstacle can be considered independent.

Without further information about this sensor network,
is it possible to provide a nontrivial lower bound on the
number of sensors that will be necessarily pushed to the
“periphery”? By periphery, we mean those nodes that are not
part of the largest connected component of the network
topology.

The traditional approach to answer this question would
be to specify the probability distributions and other parts of
the model (such as how link existence depends on distance,
etc.), and then do (tedious) calculations under the specific
conditions. If, however, anything changes in the conditions,
the results may not carry over. Our general approach will
make it possible to avoid this, and provide a nontrivial bound
that is valid for all practically relevant cases, as explained
next.

9.2. Solution via Abstract Geometric Random Graphs. In the
solution, we use the terminology and results introduced in
Section 5. In the above-described sensor network example,
we can observe that the model is described by a local and
name invariant abstract geometric graph model, no matter
what the unknown probability distributions are. The reason
for locality is that once we choose the positions of two
sensors, the probability that a link exists between them does
not depend on the locations of other sensors. Although it
does depend on the obstacles, they are independent of the
sensor positions and block the links independently. Name
invariance also holds in this example, as the sensor positions
are i.i.d., which is a special case of an exchangeable system of
random variables. The node degree bound of 3 yields Dy <
3. By Theorem 8, the threshold function for 3-connectivity
in our case satisfies

fDy)=1-eP*<1-e7 =095 (50)

Thus, we can conclude that despite the very vague informa-
tion about the system, we are still able to calculate that at least
about 5% of the nodes cannot belong to the largest connected
component.

Thus, our general result was able to easily come to a
conclusion that would otherwise be rather hard to obtain
without having further information.

10. Case Study 2: Mobile Ad Hoc Network

10.1. Problem Description. In this example, we model a
mobile wireless ad hoc network. The initial position of each
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node is chosen in the following way. Let P be a probability
measure over a planar domain D. First we choose k pivot
points independently at random, using P. Then the actual
node positions are generated such that each potential node is
chosen independently at random from P, but it is kept only
if it is within a given distance dy to at least one of the
random pivot points, otherwise it is discarded. Note that this
way of generating the nodes makes them dependent, as
the nondiscarded ones cluster around the random pivot
points, thus modeling a clustered, nonindependent node dis-
tribution.

Remark 15. The fact that the above node generation may
indeed result in dependent node locations can be seen the
easiest in the special case when k = 1, the domain D is a
circular disk, and P is the uniform distribution over D. Since
the pivot point is then chosen uniformly at random over D,
therefore, any location in D will have a positive probability
of falling within dj distance of the pivot. Therefore, the indi-
vidual probability density of any given nondiscarded node
is strictly positive everywhere in D. On the other hand, if we
condition on the event that a nondiscarded node falls within
some distance d of the center of the disk, then it implies that
the pivot must have fallen within d +d, distance of the center.
Then, since any other nondiscarded node must fall within
distance dy of the pivot, therefore, any nondiscarded node
will be at most at distance d + 2d, of the center. If d + 2d,
is less than the radius of the disk, then the conditioning
on the position of one nondiscarded node changed the
distribution of others, since under the condition they cannot
fall anywhere with positive probability density in D. Thus,
they are not independent, since if they were independent,
then conditioning on the location of one of them could not
influence the distribution of others.

Let us model the mobility of the nodes in this example
in the following way. Over some time horizon T}, that may
depend on #, the number of nodes, each node moves along a
random curve from its initial position with a constant speed
vo. The curve is chosen from a set C of available potential
trajectories in D. For simplicity, it is assumed that each
curve can be identified by a real parameter. This parameter
is chosen using a probability distribution Qy,, that depends
on the initial position (x, y) of the node. Then the randomly
obtained curve is shifted so that its start point coincides with
the random initial position of the node and then the node
will move along this random trajectory. It is assumed that
C and D are such that the shifted curves still remain in the
domain.

Let d(x, y) be a nonnegative real-valued function over
D x D, with the only restriction that d(x, x) = 0 holds for any
x. This function is intended to measure “radio distance” in
D. The assumption is that whenever d(x, y) is small enough,
then two nodes positioned at x and y can receive each
others’ transmissions. The function d(x, y), however, does
not have to satisfy the usual distance axioms, it may reflect
complex radio propagation characteristics, such as expected
attenuation and fading, it may account for the heterogeneity
of the terrain, for propagation obstacles, and so forth.
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We may also include random effects, making d(x, y) a ran-
dom variable, reflecting special conditions of interest, such
as the random presence of eavesdroppers that can trigger the
inhibition of certain links. We assume, however, that if there
is randomness in d(x, ), then it is independent of the other
random variables in the model.

We now define the links of the network, as follows. Con-
sider two nodes with initial position vectors X; (0) and X,(0),
respectively. As they move along their random trajectories,
their positions at time ¢ is denoted by X;(¢) and X,(¢),
respectively. The two nodes are considered connected by a
link, if there is a closed subinterval of length at least t,, within
the time horizon [0, T,,], such that d(X;(¢), X>(t)) < r, holds
for every time t within the subinterval, with the possibly
complicated radio distance. Here, t, and r, are parameters
that may also depend on the number 7 of nodes. The moti-
vation for this link definition is that the nodes should be
within range at least for the time of sending a packet.

Now the question is for given P, D, C, Qy, and d(x, y)
and for the described way of dependent node generation, can
we somehow choose the model parameters k, dy, vo, Ty, ty,
and 7, such that the expected node degrees remain bounded
by, say, 4 and still at least 99% of nodes belong to a connected
component?

We believe that it would be rather hard to answer this
question with a direct analysis for arbitrary complex choices
of P, D, C, Q,y, and d(x, y). On the other hand, in view
of our general results that we build up in the subsequent
sections, it becomes quite straightforward.

10.2. Solution. In the solution, we use again the terminology
and results introduced in Section 5. As we have already
noted, it would be hard to solve the problem for arbitrary
choices of P, D, C, Q.,y, and d(x, y) with directly analyzing
the stochastic geometry of the model. On the other hand,
we can easily check that it satisfies our general conditions,
as shown below.

Let us choose the model domain § as a 3-dimensional
phase space, in which each node is represented by a point
such that the first two coordinates describe the initial posi-
tion of the node and the last coordinate encodes which
random trajectory was chosen from C for the node. Let Xj,
X>, ... be the representations of the nodes in this phase space.

We can now check that, for any #, the joint distribution
of Xj,...,X, is invariant to reindexing them. The reason is
that both the initial positions and the trajectory choices are
generated by processes in which the indices do not play any
role. Therefore, the model is name invariant. Interestingly,
this remains true despite having a lot of dependencies among
the nodes: the initial positions of different nodes are not
independent (due to clustering), and the trajectory of a given
node is also not independent of its initial position, as it is
drawn from a probability distribution that may depend on
the location. Through this, the trajectories and initial posi-
tions of different nodes also become dependent, making their
whole movement dependent. Yet, the model is still name
invariant.
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Let us now consider the links. As defined in Section 9,
two nodes are considered connected if during their move-
ment over the time horizon [0, T,] there is a subinterval
of time, of length at least t,, such that they remain within
“radio distance” < r, during the entire subinterval. The radio
distance, however, may be very different from the Euclidean
distance, it may be described by an arbitrary function
that may account for complex propagation characteristics,
attenuation, obstacles, and it may also contain independent
randomness.

Given some possibly complicated radio distance d(x, y)
and the node generation and movement process with pos-
sibly complex trajectories, it may not be easy to compute
whether a link actually exists between two nodes according to
the above definition. On the other hand, for us, it is enough
to note that once the phase space representations Xj, X; of
any two nodes are given, plus the realization of the indepen-
dent randomness of the distance, they together determine
whether a link exists between the two nodes or not. The
reason is that the initial positions and the trajectories, given
in the phase space representation, fully determine the move-
ment of the nodes. Once this is known, it determines, along
with the realization of the independent randomness of the
distance function, whether the link definition is satisfied, that
is, if there is a subinterval of length > ¢, in [0, T}, such that
the nodes stay within radio distance < r, during the entire
subinterval. To actually compute, it may not be easy for a
sophisticated case, but for our purposes it is enough to know
that it is determined by the listed factors, without knowing
anything about the other nodes. This implies that the model
is local.

Thus, we have established that the problem can be des-
cribed by a local and name invariant abstract geometric
graph model, for any choice of the parameters. Then, by
Theorem 12, the threshold function for ff-connectivity is

f(Dy) =1—eDx (51)

If we require that node degrees are bounded by, say, 4, then
we have Dy < 4, implying

f(Dy)=1-ePx <1-e*<0.9817. (52)

Thus, the threshold in this case falls below 0.99, so by
Theorem 12, it is impossible to achieve that asymptotically
99% of the nodes belong to a connected component, no
matter how the other parameters are chosen.

Note that the direct application of our general results was
able to cut through a lot of complexity that would otherwise
arise if we wanted to reach the same conclusions by directly
analyzing the stochastic geometry of such a model.

11. Conclusion

We have reviewed a number of models and results that can
describe and analyze large, random network topologies,
primarily (but not exclusively) focusing on wireless net-
works. We have also demonstrated that it is possible to find
common generalizations of various sets of models. These
generalizations can help in solving hard problems that
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would be much more difficult to solve via the traditional
approaches.

We hope that the introduction of numerous models
and results could convince the interested reader that the
modeling of very large networks with various random math-
ematical structures is a fruitful, vibrant, and promising
research area.
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