International Scholarly Research Network
ISRN Communications and Networking
Volume 2012, Article ID 914953, 9 pages
doi:10.5402/2012/914953

Research Article

Optimizing Virtual Private Network Design Using a New

Heuristic Optimization Method

Hongbing Lian and Andras Faragd

Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75083, USA

Correspondence should be addressed to Hongbing Lian, lian0716@yahoo.com

Received 21 March 2012; Accepted 19 April 2012

Academic Editors: A. Maaref, C. Pomalaza-Raez, and A. Zanella

Copyright © 2012 H. Lian and A. Faragé. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In virtual private network (VPN) design, the goal is to implement a logical overlay network on top of a given physical network. We
model the traffic loss caused by blocking not only on isolated links, but also at the network level. A successful model that captures
the considered network level phenomenon is the well-known reduced load approximation. We consider here the optimization
problem of maximizing the carried traffic in the VPN. This is a hard optimization problem. To deal with it, we introduce a
heuristic local search technique called landscape smoothing search (LSS). This study first describes the LSS heuristic. Then we
introduce an improved version called fast landscape smoothing search (FLSS) method to overcome the slow search speed when the
objective function calculation is very time consuming. We apply FLSS to VPN design optimization and compare with well-known
optimization methods such as simulated annealing (SA) and genetic algorithm (GA). The FLSS achieves better results for this VPN

design optimization problem than simulated annealing and genetic algorithm.

1. Introduction

In the VPN setting the goal is to implement a logical overlay
network on top of a given physical network. We consider
here the optimization problem of maximizing the carried
traffic in the VPN. In other words, we want to minimize the
loss caused by blocking some of the offered traffic, due to
insufficient capacity in the logical links.

A key feature in the VPN setting is that the underlying
physical network is already given. Thus, our degree of free-
dom lies only in dimensioning the logical (virtual) links.
However, since the given physical link capacities must be
obeyed and a physical link may be shared by several logical
links, we can reduce the blocking on a logical link possibly
only by taking away capacity from other logical links.
Therefore, we may be able to improve a logical link only by
degrading others. The above described situation leads to a
hard optimization problem.

Mitra et al. [1] analyzed a network loss probability caused
by blocking with fixed point equations (FPEs). They derived

the loss probability only based on assumption of link inde-
pendence. Actual difficulty is posed by the fact that we need
to model the traffic loss caused by blocking not only on
isolated links, but also at the network level. This means
we also need to take into account that the loss suffered
on a link reduces the offered traffic of other links and
vice versa, so a complex system of mutual influences arise.
This situation calls for a more sophisticated machinery
than blocking formulas (such as Erlang’s formula) that
compute the blocking probability only for a single link
viewed in isolation. A successful model that captures the
considered network level phenomenon is the reduced load
approximation. We review it in the next section so that we
can then use it in our VPN design model.

In this paper we investigate a virtual private network
(VPN) design problem. We adopt a complex model to
describe the carried traffic [2-4]. To deal with the arising
hard optimization problem, we use a new heuristic local
search technique called landscape smoothing search (LSS)
proposed by Lian and Faragd, authors of this paper in

[5]. This study first describes the LSS heuristic method
and then we modify the original LSS method to a fast
landscape smoothing search (FLSS) method to overcome
the slow search speed for the case when the objective
function calculation is very time consuming. We apply FLSS
to VPN design optimization and compare with existing
methods such as simulated annealing (SA) [6, 7] and genetic
algorithm (GA) [8, 9].

Basically this study consists of two parts. The first part
is the proposal and the analysis of carried traffic for virtual
private network (VPN). In the second part we propose the
landscape smoothing search (LSS) [10] method and the
fast LSS (FLSS) heuristic method and apply them to VPN
optimization.

The remainder of the paper is organized as follows:
Section 2 presents a reduced load approximation to model
to capture the VPN carried traffic. Section 3 analyzes a
nonlinear network level optimization model. The last part of
Section 3 also provides the carried traffic objective function
for VPN design optimization. Section4 presents initial
results with the original Landscape Smoothing Search (LSS).
Section 5 presents Fast Landscape Smoothing Searching
(FLSS). Section 6 presents numerical optimization results for
VPN optimization and discussion of the features of three
heuristic FLSS, SA and GA. Finally, Section 7 concludes the

paper.

2. Reduced Load Approximation

The principle of this approach is “folklore” in traffic
engineering and had been presented already in the 1960’s
by Cooper and Katz [11]. Nevertheless, in-depth exact
investigation was done only much later, in the papers by Kelly
[2] and Whitt [4]. For a comprehensive exposition of related
results see the book of Ross [3].

To present the most fundamental case, let us consider a
network of J links. A general link will be denoted by j, that
is, we index the edges of the network graph here, rather than
the nodes. Link j has capacity C;. Let us assume that a set R of
fixed routes is given in the network. A route r € R, in general,
can be an arbitrary subset of the link set. Here we do not
need the assumption that it is a path in the graph theoretic
sense. Of course, the practically most important case is when
it is actually a path. There may be several routes between the
same pair of nodes, even on the same sequence of links. The
offered traffic V, (the demand) to a given route r € R arrives
as a Poisson stream and the streams belonging to different
routes are assumed to be independent.

The incidence of links and routes is given by a matrix =
[Ajr],j=1,...,],r € R.Iflink j is on route r, then A;, = 1,
otherwise Aj, = 0. The call holding times are independent
random variables, and the holding periods of calls on the
same route are identically distributed with finite mean.
However, this distribution can otherwise be arbitrary. The
central approximation assumption of the model is that the
blocking of different links are probabilistically independent
events. Let us denote the blocking probability of link j by
Bj. The reduced load approximation says that the Poisson

ISRN Communications and Networking

stream is thinned by a factor of (1 — B;) on each traversed
link independently. Hence the carried traffic on route r can
be expressed as

]

v.[1(1-B))

j=1

Ajr
)

(1

Note that the factor (1 — Bj)Af' is 1 if the line is not
traversed by the route (because then A;, = 0); this is why
the product can be taken for all links without taking care of
which links are traversed by the route.

The carried traffic on link j is obtained if we sum up the
carried traffic of all routes that traverse the link:

ZA]rVrl_[(l _Bi)Air- (2)

reR i

Again, the summation is simply extended for all routes
since Aj; = 0 holds for those that do not contain link j,
making their contribution disappear from the sum.

If the total offered load to link j is denoted by p;, then (2)
should be equal to p;(1 — B;), since the latter is the carried
traffic on link j, obtained by thinning the offered load by the
factor 1 — B;. Thus, we can write the equation

pi(1-B;) = S Apv.[Ta-B)™, (3)
or, after canceling the factor (1 — B;)

pj = ;Ajrvrn(l ~ B)*". (4)

i#]

Further equations can be obtained by using that B; depends
on p; and C;j in this model via Erlang’s formula:

p;o/Cy!

i=0 Fj/ ks

(5)

(Note: in the case C; is not an integer, we can use an analytic
continuation of Erlang’s formula, see [12].)

Writing out (4) and (5) for all j = 1,...,], we obtain
a system of 2] equations for the 2] unknown quantities
p;j>Bj,j = 1,...,]. We can observe that B; can be computed
from (5) directly, once the values of the p; variables are
known (the link capacities are given). Therefore, the core of
the problem is to compute pj,j = 1,...,]. Eliminating B; from
(4) by (5), we obtain a system of equations directly for the p;
variables:

pi =S AV TT1(1-E(pr)™ (6)

i#]

This system of equations (or, equivalently, the systems (4)
and (5) together) is called reduced load approximation.

Alternatively, the equations are also called the Erlang fixed
point equations.

ISRN Communications and Networking

The concept of fixed point comes into the picture in the
following way. Let us use a vector notation p = [py,...,pj]
and define a function f: R]+ - R]+ by

fitp) = [fi(p)s--5 fi(p)], (7)
where fi(p), j = 1,...,] is given as

filp) = ZAerrﬂ(l —E(Pj’cj))A"' (8)

i#j
Now the system (6) can be compactly formulated as

p =flp) 9)

In other words, we have to find a fixed point of the mapping
R, - R..

There are some natural questions that arise here imme-
diately. Does a solution (a fixed point) always exist? If one
exists, is it unique? How can we find it algorithmically in an
efficient way? The fundamental theorem characterizing this
model was proven by Kelly [2] (see also [13]). We also outline
its proof, since the proof contains some concepts that we are
going to use later.

Theorem 1. The Erlang fixed-point equations always have a
unique solution.

Proof. The existence of the solution follows from the fact that
the function f, defined above, is a continuous mapping of the
closed J-dimensional unit cube [0,1] into itself, therefore
by the well-known Brouwer fixed point theorem it has a
fixed point. (Brouwer’s fixed-point theorem says that any
continuous function that maps a compact convex set into
itself always has a fixed point.)

To show the uniqueness of the fixed point, we define an
auxiliary function U(y,C) in a tricky way, by the implicit
relation

U(-log(l — E(»,C)),C) =v(1 — E(v,C)), (10)

where E(v,C) is Erlang’s formula. The interpretation of
U(y,C) is that it is the average number of circuits in use
(the utilization) on a link of capacity C when the blocking
probability is 1 — e™”. In other words, U(y,C) measures
the link utilization as a function of a logarithmically scaled
blocking probability y = —log(1 — B).

Define now an optimization problem, as follows:

minimize > V,exp (— Zy;z‘hw) +. Jyj U(z, Cj)dz,
r j j 0

subjectto y; 20, j=1,...,]J

(11)

The first sum in objective function is a strictly convex
function. Since U(y, C) is strictly increasing, therefore, the
integrals in the second sum are also strictly convex. Hence
the above optimization problem, being the minimization of
a strictly convex function over a convex domain, has a unique

minimum. Consider now the stationary equations obtained
by equating the derivative of the objective function with
Zero:

Zv,exp(—ZyjAj,) =U(5,G)s o= Lol
" j
(12)

Using the definition of U(y, C) and applying the trans-
formation B; = 1 — e/, we get back precisely the Erlang
fixed-point equations from (12). Since we already know that
there is a nonnegative solution to the fixed point equations,
this implies that the stationary equations (12) also have a
nonnegative solution, which is thus the minimum of the
optimization problem (11). Conversely, each solution of (11)
corresponds to a fixed point through the transformation
Bj = 1 — e, Since by the strict convexity there is
a unique minimum, therefore (12) cannot have another
solution, which implies the uniqueness of the fixed point,
thus completing the proof. O

Having proved the existence and uniqueness of the
fixed point, a natural question is how to find it algo-
rithmically. The simplest algorithm is to do iterated sub-
stitution using the function defined in (7), (8). We can

start with any value, say p(* = [1,...,1] and then iterate
as

plitD) = f(pm)) (13)
until p™D and p are sufficiently close to each other. This

method works very well in practice, although convergence
is not guaranteed theoretically, since f(-) is not a con-
traction mapping, that is, [|f(x) — f(WII < allx — yl
does not necessarily hold for some constant « < 1. In
fact, there exist examples for nonconvergence, see Whitt
[4].

Another algorithmic possibility is solving the convex
programming problem (11). Although this is guaranteed
to work, nevertheless, it offers a much more complicated
algorithm, which is made even worse by the implicit
definition of the function U(y,C). Therefore the practical
algorithm is the iterated substitution, even though it is not
guaranteed to converge in pathological cases.

The presented model is the base case, when routing
is fixed and traffic is homogeneous. Various extensions
exist for more complicated cases, see for example, [3, 14].
Unfortunately, they lack the nice feature of the unique fixed
point. In the next section, extensions to heterogeneous traffic
will be used for cases when the reduced load approximation
is embedded into optimization models.

3. A Nonlinear Network Level
Optimization Model

In this section we build a nonlinear network level optimiza-
tion model based on the reduced load approximation. Recall

that we considered the situation when logical (virtual) sub-
networks exist on top of the given physical network. They
are realized by logical links. A logical link is, in general,
a subset of the physical links. It can be, for example, a
route in the physical network. Our objective is to allocate
capacity to the logical links such that the physical capacity
constraints are obeyed on every physical link and the total
carried network traffic is maximized. Note that since the
logical links share physical capacities. Therefore if we want
to decrease blocking on a logical link by giving more
capacity, we can only do this by taking away capacity from
others, thus degrading other logical links. It is intuitively
clear that an optimization problem arises from this VPN
design.

Since the model is built on the reduced load approx-
imation (Section 2), therefore we use the same notation.
The network contains] logical links, labeled 1,2,...,].
The capacity of logical link j is C;. Since logical link
capacities are not fixed in advance (we want to optimize
with respect to them!), therefore the C; are variables.
Let C = (Cy,Cy,...,Cp) be the vector of logical link
capacities.

The condition that the sum of logical link capacities on
the same physical link cannot exceed the physical capacity
can be expressed by a linear system of inequalities. Let CPhs
be the vector of given physical link capacities. Furthermore,
let S be a matrix in which the jth entry in the ith row is
1 if logical link j needs capacity on the ith physical link,
otherwise 0. Then the physical constraints can be expressed
compactly as SC < CPYs,

A set R of fixed routes is given in the network. A route
is a sequence of logical links. There may be several routes
between the same pair of nodes, even on the same sequence
of logical links. The offered traffic (the demand) to a given
router € Ris V, and is assumed to arrive as a Poisson stream.
The streams belonging to different routes are assumed inde-
pendent. Holding times are independent of each other and
holding periods of sessions on the same route are identically
distributed.

We consider heterogeneous (multirate) traffic. To pre-
serve the nice properties of the Erlang fixed-point equations,
we adopt the following homogenization approach: a session
(call) that requires b units of bandwidth is approximated by
b independent unit bandwidth calls.

The capacity (bandwidth) that a session on route r
requires is denoted by bj, onlink j (for the sake of generality,
we allow that it may be different on different links). If the
route does not traverse link j, then b;, = 0. Note that b;,
plays the same role here as Aj, in the description of the
reduced load approximation, but b;, can now also take values
other than 0 and 1.

According to the applied approximations, the total car-
ried traffic in the network is expressed as

SvIl(-5)" (14)
r)

where B; is the (yet unknown) blocking probability of logical
link j. (j = 1,2,...,]).

ISRN Communications and Networking

Our objective is to find the vector C of logical link
capacities, subject to the physical constraints SC < CPP* and
C = 0, such that the total carried traffic is maximized:

maximize Z V,n(l — Bj)bﬂ,
o (15)

subject to SC < cPys C o> 0,

where C; are variables and the dependence of B; on C; is
defined by the Erlang fixed-point equations:

Bj = E((l -B) Sbpv[la- Bi)b"',Cj>, (16)

reR i

where j =0,1,...,]/.

4. Heuristic Methods to Solve
Network Design Problems

This section presents heuristic methods to solve optimization
problems, including network design tasks. Here we only
focus on combinatorial optimization algorithms for prob-
lems of the following form:

minimize F(x) for x € §, (17)
where S is a very large finite set of feasible points (solution
space, optimization space). The variable x can take different
forms: it can be a binary string, an integer vector, or mixed
integer and label combination.

4.1. Well-Known Heuristic Methods. One of the well-known
general stochastic methods is simulated annealing (SA) (7,
9, 15]. As a local search method, SA also uses the notion of
neighborhood, but applies randomness to choosing the next
step to avoid getting trapped in local optima. We can refer
[5, 7, 9] for SA pseudocode.

Another well-known heuristic method is genetic algo-
rithm (GA). The genetic algorithm (GA) is also often
applied in combinatorial optimization problems [5, 6, 8, 9].
The procedure first selects parent solutions for generating
offspring. Then it performs two basic procedures: crossover
(x) with probability P, and mutation (x) with probability
P,,. We can refer [5, 6, 8, 9] for GA pseudocode. Genetic
algorithm does not use local search. It may jump away from
the best point even when it is very close to it.

4.2. Description of Landscape Smoothing Search (LSS). Our
proposed LSS is a general optimization technique suitable for
a wide range of combinatorial optimization problems. The
authors of this paper proposed the original LSS to solve call
admission control optimization problem for cognitive radio
network in [5]. To better understand the idea of LSS we give
an introduction to its basic form here. LSS can get out of local
optima, and effectively conduct local search in the vast search
spaces of hard optimization problems. The key idea is that
we continuously change the objective/fitness function of the

ISRN Communications and Networking

Procedure algorithm LSS (FA,X,G)
begin

create initial feasible solution X,
setd,(X)=0, (h=1,...,H)

for i: = I to max-iterations
begin
F'(X) =F(X) + 2, A dn(X)]
X; = Local search (F', Ay, X;_1, G)
foreachh: = 1toH
begin
adjust d,(X);

if F(X;) < F*=t then

Foest: = F(X,);
Xbest: = X
end
adjust Ay, for adaptive A;

end
end procedure

(set all initial smoothing factors to zero)

(X}, is the local optimum point)

LSS returns X"t where F(X*t) is the minimum of all solutions so far.

ALcorITHM 1: Landscape smoothing search (LSS).

problem to be minimized with a set of smoothing functions
that are dynamically manipulated during the search process
to steer the heuristics to get out of the local optima.

The objective function F(X) is extended with a smooth-
ingfunction S(X) as follows:

F'(X) = F(X) +S8(X) = F(X) + > A - du(X), (18)
h
where S(X) is the smoothing function:
S(X) = ZAh - dp(X), (19)
h

which contains “landscape smoothing functions.” We define
them as d,(Xp,) = 0, if we hit this local optimal point X}, for
the first time. dj,(Xp) = di(Xy) + 1,if we hit this local optimal
point Xj, for the second or more time. A is the smoothing
step constant and it may be adaptively changed.

We also record the best point reached so far, and the local
optima during the search. Every time we hit a local optimum,
we compare it with the global optimum (best point so far).
Then we adjust the landscape smoothing factors to let the
local search get away from the local trap.

As we keep changing the objective function, we gradually
“smooth out” the landscape to get rid of the local holes that trap
the search. We never fill a hole, however, before the second time
we reach it. This way the search trace never misses a hole that
could be the global optimum. See Figure 1.

We assume F is the objective function; A is a group of
constants that serve as a landscape smoothing step factors,
which can be constants or can also be adaptively changed
as Ay. G represents the problem specification (e.g. network
topology, demand matrix or some constraints). We give the
pseudo code here for landscape smoothing search (LSS) in
Algorithm 1.

%

= —
e T

FiGURE 1: Landscape smoothing search (LSS).

5. Initial Results with Original
Landscape Smoothing Search (LSS)

In this section we demonstrate a sample non-linear hard
VPN design problem and the optimization results achieved
with LSS and simulated annealing (SA).

5.1. A Sample VPN. We use a VPN with 40 virtual links
and 12 routes shown as in Figure 2 for simulation. For
example, e; = ¢p + cg means physical link e, consists of two
virtual links ¢y and cg, e9 12 + ¢27 + ¢35 means physical
link eg consists of three virtual links cy3,¢27, and ¢35, dashed
route 1, = cg+ c9+cjo means route r, consists of three virtual
links cg, ¢9, and cjg, dotted route r5 = c13 + c19 + 20 + C21.

5.2. Initial Results with LSS. We use the sample VPN de-
scribed in Section 5.1. The diagram in Figure 3 shows initial
results with landscape smoothing search (LSS) and simulated
annealing (SA).

Our optimization results were obtained through a PC
with AMD Sempron 2500+ CPU. The searching time is the

el4=c7t+cpo

© ey =c19 + 031

. e5=cC15 tC18 +C34

€9=Cip+ 7 €35

FIGURE 2: A sample VPN structure.

1200

1000 |

800

Carried traffic

600

400

0 200 400 600 800 1000
Searching time

—— (1) Landscape smoothing
—— (2) Simulated annealing

FIGURE 3: VPN design search trace with LSS and SA.

time needed to obtain best solution so far. The searching time
unit is 10 seconds. For each heuristic method, these measures
were recorded each time there was an improvement in the
best carried traffic value. So in each point of the search curve,
the X-axis value is the searching time in seconds and the Y-
axis value is the best carried traffic value we achieve so far.
We find that LSS gives better result in long time, but the
search speed is slower than SA. When the objective function
takes very long time to calculate we find that the original
landscape smoothing searching (LLS) heuristic method is
slower than simulated annealing (SA). As we know SA makes
a possible move with a random neighbor to find a better
objective value. The original LSS makes a possible move by
picking the best neighbor of all direct neighbors. If for a case
which has N (N = 40) direct neighbors it needs to do N
(N = 40) objective function calculations to make a possible
move. The objective function calculation of VPN design itself
is a complex iterative process using (16). It may take 50 to
90 iterations to calculate an accurate value. So the objective
function calculation of VPN design is a time consuming

ISRN Communications and Networking

1200

1000

800

Carried traffic

600

400

0 200 400 600 800 1000
Searching time

—— (1) Landscape smoothing
—— (2) Simulated annealing
—— (3) Fast landscape smoothing

FiGURE 4: VPN Search trace with fast LSS and SA.

process. This explains why the original LSS method is slower
than SA here for VPN design case.

6. Fast Landscape Smoothing Search (FLSS)

To improve the search speed of LSS, we modify the original
LSS into a fast landscape smoothing search (FLSS). The FLSS
has two (or more) phases of search. The first phase we call
rough search phase. In the rough search phase we divide the
set of N neighbors into several subsets, like N1, N2, N3,
and N4. We apply the LSS method on subneighborhoods
one at a time, and also we apply LSS on subneighbor one
by one. This way we make every LSS move with much fewer
objective function calculations. The second phase we call fine
search phase. In the fine search phase we use the original LSS
method on the whole neighborhood, as in the original LSS.
This way we will not miss the possible global optima in the
process we search all N direct neighbor. The improved result
is shown in Figure 4.

7. More Numerical and Optimization Results

This section presents more numerical and optimization
results of carried traffic load for the VPN design problem.

7.1. Optimization Results with Simulated Annealing (SA).
Figure 5 shows simulated annealing (SA) optimization
search traces for function (15) with 3 different T-reduce
values (cooling speed factor). We can see SA convergence
speed may be affected by setting the temperature reduce
cooling value. At the beginning of the SA search procedure,
SA converges very fast. Then SA convergence becomes very
slow. After a while it takes a long time for SA to find the next
better value.

Figure 6 shows simulated annealing (SA) optimization
search trace with different initial settings. In all
these figures, legend initial settings like [Initial-2 =
4 3 2 1 4 3 2 1] means virtual link capacities

ISRN Communications and Networking

1200

1000

800 |- - -

Carried traffic

600

400 ' : '
0 100 200 300
Searching time

—— (1) T_reduce_1 = 0.9
—— (2) T_reduce_2 = 0.8
—— (3) T_reduce_3 = 0.7

FiGure 5: Simulated annealing search trace with different T-reduce
values.

1200

1000

800

600

Carried traffic

400 +

200
0 100 200 300 400 500 600

Searching time

—— (1) Initial_1 = 33333333
—— (2) Initial 2 = 43214321
— (3) Initial 3 = 12341234

FIGURE 6: Simulated annealing search trace with different initial
settings.

C;[0],C;[1], C;[2], C;[3], C;[4], C;[5], Cj[6], Ci[7], ... =
43214321,.... From Figure 6 we can see the SA optima
value depends on the initial settings. Different initial settings
will lead to a slightly different SA optima value.

7.2. Optimization Results with Genetic Algorithm (GA).
Figure 7 shows genetic algorithm (GA) optimization search
traces for function (16) with 3 sets of different P./P,, values.
P. is the probability for crossover. Py, is the probability for
mutation. From Figure 7 we can see GA convergence speed
may be affected by settings of crossover/mutation probability
values. At the beginning of the GA search procedure, GA
converges very fast. Then GA converges very slowly. After a
while it takes a long time for GA to find the next better value.

1200

—_
(=3
(=3
(=}

800

Carried traffic

600

400

(=]

200 400 600 800 1000
Searching time

1) Pc/Pm = 0.7/0.7

—
— (2) P¢/Pm = 0.8/0.8
— (3) Pc/Pm = 0.9/0.9

FIGURE 7: Genetic algorithm search trace with different P./P,,
values.

1200

1000
o
&
£

E 800
5
O

600

400

0 200 400 600 800 1000
Searching time

—— (1) Initial 1 = 33333333
—— (2) Initial 2 = 43214321
—— (3) Initial 3 = 12341234

FIGURE 8: Genetic algorithm search trace with different initial
settings.

Figure 8 shows Genetic Algorithm (GA) optimization
search trace with different initial settings. From Figure 8
we can see the GA near optima value depends on
the initial settings. Here the notation like [Initial-2 =
1234 123 4] means virtual link capacities C;[0],
C;[1], C;[2], C;[3], C;[4], C;[5], Cj[6], Cj[7],... = 123
412 34,.... Different initial settings will lead to slightly
different GA optima values. This kind of search trend is
similar to that which we see in SA.

7.3. Optimization Results with Fast Landscape Smoothing
Search (FLSS). Figure 9 shows fast landscape smoothing
search (FLSS) optimization search trace with different
smoothing step factor A values. From Figure 9 we can see
LSS convergence speed may slightly affected by setting of

1200

1000

800

Carried traffic

600

400

0 100 200 300

Searching time

— ()A1=29
— (2)A2=19
— (3)A3=39

FIGURE 9: Fast landscape smoothing search trace with different A
values.

1200

1000

800

Carried traffic

600

400

0 100 200 300 400 500
Searching time

— (1) Initial_1 = 333333
—— (2) Initial 2 = 43214321
—— (3)Initial_3 = 12341234

FIGURE 10: Fast landscape smoothing search trace with different
initials.

smoothing step factor A value. FLSS converges relatively fast
and stabilizes smoothly.

Figure 10 shows Fast Landscape Smoothing Search
(FLSS) optimization search trace with different initial
settings. Here the notation [Initial-3 = 1 2 3 4 1 2
3 4] means virtual link capacities C;[0], C;[1], C;[2],
C;[3], C;[4], Ci[5], Cj[6], Cj[7],... = 12341234,...
From Figure 10 we can see the FLSS optima value depends
on the initial settings. Different initial settings will lead to
slightly different optima values.

These results show that FLSS is much less sensitive to
the adjustable parameters than SA and GA. And FLSS is also
much less sensitive to the initial settings of search starting
point. With different initial settings, FLSS converges to three

ISRN Communications and Networking

1200

1000

800

Carried traffic

600

400

0 200 400 600 800 1000
Searching time

—— (1) Fast landscape smoothing
— (2) Simulated annealing
— (3) Genetic algorithm

FiGure 11: Three optimization methods—search results compari-
son.

near optima values that are very close. The difference of the
three values is almost negligible.

7.4. Three Optimization Methods Comparison. To compare
the three optimization methods, we put fast landscape
smoothing search (FLSS), simulated annealing (SA), and
genetic algorithm (GA) optimization search traces together
in Figure 11.

Here the three methods all use the same initial settings
of [33333333]. FLSS uses smoothing step factor A
of 2.90. SA uses cooling T-reduce factor of 0.7. GA uses
crossover/mutation probabilities P./P,, of 0.9/0.9. We can see
that FLSS starts slower than SA and GA at the beginning of
the search, but FLSS catches up later and achieves a better
objective function value.

We can see that SA and GA are not likely to get better
results after time unit of 250. FLSS keeps getting better results
after time unit of 250 and even 500. In this VPN case, FLSS
slightly over performs SA and GA in the long run. So FLSS is
a very good candidate for heuristic methods.

The results of these heuristic methods are case depen-
dent. Based on the three network design cases we used, we
compare these heuristic method features in Table 1 of the
following page.

LSS and FLSS use adaptive smoothing function and they
reach the optima by finding the best neighbor. SA jumps
randomly with reduced cooling probabilities and reaches the
optimum by chance. GA uses crossover and mutation with
P./P,, probabilities and reaches the optimum by chance. SA
and GA might jump away from the global optimum even
when they are very close to it.

8. Conclusion

In this paper, we model the VPN traffic loss caused by
blocking not only on isolated links, but at the network level.

ISRN Communications and Networking 9
TasBLE 1: Four heuristic method feature comparison.
?
Method Neighbor local search used? Random? Trap escaping mechanism Search speed
Yes Randomly jump with probability,
Simulated annealing (SA) Use with probability Yes controlled by cooling schedule. Fast
Use random neighbor (Reach optima by chance)
]) Use crossover, mutation with
Genetic algorithm (GA) No Yes probability to jump out. (Reach Slow
optima by chance)
Landscape smoothing Yes . No Use adaptiYe smoothing f}lnction. Medium
search (LSS) Use best neighbor (Reach optima by best neighbor)
Fast landscape smoothing Yes No Use adaptive smoothing function. Fast

search (FLSS) Use best neighbor

(Reach optima by best neighbor)

We take into account that the loss suffered on a link reduces
the offered traffic of other links and vice versa. We formulate
the VPN design problem as the optimization problem of
maximizing the carried traffic in the VPN. So that the VPN
optimization becomes a hard optimization problem. We used
a heuristic method called landscape smoothing search (LSS)
and applied it to this problem. We find that LSS can get better
result than SA but with a slower search speed. The reason
is that in this VPN case, the objective function calculation
of VPN carried traffic is a very time consuming process. To
improve the speed of the original LSS we proposed a new fast
landscape smoothing (FLSS) method.

The slow search speed drawback of the original LSS is
overcome in the FLSS. Our FLSS method is also compared
with popular heuristic methods such as simulated anneal-
ing (SA) and genetic algorithm (GA). We find the FLSS
technique to be simple to implement. The three techniques
were tested in many experiments with different VPN initial
settings and different adjustable parameters to compare the
optimization performance. The results show that the FLSS
is much less sensitive to the adjustable parameters than SA
and GA are. The FLSS is also less sensitive to the initial
settings of search starting point than SA and GA are. With
different initial settings, the FLSS converges to almost the
same near optima value each time. The overall results show
that FLSS outperforms the SA and the GA techniques both in
terms of solution quality and optimization speed. Therefore
based on these results, the fast landscape smoothing search
(FLSS) technique can be strong candidate in solving hard
optimization problems in network design.

Acknowledgment

The authors are grateful for the support of NSF Grant CNS-
1018760.

References

[1] D. Mitra, J. A. Morrison, and K. G. Ramakrishnan, “Vir-
tual private networks: joint resource allocation and routing
design,” in Proceedings of the 18th Annual Joint Conference of
the IEEE Computer and Communications Societie (INFOCOM
’99), pp- 480—490, March 1999.

[2] E P. Kelly, “Kelly blocking probabilities in large circuit-
switched networks,” Advances in Applied Probability, vol. 18,
no. 2, pp. 473-505, 1986.

[3] K. W. Ross, Multiservice Loss Models for Broadband Telecom-
munication Networks, Springer, New York, NY, USA, 1995.

[4] W. Whitt, “Blocking when service is required from several
facilities simultaneously,” AT&T Technical Journal, vol. 64, no.
8, pp. 1807-1856, 1985.

[5] H. Lian and A. Faragd, “A heuristic optimization method and
its application in cognitive radio networks,” Computer Science
Technical Report UTDCS-39-11, University of Texas at Dallas,
Dallas, Tex, USA, 2011.

[6] B. Dengiz, F. Altiparmak, and A. E. Smith, “Local search
genetic algorithm for optimal design of reliable networks,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 3,
pp. 179-188, 1997.

[7] O.C.Martin and S. W. Otto, “Combining simulated annealing
with local search heuristics,” Annals of Operations Research,
vol. 63, pp. 57-75, 1996.

[8] Y. Leung, G. Li, and Z. B. Xu, “A genetic algorithm for the
multiple destination routing problems,” IEEE Transactions on
Evolutionary Computation, vol. 2, no. 4, pp. 150-161, 1998.

[9] M. Pioro and D. Medhi, Routing, Flow, and Capacity Design in
Communication and Computer Networks, Morgan Kaufmann,
San Fransisco, Calif, USA, 2004.

[10] H. Lian and A. Faragd, “Optimizing Call Admission Control
for Cognitive Radio Networks Using a New Heuristic Opti-
mization Method,” Science Academy Transactions on Computer
and Communication Networks (SATCCN), vol. 2, no. 1, pp.
2046-5157, 2012.

[11] R. B. Cooper and S. Katz, “Analysis of alternate routing
networks account taken of the nonrandomness of overflow
traffic,” Tech. Rep., Bell Telephone Laboratories Memoran-
dum, 1964.

[12] A. A. Jagers and E. A. Van Doorn, “On the continued Erlang
loss function,” Operations Research Letters, vol. 5, no. 1, pp.
43-46, 1986.

[13] E P. Kelly, “Loss networks,” Annals of Applied Probability, vol.
1, no. 3, pp. 319-378, 1991.

[14] S. P. Chung and K. W. Ross, “Reduced load approximations
for multirate loss networks,” IEEE Transactions on Communi-
cations, vol. 41, no. 8, pp. 1222-1231, 1993.

[15] J. Arabas and S. Kozdrowski, “Applying an evolutionary
algorithm to telecommunication network design,” IEEE Trans-
actions on Evolutionary Computation, vol. 5, no. 4, pp. 309—
322,2001.

The Scientific
World Journal

International Journal of

Rotating
Machinery

Int'ema.tiona\ Journal of
Distributed
Sensor Networks

Advances in
OptoElectronics

International Journal of

Chemical Engineering

5//{/?

and Passive
ronic Components

VLSI Desig

Propagation

-~
-

=3

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of
Navigation and
Observation

Journal of
Control Science
and Engineering

Advances in
Mechanical
Engineering

Journal of

Sensors

Adv in

Civil Engineering

Journal of

Robatics

Modelling &
Simulation
in Engineering

e

Journal of
Electrical and Computer
Engineering

Shock and Vibration

