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The propagation of weakly nonlinear pressure waves in a fluid-filled elastic tube has been investigated. The reductive perturbation
method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude. The effect of the final inner
radius of the tube 𝑟𝑓 on the basic properties of the soliton wave was discussed. Moreover, the conditions of stability and the soliton
existence via the potential and the corresponding phase portrait were computed. The applicability of the present investigation to
flow problems in arteries is discussed.

1. Introduction

The intermittent ejection of blood from the left ventricle
produces pressure waves that flow in the arterial tree. Exper-
imental data found that the flow velocity in blood vessels
largely depends on the elastic properties of the vessel wall
and they propagate towards the periphery with a character-
istic diagram [1]. In arterial mechanics, the propagation of
pressure waves in fluid-filled distensible tubes has been the-
oretically studied by several researchers [2–4]. Experimental
observation for the simultaneous changes in amplitude of the
pressure waves at five sites from the ascending aorta to the
saphenous artery in dogs showed that the pulsatile character
of the blood is soliton waves [5]. Yomosa [6] investigated
the nonlinear propagation of solitary waves in large blood
vessels. He found that the pulse waves of pressure and flow
propagating through the arteries can be described as solitary
waves excited by cardiac ejections of blood, and the features
of the pulse wave such as “peaking” and “steepening” are
interpreted in the viewpoint of soliton. Later, R. M. Shoucri
and M. M. Shoucri studied the application of the method of
characteristics of shock waves in models of blood flow in the
Aorta [7]. Recently, Gaik and Demiray [8] treated the arteries
as an incompressible prestressed thin walled elastic tube with
a stenosis and the blood as a Newtonian fluid with variable
viscosity, which vanishes on the arterial wall, and it takes
the maximum value at the center of the artery. They studied
the propagation of weakly nonlinear waves in the long wave

approximation by the use of the perturbation methods [9].
Many authors examined the stability and the soliton existence
condition via the potential and the corresponding phase
portrait [10–12]. Elwakil et al. [10] studied the propagation of
solitary electron acousticwaves in unmagnetized collisionless
plasma. They found that, there are saddle and two-center
equilibrium state in the phase plane and there is two-
finite separatrix going from a saddle returning to it in the
phase portrait. The evolution of small but finite-amplitude
propagating solitary structures was studied the by means of
Korteweg-de Vries equation (KdV). Many authors have been
using the KdV equation to study the properties of solitary
waves [13, 14]. The major topic of this work is to study the
propagation of pressure waves in weakly nonlinear waves in
a fluid-filled elastic tube. This paper is organized as follows:
in Section 2, we present the basic set of fluid equations
governing our model. In Section 3, long wave approximation
is used to drive KdV equation, and the solution for KdV
equation is obtained. In Section 4, some discussions and
conclusions are given.

2. Basic Equations

To drive the equation of motion of the tube, let us consider
a circular cylindrical long tube of radius 𝑅0 with a uniform
inner pressure 𝑃0, let the axial stretch ratio 𝜆𝑧 and 𝑟0 be
the radius of the cylindrical tube after such a finite static
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deformation.Theposition vector of a generic point of the tube
may be described by the following:

𝑟 = (𝑟0 + 𝑢
∗
) 𝑒𝑟 + 𝑧

∗
𝑒𝑧, 𝑧

∗
= 𝜆𝑧𝑍, (1)

where 𝑢∗(𝑧∗, 𝑡∗), 𝑒𝑟, 𝑒𝜃, 𝑒𝑧, 𝑧
∗ and 𝑍 are a finite time

dependent radial displacement, unit base vectors in the
cylindrical polar coordinates, the spatial coordinate in the
intermediate configuration and the axial coordinate of a
point in the undeformed configuration, respectively. The
axial displacement is neglected in view of the external
tethering. The unit tangent vector 𝑡 to the meridional curve
and the unit exterior normal vector 𝑛 to the deformed
membrane are given by

𝑡 =

1

Λ

(

𝜕𝑢
∗

𝜕𝑧
∗
𝑒𝑟 + 𝑒𝑧) , 𝑛 =

1

Λ

(𝑒𝑟 −
𝜕𝑢
∗

𝜕𝑧
∗
𝑒𝑧) , (2)

where Λ is defined by

Λ = [1 + (

𝜕𝑢
∗

𝜕𝑧
∗
)

2

]

1/2

. (3)

The stretches in the axial and circumferential directions
may be given as follows:

𝜆1 = 𝜆𝑧Λ, 𝜆2 = 𝜆𝜃 +
𝑢
∗

𝑅0

, (4)

where 𝜆𝜃 = 𝑟0/𝑅0 is the stretch ratio in the circumferential
direction after finite static deformation.

Let 𝐹1 and 𝐹2 be the membrane forces acting along each
unit length of the meridional and circumferential curves of
the tube, respectively. The equation of motion of the tube in
the radial direction is given by

𝜕

𝜕𝑧
∗

{

{

{

𝜇

[1 + (𝜕𝑢
∗
/𝜕𝑧
∗
)
2
]

1/2

𝜕Σ

𝜕𝜆1

𝜕𝑢
∗

𝜕𝑧
∗

}

}

}

−

𝜇

𝜆𝑧𝑅0

𝜕Σ

𝜕𝜆2

+ (𝜆𝜃 +
𝑢
∗

𝑅0

)

𝑃
∗

𝐻

=

𝜌0

𝜆𝑧

𝜕
2
𝑢
∗

𝜕𝑡
∗2
,

(5)

where 𝜇 is the shear modulus of the tube material, 𝜇Σ is
the strain energy density function, 𝐻 is the initial tube
thickness, 𝑃∗ is the fluid pressure, and 𝜌0 is themass density
of the tube material. In order to complete the field equations
one must know the value of the fluid pressure 𝑃∗. Therefore,
(5) is to be complemented with the equations governing the
blood fluid. Blood is known to be an incompressible non-
Newtonian fluid. The main factor for blood to behave like a
non-Newtonian fluid is the deformability of red blood cells
and the level of cell concentration (hematocrit ratio). When
blood flows in arteries the red cells move to the central region
of the artery and, thus, the hematocrit ratio is reduced near
the arterial wall, where the shear rate is quite high, as can
be seen from Poiseuille flow. In other words, experimental
observations indicate that when the shear rate is high, blood
behaves like a Newtonian fluid.The ratio of the viscous terms
to the nonlinear term is (𝜇V/𝜌𝑓)(𝜕

2
𝜐
∗
/𝜕𝑧
2
)/𝜐
∗
(𝜕𝜐
∗
/𝜕𝑧) ≈

𝜇V/𝜌𝑓𝑉
󸀠
𝑇
󸀠
𝜐
∗
≈ 𝑂 (10

−5
), considering 𝜇V = 0.04 p and 𝜌𝑓 =

1.05 g/cm3. Therefore, the viscous effect in comparison to
the nonlinear effect can be neglected. Based on these obser-
vations, we assume that blood is an incompressible inviscid
fluid whose equations of axially symmetrical motion in the
cylindrical polar coordinates are given by

𝜕𝑉
∗
𝑟

𝜕𝑟

+

𝑉
∗
𝑟

𝑟

+

𝜕𝑉
∗
𝑧∗

𝜕𝑧
∗
= 0,

𝜕𝑉
∗
𝑟

𝜕𝑡
∗
+ 𝑉
∗
𝑟

𝜕𝑉
∗
𝑟

𝜕𝑟

+ 𝑉
∗
𝑧∗
𝜕𝑉
∗
𝑟

𝜕𝑧
∗
+

1

𝜌𝑓

𝜕𝑃

𝜕𝑟

= 0,

𝜕𝑉
∗
𝑧∗

𝜕𝑡
∗
+ 𝑉
∗
𝑟

𝜕𝑉
∗
𝑧∗

𝜕𝑟

+ 𝑉
∗
𝑧∗
𝜕𝑉
∗
𝑧∗

𝜕𝑧
∗
+

1

𝜌𝑓

𝜕𝑃

𝜕𝑧
∗
= 0,

(6)

where 𝑉∗𝑟 and 𝑉
∗
𝑧∗ are the fluid velocity components in

the radial and axial directions, respectively, 𝜌𝑓 is the mass
density of the fluid, and 𝑃 is the fluid pressure function.
These field equations must satisfy the following boundary
conditions:

𝑉
∗
𝑟
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

=

𝜕𝑢
∗

𝜕𝑡
∗
+

𝜕𝑢
∗

𝜕𝑧
∗
𝑉
∗
𝑧∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

, 𝑃

󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

= 𝑃
∗
. (7)

Here 𝑃 is the fluid pressure function, 𝜌𝑓 is the fluid
mass density, and 𝑟𝑓 is the final inner radius of the tube.
where 𝜆𝜃 = (𝑟0/𝑅0) is the stretch ratio in the circumferential
direction after the finite static deformation, where from (5) it
is obtained that

𝑃
∗
=

𝜌0𝑅0𝐻

𝜆𝑧 (𝑅0𝜆𝜃 + 𝑢
∗
)

𝜕
2
𝑢
∗

𝜕𝑡
∗2

+

𝜇𝐻

𝜆𝑧 (𝑅0𝜆𝜃 + 𝑢
∗
)

𝜕Σ

𝜕𝜆2

−

𝑅0𝐻

(𝑅0𝜆𝜃 + 𝑢
∗
)

𝜕

𝜕𝑧
∗

×

{

{

{

𝜇

[1 + (𝜕𝑢
∗
/𝜕𝑧
∗
)
2
]

1/2

𝜕Σ

𝜕𝜆1

𝜕𝑢
∗

𝜕𝑧
∗

}

}

}

.

(8)

In general, the strain energy density Σ is a function
of 𝜆1 and 𝜆2. For our purposes, we shall assume that Σ is
analytic in 𝜆1 and 𝜆2 and can be expanded into power series
of the following form:

𝑃
∗
=

𝛽1𝜇𝐻

𝑅
2
0

𝑢
∗
+

𝜌0𝐻

𝜆𝜃𝜆𝑧

𝜕
2
𝑢
∗

𝜕𝑡
∗2

− 𝛼0𝜇𝐻
𝜕
2
𝑢
∗

𝜕𝑧
∗2

+

𝛽2𝜇𝐻

𝑅
3
0

𝑢
∗2

−

𝜌0𝐻

𝜆
2
𝜃
𝜆𝑧𝑅0

𝑢
∗ 𝜕
2
𝑢
∗

𝜕𝑡
∗2

−

𝛼1𝜇𝐻

𝑅0

(

𝜕𝑢
∗

𝜕𝑧
∗
)

2

+ (

𝛼0𝜇𝐻

𝜆𝜃𝑅0

−

2𝛼1𝜇𝐻

𝑅0

)𝑢
∗ 𝜕
2
𝑢
∗

𝜕𝑧
∗2

+

𝜇𝐻

𝑅0

𝑃0,

(9)
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where the coefficients 𝛼0,. . ., 𝛽2 are defined by

𝛼0 =
1

𝜆𝜃𝜆𝑧

𝜕Σ

𝜕Λ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑢∗=0

,

𝛽1 =
𝑅0

𝜆𝜃𝜆𝑧

(𝑅0

𝜕
2
Σ

𝜕𝑢
∗2

−

1

𝜆𝜃

𝜕Σ

𝜕𝑢
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑢∗=0

,

𝛽2 =
𝑅
3
0

2𝜆𝜃𝜆𝑧

𝜕
3
Σ

𝜕𝑢
∗3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑢∗=0

−

𝛽1

𝜆𝜃

.

(10)

Equations (6)–(9) give sufficient relations to determine
the unknowns 𝑢∗, 𝑉∗𝑟 , 𝑉

∗
𝑧∗ , and 𝑃.

3. Long Wave Approximation

The reductive perturbation method is used to study the
propagation of small but finite amplitude. Let us introduce
the following types of stretched coordinates [15]:

𝜉 = 𝜖
1/2

(𝑧
∗
− 𝑔𝑡
∗
) , 𝜏 = 𝜖

3/2
𝑧
∗
, (11)

where 𝜖 is a small parameter measuring the smallness of
nonlinearity, dissipation, and dispersion, 𝑔 is the phase
velocity in the longwave approximation to be determined
later. All physical quantities appearing in (6) and (7) are
expanded as power series in 𝜖 about their equilibrium values
as:

𝑉
∗
𝑟 =

∞

∑

𝑛=1

𝜖
1/2+𝑛

𝑉
∗(𝑛)
𝑟 (𝜉, 𝜏, 𝑟) ,

𝑉
∗
𝑧∗ =

∞

∑

𝑛=1

𝜖
𝑛
𝑉
∗(𝑛)
𝑧∗ (𝜉, 𝜏, 𝑟) ,

𝑃 =

∞

∑

𝑛=1

𝜖
𝑛
𝑃(𝑛) (𝜉, 𝜏, 𝑟) ,

𝑢
∗
=

∞

∑

𝑛=1

𝜖
𝑛
𝑢
∗
𝑛 (𝜉, 𝜏, 𝑟) .

(12)

We impose the boundary conditions as follows:

𝑃

󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

= 𝜖(

𝜌0𝐻𝑔
2

𝜆𝜃𝜆𝑧

− 𝛼0𝜇𝐻)

𝜕
2
𝑢
∗

𝜕𝜉
2

+

𝛽1𝜇𝐻

𝑅
2
0

𝑢
∗
− 𝜖
3
𝛼0𝜇𝐻

𝜕
2
𝑢
∗

𝜕𝜏
2

− 2𝜖
2
𝛼0𝜇𝐻

𝜕
2
𝑢
∗

𝜕𝜉𝜕𝜏

+

𝛽2𝜇𝐻

𝑅
3
0

𝑢
∗2
− 𝜖

𝜌0𝐻𝑔
2

𝜆
2
𝜃
𝜆𝑧𝑅0

𝑢
∗ 𝜕
2
𝑢
∗

𝜕𝜉
2

−

𝛼1𝜇𝐻

𝑅0

[𝜖(

𝜕𝑢
∗

𝜕𝜉

)

2

+ 2𝜖
2 𝜕𝑢
∗

𝜕𝜉

𝜕𝑢
∗

𝜕𝜏

+ 𝜖
3
(

𝜕𝑢
∗

𝜕𝜏

)

2

]

+ (

𝛼0𝜇𝐻

𝜆𝜃𝑅0

−

2𝛼1𝜇𝐻

𝑅0

)

× 𝑢
∗
(𝜖

𝜕
2
𝑢
∗

𝜕𝜉
2
+ 𝜖
3 𝜕
2
𝑢
∗

𝜕𝜏
2
+ 𝜖
2 𝜕
2
𝑢
∗

𝜕𝜉𝜕𝜏

) +

𝜇𝐻

𝑅0

𝑃0,

𝑉
∗
𝑟
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

= −𝜖
1/2
𝑔

𝜕𝑢
∗

𝜕𝜉

+ 𝜖
1/2

(

𝜕𝑢
∗

𝜕𝜉

+ 𝜖

𝜕𝑢
∗

𝜕𝜏

)𝑉
∗
𝑧∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

.

(13)

Substituting (11) and (12) into (6) and (9) and equating
coefficients of like powers of 𝜖. Then, from the lowest-order
equations in 𝜖 the following results are obtained:

1

𝜌𝑓

𝜕𝑃1

𝜕𝑟

= 0,

−𝑔

𝜕𝑉
∗(1)
𝑧∗

𝜕𝜉

+

1

𝜌𝑓

𝜕𝑃1

𝜕𝜉

= 0,

𝜕𝑉
∗(1)
𝑟

𝜕𝑟

+

𝑉
∗(1)
𝑟

𝑟

+

𝜕𝑉
∗(1)
𝑧∗

𝜕𝜉

= 0.

(14)

And the boundary conditions can be written as follows:

𝑃1

󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

=

𝛽1𝜇𝐻

𝑅
2
0

𝑢
∗
1 , 𝑉

∗(1)
𝑟

󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

= −𝑔

𝜕𝑢
∗
1

𝜕𝜉

. (15)

From the solution of the sets (14) and (15) we obtain that

𝑢
∗
1 = 𝑈 (𝜉, 𝜏) , 𝑈 (𝜉, 𝜏) =

𝑅
2
0

𝛽1𝜇𝐻
𝑃1 (𝜉, 𝜏) ,

𝑉
∗(1)
𝑧∗ =

1

𝑔𝜌𝑓

𝑃1 (𝜉, 𝜏) , 𝑉
∗(1)
𝑟 = −

1

2𝑔𝜌𝑓

𝜕𝑃1 (𝜉, 𝜏)

𝜕𝜉

𝑟,

𝑔
2
=

𝛽1𝜇𝐻𝑟𝑓

2𝜌𝑓𝑅
2
0

,

(16)

where 𝑈(𝜉, 𝜏) is an unknown function whose governing
equation will be obtained later and 𝑔 is the phase velocity in
the longwave approximation.

Considering now the coefficients of 𝑂(𝜖2), we derive with
the aid of (16) the following set of equations

1

2𝜌𝑓

𝜕
2
𝑃1 (𝜉, 𝜏)

𝜕𝜉
2

𝑟 +

1

𝜌𝑓

𝜕𝑃2

𝜕𝑟

= 0,

−𝑔

𝜕𝑉
∗(2)
𝑧∗

𝜕𝜉

+

1

𝑔
2
𝜌
2
𝑓

𝑃1

𝜕𝑃1

𝜕𝜉

+

1

𝜌𝑓

𝜕𝑃2

𝜕𝜉

+

1

𝜌𝑓

𝜕𝑃1

𝜕𝜏

= 0,

𝜕𝑉
∗(2)
𝑟

𝜕𝑟

+

𝑉
∗(2)
𝑟

𝑟

+

𝜕𝑉
∗(2)
𝑧∗

𝜕𝜉

+

1

𝑔𝜌𝑓

𝜕𝑃1

𝜕𝜏

= 0.

(17)
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And the boundary conditions can be written as follows

𝑃(2)

󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

= (

𝜌0𝐻𝑔
2

𝜆𝜃𝜆𝑧

− 𝛼0𝜇𝐻)

𝑅
2
0

𝛽1𝜇𝐻

𝜕
2
𝑃1

𝜕𝜉
2

+

𝛽1𝜇𝐻

𝑅
2
0

𝑢
∗
2 +

𝑅0𝛽2

𝜇𝐻𝛽
2
1

(𝑃1)
2
,

𝑉
∗(2)
𝑟

󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

= −𝑔

𝜕𝑢
∗
2

𝜕𝜉

+

𝑅
2
0

𝑔𝜌𝑓𝛽1𝜇𝐻
𝑃1

𝜕𝑃1

𝜕𝜉

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑟=𝑟
𝑓

.

(18)

From (17-a) we have

𝑃2 = −

1

4

𝜕
2
𝑃1

𝜕𝜉
2
𝑟
2
. (19)

Eliminating the second order perturbed quantities𝑃2 and
𝑉
∗(2)
𝑧∗ , the desired KdV equation is obtained as follows:

𝜕𝑃1

𝜕𝜏

+ 𝐴𝑃1

𝜕𝑃1

𝜕𝜉

+ 𝐵

𝜕
3
𝑃1

𝜕𝜉
3
= 0, (20)

where the coefficients 𝐴 and 𝐵 are defined by

𝐴 =

𝑅
2
0

𝛽1𝜇𝐻
(

𝛽1𝜇𝐻

2𝑔
2
𝜌𝑓𝑅
2
0

+

2𝑔
2
𝜌𝑓𝛽2𝑅0

𝛽
2
1𝜇𝐻𝑟𝑓

+

1

𝑟𝑓

) ,

𝐵 = (

𝑔
2
𝜌𝑓𝑅
2
0𝑟𝑓

4𝛽1𝜇𝐻
+

𝜌0𝜌𝑓𝑔
4
𝑅
4
0

𝜆𝜃𝜆𝑧𝛽
2
1𝜇
2
𝐻𝑟𝑓

−

𝑟
2
𝑓
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−

𝛼0𝑔
2
𝑅
4
0𝜌𝑓

𝛽
2
1𝜇𝐻𝑟𝑓

) .

(21)

Our system can support two kinds of potential structure
depending on the sign of the coefficient of the nonlinear term
(𝐴). A stationary solitary wave solution of the KdV equation
can be obtained by transforming the space variable to

𝜂 = (𝜁 − V𝜏) , (22)

where V is velocity of the wave. This has been done by
imposing the boundary conditions for localized perturba-
tions, namely, 𝑃1 = 0, 𝑑𝑃1/𝑑𝜂 = 0, and 𝑑

2
𝑃1/𝑑𝜂

2
= 0

for 𝜂 → ±∞. Thus, the steady state solution of (22) can be
expressed as

𝑃1 = 𝑃0 sech
2
[

𝜂

Δ

] , (23)

where the soliton amplitude 𝑃0 and the soliton width Δ are
given by

𝑃0 =
3V

𝐴

, Δ = 2√
𝐵

V
. (24)

4. Numerical Results and Discussion

The weakly nonlinear pressure waves in a fluid-filled elastic
tube have been investigated. To make our result physically
relevant, numerical studies have beenmade using parameters
close to those values corresponding to actual biologically
relevant parameters for experimental data in dogs [6, 16].
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Figure 1: The soliton profile for expression (23) for different values
of 𝑟𝑓 for 𝛽1 = 296.105, 𝛽2 = 991.496, 𝜌𝑓 = 1.05 gm/cm3, 𝑅0 =
0.38 cm, 𝜌0 = 1.03 gm/cm3, 𝜆𝑧 = 𝜆𝜃 = 1.6, 𝛼0 = 78.692, 𝐻 =

2 × 10
−2 cm, 𝜇 = 0.4, and V = 8 cm/s.
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Figure 2: The kinetic energy for 𝑟𝑓 = 0.75, 𝛽1 = 296.105, 𝛽2 =
991.496, 𝜌𝑓 = 1.05 gm/cm3, 𝑅0 = 0.38 cm, 𝜌0 = 1.03 gm/cm3, 𝜆𝑧 =
𝜆𝜃 = 1.6, 𝛼0 = 78.692, 𝐻 = 2 × 10

−2 cm, 𝜇 = 0.4, and V = 8 cm/s.

The effect of the final inner radius of the tube 𝑟𝑓 on the
basic properties of the amplitude and width of the soliton
is shown in Figure 1. It is obvious that the magnitude of the
soliton amplitude andwidth increases with 𝑟𝑓. From (20), the
nonlinear equation of motion can be obtained as

1

2

[

𝑑𝑃1

𝑑𝜂

]

2

+ 𝑉 (𝑃1) = 0. (25)

This equation can be regarded as an “energy inte-
gral” of an oscillating particle of unit mass, with a
velocity 𝑑𝑃1/𝑑𝜂 and position 𝑃1 in a potential

𝑉(𝑃1) = [

𝑃1

6𝐵

−

V

2𝐵

]𝑃

2

1. (26)

The kinetic energy of oscillating particle is shown in
Figure 2. A necessary condition for the existence of the
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Figure 3: The potential and the corresponding phase portrait for 𝑟𝑓 = 0.75, 𝛽1 = 296.105, 𝛽2 = 991.496, 𝜌𝑓 = 1.05 gm/cm3, 𝑅0 =

0.38 cm, 𝜌0 = 1.03 gm/cm3, 𝜆𝑧 = 𝜆𝜃 = 1.6, 𝛼0 = 78.692, 𝐻 = 2 × 10
−2 cm, 𝜇 = 0.4, and V = 8 cm/s.

solitary waves is that 𝑑2𝑉/𝑑𝑃21 < 0 for 𝑃1 = 0. A value
of 𝑑2𝑉/𝑑𝑃21 > 0 predicts the formation of a shock wave.
Thepotential and the corresponding phase portrait are shown
in Figure 3. Stable solitons will exist when V/2𝐵 > 0;
otherwise stable solitons will not be present. The application
of our model might be particularly interesting in the new
observations for the biological experimental data.
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