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Data analysis methods for estimating promoter activity from gene reporter data frequently involve the reconstruction of the
dynamics of unobserved species and numerical search algorithms for determining optimal model parameters. In contrast, we argue
that posttranscriptional dynamics effectively behave like a singlestep stochastic process when gene expression variability is relatively
low and, half-lives of the unobserved species are relatively small compared to characteristic observation time scales. In this case,
by means of maximum likelihood estimators, for which analytical expressions exist, transcriptional activity of gene promoters can
be estimated directly from observed gene reporter data without the need for numerical search algorithms and the reconstruction
of unobserved variables. In addition, the model-based data analysis approach yields a single variable that measures the effective
strength of the sources that give rise to gene expression variability. The approach is applied to conduct a model-based analysis of
the inflammatory pathway under hypoxia condition and stimulation with tumor necrosis factor alpha in HEK293 cells.

1. Introduction

A problem in the field of computational biology is how to
model and determine quantitatively promoter activity from
observed reporter data. Deterministic approaches suggest
that when the activity of a promoter is constant over a period
of time, then reporter data should be linearly increasing (see
Section 2.1). The steepness of the increase is proportional
to the activity of the promoter. Linear regression analysis
may be applied to determine the rate of increase [1]. This
deterministic perspective is limited in its scope, which
becomes clear when considering stochastic approaches as
alternatives. For example, deterministic approaches regard
gene expression fluctuations as errors. In contrast, accord-
ing to stochastic approaches gene expression fluctuations

indicate that the transcriptional machinery functions prop-
erly because themachinery is based on biochemical reactions
that are stochastic in the very nature. Stochastic accounts, for
example, based on chemical Langevin equations, provide a
mathematical framework to address both the deterministic
and stochastic components of promoter activity [2]. In the
literature, modeling of gene transcription often starts at the
promoter level with the transcription event [3–6]. Accord-
ingly, mRNA is produced at a certain rate 𝑟. Subsequently,
mRNA is translated into proteins at a rate 𝜔. The proteins
are finally exported out of the cell with an export rate
𝛼. Measurement devices of gene reporter systems typically
measure the protein abundance in this extracellular space [3,
7–10]. Taken together, the post-transcriptional dynamics is a
multistep process that involves different types of entities such
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as the mRNA, the intracellular proteins, and the extracellu-
lar proteins. More detailed models for post-transcriptional
dynamics featuring evenmore entities and species [11] and the
impact of repressors [12] have been discussed in the literature
as well. Several studies have exploited stochastic model-
ing of post-transcriptional dynamics by means of chemical
Langevin equations in order to estimate promoter activity
from gene reporter data (e.g., [3, 5]). In these studies, post-
transcriptional dynamics was modeled in terms of the afore-
mentioned multistep process. Consequently, it was necessary
to reconstruct the dynamics of hidden, unobserved entities,
for example, the mRNA and the intracellular proteins. This
in turn makes it difficult to obtain analytical expressions
for estimators of the relevant model parameters. Parameter
spaces need to be searched for the optimal parameters
by means of numerical methods [3]. Although nowadays
numerical methods have reached high standards, the issue
is to develop complementary approaches that are based on
analytical expressions for parameter estimators.

The impact of hypoxia and tumor necrosis factor-alpha
(TNF𝛼) on cellular responses is of particular interest for
cell biology. While oxygen is of vital importance for all
aerobic organisms, oxygen levels have to be maintained
between certain thresholds. That is, oxygen homeostasis is
required on the cellular level for proper cell functioning [13–
16]. Diseases such as various types of cancers have been
associated with the failure to regulate oxygen homeostasis
in the cell [14, 17]. Moreover, the dysfunction of the oxygen
homeostasis has adverse consequences for prenatal develop-
ment [13]. Likewise, high oxygen levels (i.e., hyperoxia rather
than hypoxia) immediately after birth may have negative
consequences for long term development of preterm infants
[18, 19]. Finally, oxygen homeostasis and inflammation are
closely linked. Hypoxic tissue conditions increase the chance
of inflammation and, vice versa, inflammatory diseases are
likely to lead to hypoxic tissue conditions [20]. In this context,
the hypoxia induced factor (HIF) has been identified as
master regulator of oxygen homeostasis [14, 17, 21]. However,
TNF𝛼 levels seem to play a crucial role as well because it has
been shown that hypoxic conditions induce increased TNF𝛼
levels [9, 22–25]. Therefore, the transcriptional response of
the human cyclooxygenase-2 (COX2) promoter to changes
in HIF and TNF𝛼 levels has been studied and a synergistic
regulation was found [1]. COX2, in turn, is known to be
involved in the cellular responsemechanism to inflammation
(e.g., [26]). Apart from its central role for inflammatory
diseases, the TNF𝛼-NF𝜅B pathway seems to be involved in
other signaling networks such as the regulatory network for
cardiac myocyte growth [27].

The goal of the present study is to demonstrate that post-
transcriptional dynamics effectively behaves like a single-
step stochastic process when gene expression variability is
relatively low and the half lives of the unobserved entities,
that is, the mRNA and the intercellular proteins, are short
relative to the measurement period. The latter issue means
thatmRNAandproteins are degraded relatively quickly in the
cell. In fact, this is frequently the case: half lives are typically
below one hour, whereas reporter data may be collected over
periods of several hours.

In Section 2, we will derive an effective stochastic single-
stepmodel for post-transcriptional dynamics that comeswith
analytical expressions for maximum likelihood estimators.
We will demonstrate how these estimators can be used to
reconstruct the deterministic and stochastic components of
promoter activity from gene reporter data. The results of
Section 2 will be applied in Section 3. In Section 3, we will
analyze the activity of the COX2 promoter when stimulated
via two pathways: the TNF𝛼 pathway and the hypoxia
pathway. We will show that a particular model prediction,
namely, the proportionality of the mRNA production rate 𝑟
and the strength of the promoter activity fluctuations, holds
when stimulated via either of the two pathways. However, the
prediction is violated when the COX2 promoter is stimulated
by both pathways simultaneously.

2. Effective Single-Step Model for
the Reconstruction of Promoter Activity
and Gene Expression Volatility from
Reporter Data

2.1. Single Cell Level

2.1.1. The Stochastic Single Cell Multistep Model. Let 𝑚(𝑡)
denote the number of mRNA molecules at time 𝑡 (in what
follows molecule numbers are assumed to be large such that
they can be treated as real numbers). Let 𝑝(𝑡) and 𝑥(𝑡) denote
the protein numbers in the cell and in the extracellular space.
In the deterministic case, the post-transcriptional model
sketched in the introduction reads as follows:

𝑑

𝑑𝑡

𝑚 = 𝑟 − 𝑘 ⋅ 𝑚,

𝑑

𝑑𝑡

𝑝 = 𝜔 ⋅ 𝑚 − (𝛼 + 𝜀) ⋅ 𝑝,

(1)

𝑑

𝑑𝑡

𝑥 = 𝛼 ⋅ 𝑝. (2)

Accordingly,mRNA𝑚(𝑡) is produced at a rate 𝑟 and degraded
with a degradation constant 𝑘. Intracellular proteins 𝑝(𝑡) are
produced by the activity of mRNA (in a nonconsumable
way) at a rate 𝜔 and degraded with a degradation constant
𝜀. Proteins are exported outside the cell at a rate 𝛼 such that
in the evolution equation for 𝑝(𝑡) the term −𝛼 ⋅ 𝑝 occurs. In
contrast, the evolution equation for the extracellular protein,
𝑥(𝑡) features the same term with the plus sign. Note that
the degradation of proteins in the extracellular space is
considered as negligible, which is the reason why there is no
decay term in (2).

When 𝑚 and 𝑝 reach their stationary values 𝑚
𝑠
and 𝑝

𝑠
,

respectively, we have

𝑚
𝑠
=

𝑟

𝑘

, 𝑝
𝑠
=

1

𝛼 + 𝜀

𝜔

𝑘

𝑟, (3)

𝑑

𝑑𝑡

𝑥 = 𝑏. (4)



ISRN Computational Biology 3

with

𝑏 =

𝛼

𝛼 + 𝜀

𝜔

𝑘

𝑟. (5)

Equation (5) is an important result because it shows that
the parameter 𝑏 is proportional to the transcription rate 𝑟.
That is, if 𝑏 can be estimated from experimental data under
different conditions and if these conditions do not affect the
parameters 𝛼, 𝜀, 𝜔, and 𝑘 of the post-transcriptional system,
then variations of 𝑏 reflect variations of the promoter activity
𝑟. Furthermore, note that the derivation of (4) proves the
claimmade in the introduction that under certain conditions
deterministic approaches predict that reporter data should
linearly increase as a function of time and that the steepness
of the increase is proportional to the promoter activity.

The chemical Langevin equations accounting for the
stochastic aspects of the biochemical reactions (1) and (2)
read [2, 3] as

𝑑𝑚 = (𝑟 − 𝑘 ⋅ 𝑚) 𝑑𝑡 + 𝜎
𝑚
⋅ 𝑑𝑊
𝑚
,

𝑑𝑝 = [𝜔 ⋅ 𝑚 − (𝛼 + 𝜀) ⋅ 𝑝] 𝑑𝑡 + 𝜎
𝑝
⋅ 𝑑𝑊
𝑝
,

𝑑𝑥 = 𝛼 ⋅ 𝑝𝑑𝑡 + 𝜎
𝑥
⋅ 𝑑𝑊
𝑥
.

(6)

Here 𝑊
𝑚
, 𝑊
𝑝
, and 𝑊

𝑥
denote statistically independent

Wiener processes that (without loss of generality) have
variance 2. The volatilities 𝜎

𝑚
, 𝜎
𝑝
, and 𝜎

𝑥
are given by [2, 3]

𝜎
𝑚
= √

𝑟 + 𝑘 ⋅ 𝑚

2

, 𝜎
𝑝
= √

𝜔 ⋅ 𝑚 + (𝛼 + 𝜀) ⋅ 𝑝

2

,

𝜎
𝑥
= √

𝛼 ⋅ 𝑝

2

.

(7)

2.1.2. Identifying the Relevant Fluctuating Forces in the Low
Variability Limit. We consider the case in which the system is
almost deterministic. That is, we assume that the fluctuating
forces described by the terms involving theWiener processes
have a small impact on the evolution of 𝑚, 𝑝, and 𝑥. In this
case, we substitute the stationary values defined by (3) into the
volatilities defined by (7). Thus, the volatilities in (7) become
independent of the mRNA and protein numbers:

𝜎
𝑚,𝑎

= √𝑟, 𝜎
𝑝,𝑎
= √

𝜔 ⋅ 𝑟

𝑘

, 𝜎
𝑥,𝑎
= √

𝛼 ⋅ 𝜔 ⋅ 𝑟

2 (𝛼 + 𝜀) 𝑘

.

(8)

Such constant volatilities are known to describe so-called
additive noise systems, which is the reason why we have
added the subindex “𝑎”. Exploiting the additive noise volatil-
ities, the stochastic model defined by (6) can be written like

𝑑𝑚 = (𝑟 − 𝑘 ⋅ 𝑚) 𝑑𝑡 + 𝜎
𝑚,𝑎

⋅ 𝑑𝑊
𝑚
+ 𝑒
𝑚
(volat.) , (9)

𝑑𝑝 = [𝜔 ⋅ 𝑚 − (𝛼 + 𝜀) ⋅ 𝑝] 𝑑𝑡 + 𝜎
𝑝,𝑎
⋅ 𝑑𝑊
𝑝
+ 𝑒
𝑝
(volat.) ,

(10)

𝑑𝑥 = 𝛼 ⋅ 𝑝𝑑𝑡 + 𝜎
𝑥,𝑎
⋅ 𝑑𝑊
𝑥
+ 𝑒
𝑥
(volat.) . (11)

The error terms 𝑒
𝑚
, 𝑒
𝑝
, and 𝑒

𝑥
account for effects due to

moderate and high volatility.

2.1.3. Identifying the Dominant Part in the Case of Fast
Relaxing Intercellular mRNA and Protein Dynamics. The
multivariate Langevin equation defined by (6) describes a
three-variable Markov diffusion process. It is known that
if we consider only one variable of a multivariate Markov
process, then the process in that variable may become non-
Markovian in nature [28]. This is indeed the case for the
process described by (6). If we solve the evolution equations
for 𝑚(𝑡) and 𝑝(𝑡) formally and substitute the result into
the evolution equation of 𝑥, then 𝑥 is described by a non-
Markovian process (for a similar workedout example see
[28]). However, if the decay constants 𝑘 and 𝑘

󸀠

= 𝛼 +

𝜀 are relatively large, such that 𝑚 and 𝑝 decay quickly to
their stationary values, then 𝑥 is approximately given by a
Markov process, which can be shown using the method of
adiabatic elimination [29–33]. More precisely, let us consider
the stochastic process

𝑑𝑧 = (−𝐴 ⋅ 𝑧 + 𝐵) 𝑑𝑡 + 𝜎
𝑧
⋅ 𝑑𝑊
𝑧
, (12)

where 𝐴 > 0, 𝐵, and 𝜎
𝑧
> 0 are constants and𝑊

𝑧
is a Wiener

process. It can be shown that in the limiting case 𝐴 → ∞

variations 𝑢
𝑧
(𝑡) = 𝑧(𝑡) − 𝐵/𝐴 of 𝑧 from the fixed point 𝐵/𝐴

are determined by the Wiener process𝑊
𝑧
like [29, 30]

𝑢
𝑧
(𝑡) 𝑑𝑡 = (𝑧 (𝑡) −

𝐵

𝐴

)𝑑𝑡 =

𝜎
𝑧

𝐴

⋅ 𝑑𝑊
𝑧
. (13)

For sake of clarity, we note that (13) reads in integral form

∫

𝑡
2

𝑡
1

𝑢
𝑧
(𝑡) 𝑑𝑡 =

𝜎
𝑧

𝐴

⋅ [𝑊
𝑧
(𝑡
2
) − 𝑊

𝑧
(𝑡
1
)] . (14)

Equation (13) describes an approximation to the exact solu-
tions 𝑧(𝑡) of (12). The approximation (13) is called the adia-
batic elimination of 𝑧 because (13) can be used to replace the
expression 𝑧𝑑𝑡 in other formula. According to the adiabatic
elimination method, from the stochastic evolution equations
(9) and (10) we obtain

[𝑚 −

𝑟

𝑘

] 𝑑𝑡 =

𝜎
𝑚,𝑎

𝑘

𝑑𝑊
𝑚
+ 𝑒
𝑚
(volat., non-Markov) , (15)

[𝑝 −

𝜔 ⋅ 𝑚

𝛼 + 𝜀

] 𝑑𝑡 =

𝜎
𝑝,𝑎

𝛼 + 𝜀

𝑑𝑊
𝑝
+ 𝑒
𝑝
(volat., non-Markov) .

(16)

The error terms in (15) and (16) account for non-Markovian
effects that occur when the limiting case 𝑘, 𝑘󸀠 → ∞ does
not hold and account for effects due to moderate and high
volatility. Substituting (15) into (16) and substituting the result
into (11), we obtain

𝑑𝑥 = 𝑏𝑑𝑡 +

𝛼

𝛼 + 𝜀

𝜔

𝑘

𝜎
𝑚,𝑎

⋅ 𝑑𝑊
𝑚
+

𝛼

𝛼 + 𝜀

𝜎
𝑝,𝑎
⋅ 𝑑𝑊
𝑝

+ 𝜎
𝑥,𝑎
⋅ 𝑑𝑊
𝑥
+ 𝑒
𝑥,tot (volat., non Markov)

(17)

with 𝑏 defined by (5).The error term 𝑒
𝑥,tot(volat., nonMarkov)

comprises effects arising from the adiabatic elimination of
𝑚 and 𝑝, on the one hand, and the impacts of moderate
and high volatility, on the other. In particular, it includes the
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error terms occurring in (15) and (16). The net impact of the
three independent Wiener processes𝑊

𝑚
,𝑊
𝑝
, and𝑊

𝑥
can be

described by means of a single Wiener process𝑊eff when the
volatility is adjusted appropriately. We have

𝜎eff ⋅ 𝑑𝑊eff
Prob
=

𝛼

𝛼 + 𝜀

𝜔

𝑘

𝜎
𝑚,𝑎

⋅ 𝑑𝑊
𝑚

+

𝛼

𝛼 + 𝜀

𝜎
𝑝,𝑎
⋅ 𝑑𝑊
𝑝
+ 𝜎
𝑥,𝑎
⋅ 𝑑𝑊
𝑥

(18)

with

𝜎
2

eff = [
𝛼

𝛼 + 𝜀

𝜔

𝑘

]

2

𝜎
2

𝑚,𝑎
+ [

𝛼

𝛼 + 𝜀

]

2

𝜎
2

𝑝,𝑎
+ 𝜎
2

𝑥,𝑎
. (19)

Note that the equivalence in (18) holds in probability (as
indicated). Equation (19) can be expressed in terms of the
model parameters by substituting (8) into (19):

𝜎
2

eff =
1

2

𝛼

𝛼 + 𝜀

𝜔

𝑘

[1 + 2

𝛼

𝛼 + 𝜀

(1 +

𝜔

𝑘

)] ⋅ 𝑟. (20)

Having these results at our disposal, (17) can equivalently be
expressed as

𝑑𝑥 = 𝑏𝑑𝑡 + 𝜎eff ⋅ 𝑑𝑊eff + 𝑒𝑥,tot (volat., non-Markov) . (21)

The stochastic model defined by (21) provides us with
two key parameters. The parameter 𝑏 is a measure for
promoter activity (as argued previously). The term 𝜎eff ⋅
𝑑𝑊eff describes sources that give rise to fluctuations in gene
expression levels. Moreover, the squared expression [𝜎eff]

2

formally corresponds to the diffusion coefficient of a Markov
diffusion process when we put the error term equal to zero.
Consequently, the parameter𝜎eff and the expression [𝜎eff]

2 are
two alternativemeasures that quantify the strength of sources
that lead to gene expression variability.

2.1.4. On the Effective Stochastic Single-Step Process. Note
that (20) can be written like 𝜎eff = [𝑏(1 + 𝜆)/2]

1/2 with
𝜆 = 2𝛼 ⋅ [1 + 𝜔/𝑘]/(𝛼 + 𝜀). Furthermore, note that for a
classical chemical reaction with a constant production rate 𝑏
the chemical Langevin equation𝑑𝑥 = 𝑏⋅𝑑𝑡+(𝑏/2)1/2𝑑𝑊holds
[2]. Equation (21) deviates from this form because we have
𝜆 > 0 and (21) exhibits the error term 𝑒

𝑥,tot. Irrespectively,
(21) describes a single-step stochastic process.That is, we have
reduced the multistep process model to a model of a single-
step process.

We compare next the effective single-step process defined
by (21) with aWiener process subjected to a constant drift 𝑏

0
:

𝑑𝑥 = 𝑏
0
𝑑𝑡 + 𝑔 ⋅ 𝑑𝑊. (22)

In (22) the parameter 𝑔 > 0 denotes the volatility of the
process. Equation (22) exhibits an exact analytical solution
for the transition probability density (see, e.g., [34, 35]). For
data 𝑋

𝑘
given at discrete time points 𝑡

𝑘
= Δ𝑡 ⋅ (𝑘 − 1) with

𝑘 = 1, . . . , 𝑛 the maximum likelihood estimators (MLEs) 𝑏
0,𝑒

of 𝑏
0
and 𝑔

𝑒
of 𝑔 are defined by

𝑏
0,𝑒
=

𝑋
𝑛
− 𝑋
1

𝑇

, 𝑔
2

𝑒
=

Δ𝑡

2 (𝑛 − 1)

𝑛−1

∑

𝑘=1

(

𝑋
𝑘+1

− 𝑋
𝑘

Δ𝑡

− 𝑏
0,𝑒
)

2

.

(23)

Here, the total observation time is 𝑇 = 𝑡
𝑛
− 𝑡
1
= (𝑛 − 1) ⋅ Δ𝑡.

Equation (23) can be obtained from the aforementioned exact
solution of the transition probability density.

As argued above, for low volatility and when the decay
rates 𝑘 and 𝑘󸀠 are sufficiently large, then the error term 𝑒

𝑥,tot
in (21) should have only a small impact on the evolution
of 𝑥. In this case, the Wiener process with drift defined
by (22) is a good approximation of the single-step post-
transcriptional dynamics model (21). Likewise, 𝑏

0,𝑒
and 𝑔
𝑒
are

useful estimates of the parameters 𝑏 and 𝜎eff defined by (5)
and (20).

In order to illustrate this line of argument, we simulated
the original three-variable Markov diffusion process defined
by (6) and (7) and subsequently estimated 𝑏

0,𝑒
and 𝑔

𝑒
from

the simulated protein data 𝑋𝑘 using (23). We assumed that
mRNA and the protein have half lives of 30min, whereas
observations are made every 2 hours (i.e., Δ𝑡 = 2) over a
sufficiently long period. In this case, mRNA and intracellular
proteins decay relatively quickly on the time scale of the
observations. In this sense, the decay rates 𝑘 and 𝜀 (and
consequently 𝑘󸀠) are relatively large. Explicitly, for a half-
life of 30min, the decay constant is about 1.4/h (note: the
decay constant can be computed from the half-life using the
formula: decay constant = log(2)/half life).Moreover, we used
in the simulations relative large production rates of 𝑟 > 10

proteins/h. We found that for these rates the variability is
small relatively to the mean values as required for the validity
of our approach.

Figure 1 shows the sample mean values of 𝑏
0,𝑒

and 𝑔
𝑒
for a

sample of 10 repetitions obtained for several values of 𝑟 ≥ 10.
It also shows, for comparison purposes, the analytical results
for 𝑏 and 𝜎eff defined by (5) and (20). We see that 𝑏 and 𝜎eff
correspond fairly well to the mean values of the estimates
𝑏
0,𝑒

and 𝑔
𝑒
. Figure 1 illustrates that the effective single-step

model for post-transcriptional dynamics given by theWiener
process with drift defined by (22) is a useful approximations
of the original stochastic three-variable model in (6) and (7).

2.2. Population Level. Reporter data are frequently recorded
from cell populations rather than from single cells. Let us
consider a population of 𝑁 cells. The cell population is
exposed to a stimulus such that the cells produce stimulus-
specific proteins and export them into the extracellular
space. The number of proteins deposited by cell 𝑘 into the
extracellular space will be denoted by 𝑥

𝑘
. We assume that

the measurement devise records a physical quantity 𝑦 that is
proportional to the total number of stimulus-specific proteins
in the extracellular space at time 𝑡:

𝑦 (𝑡) = 𝑐

𝑁

∑

𝑘=1

𝑥
𝑘
(𝑡) . (24)

In (24) the parameter 𝑐 > 0 is a proportionality factor. The
sum ∑(⋅) in (24) may be interpreted as the total number of
proteins that have been deposited by the cell population in
the extracellular space up to time 𝑡.
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Figure 1: Drift and diffusion parameters as used in the stochastic stimulation of the multistep model defined by (6) and (7) and as estimated
from the approximate single-stepmodel defined by (22) as functions of the transcription rate 𝑟. (a) Drift coefficients 𝑏 and 𝑏

0,𝑒
computed from

(5) and (23), respectively. (b) Diffusion coefficients [𝜎eff]
2 and [𝑔

𝑒
]
2 as obtained from (20) and (23). Sample mean values are presented. Error

bars represent SDs. Number of repetitions: 10. Parameters: 𝛼 = 0.1, 𝜔 = 0.1, 𝑘 = 1.4/h, 𝜀 = 1.4/h, and Δ𝑡 = 2 h. Stochastic simulations were
performed by means of an Euler forward method with computational time step of 0.01 h, and trajectories were computed in the interval from
0 to 100 h.

Let us evaluate the right-hand side of (24). As argued
previously, each cell 𝑘 satisfies an evolution equation of the
form (21) such that

𝑑𝑥
𝑘
= 𝑏𝑑𝑡 + 𝜎eff ⋅ 𝑑𝑊𝑘,eff + 𝑒𝑘,𝑥,tot (volat., non-Markov) ,

(25)

where 𝑊
𝑘,eff denote statistically independent Wiener pro-

cesses with variance 2. Substituting (25) into (24), we obtain

𝑑𝑦 = 𝐵𝑑𝑡 + 𝑐 ⋅ 𝜎eff

𝑁

∑

𝑘=1

𝑑𝑊
𝑘,eff + 𝑒𝑦,tot (volat., non-Markov)

(26)

with

𝐵 = 𝑐 ⋅ 𝑁 ⋅ 𝑏 = 𝑐 ⋅ 𝑁

𝛼

𝛼 + 𝜀

𝜔

𝑘

𝑟, (27)

𝑒
𝑦,tot (volat., non-Markov)

= 𝑐

𝑁

∑

𝑘=1

𝑒
𝑘,𝑥,tot (volat., non-Markov) .

(28)

The sumof the statistically independentWiener processes
can be replaced by a single Wiener process like

𝑁

∑

𝑘=1

𝑊
𝑘,eff

Prob
= √𝑁 ⋅ 𝑊

𝑦
, (29)

where𝑊
𝑦
is aWiener process with variance 2. Exploiting (28)

and (29), (26) becomes

𝑑𝑦 = 𝐵𝑑𝑡 + 𝜎
𝑦
⋅ 𝑑𝑊
𝑦
+ 𝑒
𝑦,tot (volat., non-Markov) (30)

with 𝜎
𝑦
= 𝑐 ⋅ 𝑁

1/2

⋅ 𝜎eff. Alternatively, with the help of (20),
we obtain

𝜎
2

𝑦
=

𝑐
2

⋅ 𝑁

2

𝛼

𝛼 + 𝜀

𝜔

𝑘

[1 + 2

𝛼

𝛼 + 𝜀

(1 +

𝜔

𝑘

)] ⋅ 𝑟. (31)

Just as in our discussion of (21), we point out that the
stochastic model defined by (30) features two key parameters
that are essential for the characterization of promoter activity.
The parameters 𝐵 and 𝜎

𝑦
reflect deterministic and stochastic

aspects of promoter activity. The parameter 𝐵 is a measure
proportional to the promoter activity 𝑟 (i.e., the rate of tran-
scription initiation). If 𝐵 is estimated from experimental data
under various conditions that do not affect the parameters of
the post-transcriptional system (𝑐, 𝑁, 𝛼, 𝜔, 𝜀, and 𝑘), then
variations observed in 𝐵 inform us about variations in 𝑟 that
are induced by these different conditions. The parameter 𝜎

𝑦

or alternatively the squared parameter [𝜎
𝑦
]
2 are quantitative

measures for the strength of the sources that give rise to
gene expression fluctuations. Again, by estimating 𝜎

𝑦
from

experimental data under varying conditions, we can identify
how these conditions affect the strength of the sources that
lead to gene expression variability.

In this context, it is important to point out that 𝐵 and
𝜎
𝑦
are not independent parameters. By comparing (27) and

(31) for 𝐵 and [𝜎
𝑦
]
2, we recognize that they both depend

on the same set of parameters: 𝑟, 𝑐, 𝑁, 𝛼, 𝜔, 𝜀, and 𝑘. This
property can be exploited to obtain additional insights into
how deterministic and stochastic aspects of cellular signaling
are regulated by extracellular stimuli. We will return to this
issue in Section 3.

Equation (30) may be compared with a Wiener process
with constant drift

𝑑𝑦 = 𝐵
0
𝑑𝑡 + 𝐺 ⋅ 𝑑𝑊 (32)

whose coefficients can be estimated from data 𝑌
𝑘
using the

aforementioned MLEs:

𝐵
0,𝑒
=

𝑌
𝑛
− 𝑌
1

𝑇

, 𝐺
2

𝑒
=

Δ𝑡

2 (𝑛 − 1)

𝑛−1

∑

𝑘=1

(

𝑌
𝑘+1

− 𝑌
𝑘

Δ𝑡

− 𝐵
0,𝑒
)

2

,

(33)
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Figure 2: Drift and diffusion parameters as used in the stochastic stimulation of the multistep model defined by (6), (7), and (24) and as
estimated from the approximate single-step model defined by (32) as functions of the transcription rate 𝑟. (a) Drift coefficients 𝐵 and 𝐵

0,𝑒

computed from (27) and (33), respectively. (b) Diffusion coefficients [𝜎
𝑦
]
2 and [𝐺

𝑒
]
2 as obtained from (31) and (33). Sample mean values are

presented. SDs for 𝐵
0,𝑒

were smaller than 1, which is the size of the symbol. SDs for [𝐺
𝑒
]
2 are shown as error bars. Number of repetitions: 10.

Parameters as in Figure 1. Additional parameters: 𝑐 = 1 and 𝑁 = 50. Stochastic simulations were performed by means of an Euler forward
method with computational time step of 0.01 h, and trajectories were computed in the interval from 0 to 100 h.

In order to demonstrate that on the population level the
multistep stochastic model defined by (6) and (7) with (24)
behaves under appropriate conditions (low noise and fast
decays of mRNA and intracellular proteins) like the Wiener
process with drift defined by (32), we conducted a series of
simulations. We simulated a small population of cells (𝑁 =

50) using (6) and (7) for each variable 𝑥
𝑘
(𝑡) and (24) to

obtain the measurement variable 𝑦(𝑡). We downsampled the
trajectory 𝑦(𝑡) to obtain a sequence 𝑌

𝑘
at discrete time points

𝑡
𝑘
. We fitted the computer generated reporter data 𝑌

𝑘
to the

Wiener process with drift (32) by means of the MLEs of
𝐵
0,𝑒

and [𝐺
𝑒
]
2. Finally, we compared 𝐵

0,𝑒
and 𝐺

𝑒
with the

analytical expressions 𝐵 and 𝜎
𝑦
given by (27) and (31). The

results of this procedure are reported in Figure 2.
Inspection of Figure 2 reveals that the estimates 𝐵

0,𝑒
and

[𝐺
𝑒
]
2 of the Wiener process model with drift correspond

well with the analytical expressions for 𝐵 and [𝜎
𝑦
]
2. This

indicates that for our choice of parameters the error term
𝑒
𝑦,tot in (30) affects the evolution of 𝑦 only to a small degree.
Consequently, for appropriate parameters themultistep post-
transcriptional process for the cell population as defined
by (6), (7) and (24) behaves effectively like a single-step
stochastic process of the form (32).

3. Analysis of Synergistic Transcriptional
Activity of the COX2 Promoter Using
a Single-Step Chemical Langevin Model

We conducted a model-based analysis of COX2 transcrip-
tional activity data reported by Bruning et al., 2012 [1].

3.1. Sketch of the Experimental Procedure. In Bruning et
al. [1] the activity of the COX2 promoter in HEK293 cell
populations was measured when exposing cells to either

hypoxia or tumor necrosis factor-alpha (TNF𝛼) or both.
To this end, HEK293 cells were transfected with a Gaussia
luciferase reporter under the control of a fragment of the
COX2 promoter. The transfected cells were exposed to either
21% O

2
(normoxia) or 1% O

2
(hypoxia) with or without

stimulation by 1 ng/mL TNF𝛼 such that promoter activity
was measured under four different conditions in total. The
Gaussia luciferase was measured every 3 h in a 12 h period.
Data from 8 replicates were recorded. For more details, see
Bruning et al. [1].

3.2. Model-Based Analysis. Comparing (27) and (31) we see
that both 𝐵 and [𝜎

𝑦
]
2 depend linearly on the production

rate 𝑟. Consequently, variations in 𝑟 due to experimental
manipulations should affect the deterministic and stochastic
components of the post-transcriptional system as quantified
by 𝐵 and [𝜎

𝑦
]
2 to the same degree provided that all other

parameters (𝛼, 𝜔, 𝜀, and 𝑘) of the post-transcriptional
machinery are invariant across the experimental manipula-
tions. In order to address this issue from a slightly different
angle, we substitute (27) into (31) such that

𝜎
2

𝑦
=

1

2

𝑐 ⋅ 𝐵 ⋅ (1 − 𝜆) (34)

with 𝜆 depending on 𝛼, 𝜔, 𝜀, and 𝑘 as defined in Section 2.1.4.
This implies that the ratio [𝜎

𝑦
]
2

/𝐵 is independent of 𝑟:

𝜎
2

𝑦

𝐵

=

1

2

𝑐 ⋅ (1 − 𝜆) .
(35)

For each replicate we calculated 𝐵
0,𝑒

and [𝐺
𝑒
]
2 from the

five data points 𝑌
1
, . . . , 𝑌

5
related to the time points 𝑡

𝑘
= 0, 3,

6, 9, 12 h using (33). For each replicate we also calculated the
ratio [𝐺

𝑒
]
2

/𝐵
0,𝑒
. If the error term in the single-step stochastic
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Figure 3: Transcription rate as measured by the drift coefficient 𝐵 (a), strength of the fluctuating force inducing gene expression variability
as measured by the diffusion coefficient [𝜎

𝑦
]
2 (b), and ratio [𝜎

𝑦
]
2

/𝐵 (c) observed under four different stimulation conditions. Error bares
indicated standard errors of the means.

model (30) for the post-transcriptional dynamics is relatively
small, then the model (30) corresponds approximately to
the Wiener process with drift defined by (32). In this case,
the ratios [𝐺]2/𝐵

0
(as estimated by [𝐺

𝑒
]
2

/𝐵
0,𝑒
) obtained for

the four different conditions should correspond to the ratios
[𝜎
𝑦
]
2

/𝐵 of the Wiener process model (32) and consequently
should be on the same level (see (35)).

3.3. Results. Figure 3 reports sample mean values of 𝐵
0,𝑒
,

[𝐺
𝑒
]
2 and the ratio [𝐺

𝑒
]
2

/𝐵
0,𝑒
. From Figure 3(a) it follows

that the promoter activity 𝐵 (as estimated 𝐵
0,𝑒
) was minimal

under baseline condition (normoxia with 0 ng/mL TNF𝛼)
with 𝐵 = 0.11 (measured in arbitrary units, i.e., relative
light units per hour; see [1]) and maximal when both
pathways were stimulated (hypoxia with 1 ng/mL TNF𝛼)
with 𝐵 = 0.87. The single stimulation conditions produced
transcriptional activity levels in the medium range of 𝐵 =

0.30 (normoxia with 1 ng/mL TNF𝛼) and 𝐵 = 0.30 again
(hypoxia with 0 ng/mL TNF𝛼). In particular, under dual
stimulation the activity was higher (𝐵 = 0.87) than the sum
of the activity levels observed under single stimulation (𝐵 =
0.60), which indicates that the COX2 promoter activity was
synergistically regulated [36] and is consistentwith the results

obtained by Bruning et al., 2012 [1] using linear regression
analysis. Two-way ANOVA analysis was conducted to test
the statistical significance of the synergy effect [37]. Both
main effects were statistically significant. That is, decreasing
the oxygen level from 21% (normoxia) to 1% (hypoxia)
increased significantly the transcription rate as measured by
the population-level drift coefficient 𝐵 (𝐹(1, 7) = 28.967, 𝑃 =
0.001). Likewise, stimulation with 1 ng/mL TNF𝛼 induced a
significant increase of 𝐵 (𝐹(1, 7) = 96.446, 𝑃 < 0.001). Most
importantly, the interaction effect was statistically significant
indicating that the increase of the transcriptional activity due
to TNF𝛼 stimulation was stronger under hypoxia than under
normoxia (𝐹(1, 7) = 14.740, 𝑃 < 0.01).

Figure 3(b) reveals that themeasure [𝜎
𝑦
]
2 for the strength

of the sources of gene expression variability (as estimated by
[𝐺
𝑒
]
2) followed a similar pattern. The sources had minimal

strength under the baseline condition and maximal strength
under the dual stimulation condition. A two-way ANOVA
revealed no significant effects. Since the sample size was
relatively small, several non-parametric sign tests were con-
ducted as an alternative to the ANOVA. We compared the
baseline and the two single stimulation conditions using three
sign tests. No significant differences were found. We tested
a contrast given by the average of the three aforementioned
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Table 1: Correlation coefficients of lag-1 of the residuals defined by (37) under the four stimulation conditions. In the first column, the
threshold given indicates the statistically significant correlations (at a significance level of 0.05). Values below that threshold are considered
not to be significant.

Threshold 2/(𝑅 ⋅ 𝑁)1/2
with 𝑅 = 8,𝑁 = 4

Baseline (Normoxia
and 0 ng/mL TNF𝛼)

TNF𝛼 stimulation (Normoxia
and 1 ng/mL TNF𝛼)

Hypoxia stimulation (Hypoxia
and 0 ng/mL TNF𝛼)

Dual (Hypoxia and
1 ng/mL TNF𝛼)

0.35 0.02 0.22 0.10 0.35

conditions versus the dual stimulation condition. The sign
test showed that the diffusion coefficient was significantly
higher for the dual stimulation condition than the average of
the three other stimulation conditions (𝑃 < 0.01).

Figure 3(c) reports the sample mean values of the ratios
[𝜎
𝑦
]
2

/𝐵 as estimated by [𝐺
𝑒
]
2

/𝐵
0,𝑒
. The baseline condition

and the two conditions in which only one pathway was
activated (normoxia with 1 ng/mL TNF𝛼 or hypoxia with
0 ng/mL TNF𝛼) exhibited approximately the same ratios
[𝜎
𝑦
]
2

/𝐵. That is, although the promoter activity 𝐵 was higher
in the conditions in which one pathway is activated than
in the baseline condition (Figure 3(a)), the ratios of the
diffusion coefficients [𝜎

𝑦
]
2 versus the drift parameters 𝐵

were found to be approximately on the same level. This is
because the diffusion coefficients [𝜎

𝑦
]
2 were larger in the

conditions in which one pathway was stimulated than in the
baseline condition (Figure 3(b)), just as the drift parameters
𝐵 were larger in the conditions in which one pathway
was stimulated. The dual stimulation condition violated the
prediction defined by (35). Under dual stimulation, the ratio
[𝜎
𝑦
]
2

/𝐵wasmuch higher than the ratios obtained in the other
three conditions. Although both𝐵 and [𝜎

𝑦
]
2 weremaximal in

the dual stimulation condition, if we compare, for example,
the baseline condition with the dual stimulation condition,
then 𝐵 and [𝜎

𝑦
]
2 increased differently and, in particular,

did not increase by the same percentage value as one would
expect on the basis of (35). The two-way ANOVA showed no
statistically significant effects. Paired sign tests between the
baseline condition and the two single stimulation conditions
confirmed that these three conditions showed no significant
differences. However, a paired signed test showed that the
ratio [𝜎

𝑦
]
2

/𝐵 for the dual stimulation was significantly higher
than the average ratio [𝜎

𝑦
]
2

/𝐵 for the three other conditions
(𝑃 < 0.01). We will return to this issue in Section 4.

3.4. Model Checking. Model checking was conducted by
testing to what extent the approximation of a Wiener process
(32) applied to the experimental data. Equation (32) can be
written like

𝑦 (𝑡
𝑘+1
) = 𝑦 (𝑡

𝑘
) + 𝐵
0
Δ𝑡 + 𝐺 ⋅ Δ𝑊. (36)

The increments Δ𝑊 are normally distributed with variance
2Δ𝑡 and reflect white noise. Consequently, they are statisti-
cally independent (see, e.g., [35]). From (36) it follows that
the residuals defined by

𝜉 (𝑘) =

𝑦 (𝑡
𝑘+1
) − 𝑦 (𝑡

𝑘
) − 𝐵
0
Δ𝑡

𝐺√Δ𝑡

=

Δ𝑊

√Δ𝑡

(37)

are proportional to the increments Δ𝑊 (as indicated) and, in
doing so, are statistically independent. From the time points
𝑡
𝑘
= 0, 3, 6, 9, 12 h, we calculated four residuals 𝑘 = 1, 2, 3,

4. Model checking typically is conducted by calculating lag-
𝑝 autocorrelation coefficients and comparing them with the
threshold 2/𝑁1/2, where𝑁 is the number of data points [38].
In our experiment, only 4 residuals were given. Therefore,
only the lag-1 autocorrelation coefficient could be tested.
Rather than testing individual samples we tested the mean
lag-1 autocorrelation obtained from𝑅 samples.The threshold
for the sample mean lag-1 autocorrelation is 2/(𝑅 ⋅ 𝑁)1/2.
Table 1 presents the threshold value and the lag-1 autocorre-
lation coefficients observed in the experiment by Bruning et
al. [1] under the four different stimulation conditions.

The correlation conditions obtained for all four stimu-
lation conditions satisfied the white noise threshold indi-
cating that the correlations were not statistically significant.
However, the dual stimulation condition with the larger
transcription rate exhibited a lag-1 correlation value that was
right at the threshold.

4. Discussion

We argued that under certain conditions, multistep post-
transcriptional dynamics effectively is captured by a single-
step chemical Langevin equation that corresponds to a two-
parametric Wiener process with drift. The drift parameter
reflects the transcriptional activity, while the volatility param-
eter can be regarded as a bulk measure for the strength
of fluctuating forces leading to gene expression variability.
In order to derive the single-step model, we made use
of adiabatic elimination procedure for stochastic processes
suggested by Haken [29]. Numerical simulation supported
the validity of our approach.

Interestingly, the model predicts that transcriptional
activity and gene expression variability are not two inde-
pendent parameters. Rather they are two different map-
pings of the same set of underlying biochemical parameters.
Therefore, variations in one of the biochemical parameters
by experimental manipulations should in general induce
variations in both the transcriptional activity and the amount
of gene expression variability.

As pointed out in the previous sections (Sections 2.1.4 and
2.2), the approach yields approximately good results under
certain conditions. The error terms in (9)–(11) reflecting the
impact of nonadditive noise should have only a negligible
impact. This is the case when the mRNA production rate r is
relatively large (Section 2.1.4). There should be a clear time
scale separation (fast degradation of mRNA and proteins).
If so, the approximate solution via adiabatic elimination is
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close to the exact solution and the error terms reflecting non-
Markovian processes make only small contributions. Future
efforts may be devoted to derive effective single step models
under less severe assumptions. For example, it is known
that, in principle, the adiabatic elimination method can also
be applied to stochastic processes exhibiting nonadditive
fluctuating forces [29]. While in Section 2.1.2 we introduced
(9)–(11) as departure point for the adiabatic elimination
method assuming that the error terms are relatively small
such that they do not conflict with the elimination technique,
a more general analysis may use (6) and (7) as starting point
for the adiabatic elimination method.

Themodel presented in Section 2 captures several sources
of variability related to the biochemical processes of the
post-transcriptional dynamics that are stochastic in nature.
However, there are other potential sources of variability that
have not been included and that might be included in gener-
alization of the single-stepmodel. For example, in Section 2.2
we assumed that the population is composed of cells with
identical parameters. In particular, the transcription rate
parameter 𝑟was assumed to be the same for all cells of a pop-
ulation subjected to a particular stimulation. However, due
to cell-to-cell variability cell parameters might be distributed
rather than fixed across the whole population. In particular,
the degree of cell-to-cell variability may be affected by exper-
imental manipulations such that the parameter distribution
may change. Likewise, in Section 2.1 we assumed that the
single cell parameters are constant over time. For example,
the transcription rate parameter 𝑟 was conceptualized as a
constant. However, single cell parameters may fluctuate over
time. Cell-to-cell variability as well as fluctuating single cell
parameters is likely to inflate the observed gene expressions
variability relative to a transcriptional machinery that does
not exhibit these effects. Finally, the model does not account
for feedback loops (as addressed, e.g., in [21]) from the
post-transcriptional side to the signaling network regulating
the transcriptional activity. Such positive or negative auto-
regulation mechanisms may inflate or suppress fluctuations
in gene expression levels.

In ourmodel, we only distinguished between intracellular
and extracellular proteins. We did not take cellular compart-
ments into account. As mentioned in the introduction, more
detailed models for post-transcriptional dynamics have been
studied in the literature. Such more detailed models as well
as models involving cellular compartments require in general
a more sophisticated mathematical model that involves a
larger number of coupled differential equation as considered
in Section 2.1.1. In this context, it is worth mentioning that
the adiabatic eliminationmethod can be applied to arbitrarily
large sets of coupled evolution equations provided that the
dynamical system as a whole features an appropriate time
scale separation. For example, when the processes within
compartments take place on relative short time scales, then
in principle the adiabatic elimination technique applies and
predicts that the transcriptional machinery including the
comportment dynamics effectively behaves like a single-step
process.

We applied the model-based analysis method to tran-
scriptional activity data reported from the COX2 promoter

under synergistic regulation by hypoxia andTNF𝛼 [1]. In fact,
the MLE parameter estimation method produced consistent
results with the linear regression analysis conducted in
Bruning et al. [1]. In particular, the model-based analysis
supported the notion of a synergistic regulation of COX2
activity by hypoxia and TNF𝛼. Under the assumption that the
stimulation type does not affect the biochemical parameters
of the post-transcriptional machinery, we expected to see
that the pattern in the volatilities mimics the pattern in the
transcription rates. In fact, qualitatively, the same patterns
were found (compare Figures 3(a) and 3(b)). However, quan-
titatively, only the single stimulation conditions exhibited
the same ratio [𝐺]2/𝐵 as the baseline condition. The dual
stimulation condition exhibited a ratio [𝐺]

2

/𝐵 that was
about four times higher than for the three other stimulation
conditions. Future research might be devoted to identify
the reason for this observation. As discussed previously,
there are various conditions that may lead to a violation of
invariance of the “noise to signal ratio” [𝐺]2/𝐵. It might be
the case that the cell-to-cell variability was increased under
dual stimulation relative to the other stimulation conditions.
Alternatively or in addition, the transcription rate 𝑟 might
be subjected to fluctuations to a greater extent under dual
stimulation. Furthermore, from (5) and (20) it follows that the
transcription rate 𝐵 and the diffusion coefficient [𝐺]2 depend
on the factor

Θ =

𝛼

𝛼 + 𝜀

𝜔

𝑘

. (38)

However, 𝐵 depends linearly on this factor, whereas [𝐺]2
involves a component that depends in a quadratic way on
the factor. An increase in this factor may result in an increase
of the ratio [𝐺]2/𝐵. Consequently, another speculative expla-
nation for the observed increased ratio [𝐺]2/𝐵 under dual
stimulation is that dual stimulation affected some of the
biochemical constants entering into the factor defined by
(38).

In the context of the study by Bruning et al. [1] as
part of pilot work, cells were also stimulated by 0.1 ng/mL
TNF𝛼 (rather than 1 ng/mL TNF𝛼) under both normoxia
and hypoxia. Only 3 samples were recorded (rather than 8).
The data was not published in Bruning et al. [1]; however, it
is available to the authors. In order to obtain insights into
the emergence of the synergy effect on the transcription rate
𝐵, we estimated the model parameter 𝐵 for these samples
using the protocol described in Section 3. Table 2 presents the
sample means values reported in Section 3 together with the
sample means values for the additional conditions.

As can be seen from Table 2, when comparing the
0 ng/mL and the 0.1 ng/mL TNF𝛼 stimulation conditions, the
transcription rates increased due to stimulation with TNF𝛼
and due to decreasing the oxygen level. However, there was
no dramatic synergy effect. Both in the 0 ng/mL and the
0.1 ng/mLTNF𝛼 stimulation conditions, lowering the oxygen
level increased the activity by about 0.20 units. In contrast,
when comparing the 0.1 ng/mL and the 1.0 ng/mL TNF𝛼
stimulation conditions, the lowering of the oxygen level
increased the activity by about 0.20 units for the 0.1 ng/mL
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Table 2: Sample means of estimated drift parameters (transcription
rates) 𝐵 under various experimental conditions. SDs in brackets
are SDs from actual sample sizes (i.e., SDs calculated before mean
substitution of missing data). Data presented in arbitrary units
(relative light units per hour).

Normoxia
21% oxygen

Hypoxia
1% oxygen

0 ng/mL TNF𝛼 0.11 (0.05) 0.30 (0.05)
0.1 ng/mL TNF𝛼 0.27 (0.01) 0.45 (0.14)
1.0 ng/mL TNF𝛼 0.30 (0.13) 0.87 (0.25)

TNF𝛼 stimulated cells, whereas it increased the activity by
almost 0.50 units for the 1.0 ng/mL TNF𝛼 stimulated cells,
suggesting that the transcriptional activity was synergistically
regulated. That is, Table 2 suggests that the synergy effect
discussed in Section 3 does not emerge at relative low TNF𝛼
doses. It emerges in the range of higher TNF𝛼 doses. We
conducted an overall 2 (normoxia versus hypoxia) by 3
(three TNF𝛼 levels) ANOVA on the drift parameter 𝐵 using
mean substitution of the missing data. The interaction was
significant (𝐹(2, 14) = 11.925, 𝑃 = 0.001) indicating the
presence of a synergy effect, as expected from the results
presented in Section 3. In order to locate the interaction
effect, we conducted two 2-by-2 ANOVA. The first 2-by-
2 ANOVA considered only the 0 ng/mL and the 0.1 ng/mL
TNF𝛼 stimulation conditions. The interaction effect was not
significant. The second 2-by-2 ANOVA considered only the
0.1 ng/mL and the 1.0 ng/mL TNF𝛼 stimulation conditions.
The interaction effect was significant (𝐹(1, 7) = 11.078,
𝑃 < 0.05). These outcomes of the hypothesis testing
procedure support our hypothesis. However, since we used
mean substitution of missing data, future work is needed to
verify this result.

Although in the application only a single transcription
factor is explicitly mentioned, the modeling approach pre-
sented in Section 2 can be applied to transcriptional activity
regulated by several transcription factors. To this end, the
transcriptional activity parameter 𝑟 is considered as a func-
tion of the transcription factor concentrations. Explicit mod-
els, for example, using a thermostatistical approach have been
proposed for that purpose (see [4, 36] and references therein).
Unknown parameters of such thermostatistical models or
functional dependencies between 𝑟 and transcription factor
concentrations can be estimated when 𝐵 (in replacement for
𝑟) is estimated for dose responses of the set of transcription
factors of interest.
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[5] C. V. Harper, B. Finkenstädt, D. J. Woodcock et al., “Dynamic
analysis of stochastic transcription cycles,” PLoS Biology, vol. 9,
no. 4, Article ID e1000607, 2011.

[6] P. J. Ingram, M. P. H. Stumpf, and J. Stark, “Network motifs:
structure does not determine function,” BMC Genomics, vol. 7,
article 108, 2006.

[7] J. Alam and J. L. Cook, “Reporter genes: application to the study
ofmammalian gene transcription,”Analytical Biochemistry, vol.
188, no. 2, pp. 245–254, 1990.

[8] A. J. Millar, S. R. Short, N.-H. Chua, and S. A. Kay, “A novel
circadian phenotype based on firefly luciferase expression in
transgenic plants,” Plant Cell, vol. 4, no. 9, pp. 1075–1087, 1992.

[9] J. F. Schmedtje Jr., Y.-S. Ji, W.-L. Liu, R. N. DuBois, and M.
S. Runge, “Hypoxia induces cyclooxygenase-2 via the NF-𝜅B
p65 transcription factor in human vascular endothelial cells,”
Journal of Biological Chemistry, vol. 272, no. 1, pp. 601–608, 1997.

[10] A. J. Millar, I. A. Carre, C. A. Strayer, N.-H. Chua, and S. A. Kay,
“Circadian clockmutants inArabidopsis identified by luciferase
imaging,” Science, vol. 267, no. 5201, pp. 1161–1163, 1995.

[11] T. Nakakuki, M. R. Birtwistle, Y. Saeki et al., “Ligand-specific c-
fos expression emerges from the spatiotemporal control of ErbB
network dynamics,” Cell, vol. 141, no. 5, pp. 884–896, 2010.

[12] S. Kuttykrishnan, J. Sabina, L. L. Langton, M. Johnston, and M.
R. Brent, “A quantitative model of glucose signaling in yeast
reveals an incoherent feed forward loop leading to a specific,
transient pulse of transcription,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 107, no.
38, pp. 16743–16748, 2010.

[13] E. Maltepe and O. D. Saugstad, “Oxygen in health and disease:
regulation of oxygen homeostasis-clinical implications,” Pedi-
atric Research, vol. 65, no. 3, pp. 261–268, 2009.

[14] G. L. Semenza, “Mechanisms of disease: oxygen sensing, home-
ostasis, and disease,”The New England Journal of Medicine, vol.
365, no. 6, pp. 537–547, 2011.

[15] R.H.Wenger, “Mammalian oxygen sensing, signalling and gene
regulation,” Journal of Experimental Biology, vol. 203, no. 8, pp.
1253–1263, 2000.

[16] G. L. Semenza, “Hypoxia-inducible factors in physiology and
medicine,” Cell, vol. 148, no. 3, pp. 399–408, 2012.

[17] J. Pouysségur, F. Dayan, and N. M.Mazure, “Hypoxia signalling
in cancer and approaches to enforce tumour regression,”Nature,
vol. 441, no. 7092, pp. 437–443, 2006.

[18] R. Deulofeut, A. Critz, I. Adams-Chapman, andA. Sola, “Avoid-
ing hyperoxia in infants ≤1250g is associated with improved
short- and long-termoutcomes,” Journal of Perinatology, vol. 26,
no. 11, pp. 700–705, 2006.

[19] O. D. Saugstad, “Optimal oxygenation at birth and in the
neonatal period,” Neonatology, vol. 91, no. 4, pp. 319–322, 2007.



ISRN Computational Biology 11

[20] H. K. Eltzschig and P. Carmeliet, “Hypoxia and inflammation,”
The New England Journal of Medicine, vol. 364, no. 7, pp. 656–
665, 2011.

[21] L. K. Nguyen, M. A. S. Cavadas, C. C. Scholz et al., “A
dynamicmodel of hypoxia-induced factor 1-alpha (HIF-1alpha)
network,” Journal of Cell Sciences, vol. 126, pp. 1454–1463, 2013.

[22] C. Culver, A. Sundqvist, S. Mudie, A. Melvin, D. Xirodimas,
and S. Rocha, “Mechanism of hypoxia-induced NF-kappaB,”
Molecular and Cellular Biology, vol. 30, no. 20, pp. 4901–4921,
2010.

[23] E. P. Cummins, E. Berra, K. M. Comerford et al., “Pro-
lyl hydroxylase-1 negatively regulates I𝜅B kinase-𝛽, giving
insight into hypoxia-induced NF𝜅B activity,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 103, no. 48, pp. 18154–18159, 2006.

[24] S. F. Fitzpatrick, M. M. Tambuwala, U. Bruning et al., “An intact
canonical NF-𝜅B pathway is required for inflammatory gene
expression in response to hypoxia,” Journal of Immunology, vol.
186, no. 2, pp. 1091–1096, 2011.

[25] A. C. Koong, E. Y. Chen, and A. J. Giaccia, “Hypoxia causes the
activation of nuclear factor 𝜅B through the phosphorylation of
I𝜅B𝛼 on tyrosine residues,” Cancer Research, vol. 54, no. 6, pp.
1425–1430, 1994.

[26] H. Li, J. Alyce Bradbury, R. T. Dackor et al., “Cyclooxygenase-2
regulates Th17 cell differentiation during allergic lung inflam-
mation,” American Journal of Respiratory and Critical Care
Medicine, vol. 184, no. 1, pp. 37–49, 2011.

[27] K. A. Ryall, D. O. Holland, K. A. Delaney, M. J. Kraeutler, A.
J. Parker, and J. J. Saucerman, “Network reconstruction and
systems analysis of cardiac myocyte hypertrophy signaling,”
Journal of Biological Chemistry, vol. 287, pp. 42259–42268, 2012.

[28] H. Risken, The Fokker-Planck Equation: Methods of Solutions
and Applications, Springer, Berlin, Germany, 1989.

[29] H. Haken, Advanced Synergetics, Springer, Berlin, Germany,
1987.
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