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This paper considers the nonlinear boundary value problem (BVP) for the electrohydrodynamic flow of a fluid in an ion drag
configuration in a circular cylindrical conduit. The velocity field was solved using the new homotopy perturbation method
(NHPM), considering the electrical field and strength of the nonlinearity. The approximate analytical procedure depends only
on two components and polynomial initial condition. The analytical solution is obtained and the numerical results presented
graphically. The effects of the Hartmann electric number Ha and the strength of nonlinearity α are discussed and presented
graphically. We also compare this method with numerical solution (N.S) and show that the present approach is less computational
and is applicable for solving nonlinear boundary value problem (BVP).

1. Introduction

The electrohydrodynamic flow of a fluid in an “ion drag”
configuration in a circular cylindrical conduit is governed
by a nonlinear second-order ordinary differential equation
[1–3]

d2w(r)
dr2

+
1
r

dw(r)
dr

+Ha2
(

1− w(r)
1− αw(r)

)
= 0, 0 < r < 1

(1)

subject to the boundary conditions

w′(0) = 0, w(1) = 0, (2)

where w(r) is the fluid velocity, r is the radial distance from
the center of the cylindrical conduit, Ha is the Hartmann
electric number, and the parameter α is a measure of the
strength of the nonlinearity. In [1] McKee and his colleagues
developed perturbation solutions in terms of the parameter
α governing a nonlinear problem. McKee and his coworkers

used a Gauss-Newton finite-difference solver combined with
the continuation method and Runge-Kutta shooting method
to provide numerical results for the fluid velocity over a
large range of values of α. This was done for both large
and small values of α. Paullet [2] proved the existence and
uniqueness of a solution of BVP of electrohydrodynamic flow
and in addition, discovered an error in the perturbative and
numerical solutions given in [1] for large values of α. Very
recently Mastroberardino [3] presented the approximate
solution by homotopy analysis method (HAM) for the
nonlinear BVP governed by electrohydrodynamic flow of a
fluid in a circular cylindrical conduit.

In the present paper, we introduce a new computational
method, namely, new homotopy perturbation method [4–6]
for solving electrohydrodynamic flow of a fluid in a circular
cylindrical conduit. It is interesting to note that the efficiency
of the approach depends only on two components of the
homotopy series. The method is an improvement of classical
homotopy perturbation method [7–12]. In contrast to the
HAM and HPM, in this method, it is not required to solve the
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Figure 1: Comparison of NHPM solution (solid line) and numeri-
cal solution r versus w (a) α = 1, (b) α = 0.5.

functional equations in each iteration. Unlike the Adomian
decomposition method (ADM) [13], the NHPM is free from
the need to use Adomian polynomials.

2. Analysis of the Method

Let us consider the nonlinear differential equation

A(u) = f (z), z ∈ Ω, (3)

where A is an operator, f is a known function, and u is a
sought function. Assume that operator A can be written as

A(u) = L(u) + N (u), (4)

where L is the linear operator and N is the nonlinear
operator. Hence, (3) can be rewritten as follows:

L(u) + N (u) = f (z), z ∈ Ω. (5)

We define an operator H as

H
(
v; p

) ≡ (1− p
)
(L(v)−L(u0)) + p

(
A(v)− f

)
, (6)

where p ∈ [0, 1] is an embedding or homotopy parameter,
v(z; p) : Ω × [0, 1] → �, and u0 is an initial approximation
of solution of the problem in (3). Equation (6) can be written
as

H
(
v; p

) ≡ L(v)−L(u0) + pL(u0) + p
(
N (v)− f (z)

) = 0.
(7)

We assume that the solution of equation H(v, p) can be
written as a power series in embedding parameter p, as
follows:

v = v0 + pv1. (8)

Now, let us write (7) in the following form:

L(v) = u0(z) + p
(
f (z)−N (v)− u0(z)

)
. (9)

By applying the inverse operator, L−1 to both sides of (9), we
have

v = L−1u0(z) + p
(
L−1 f (z)−L−1N (v)−L−1u0(z)

)
.
(10)

Suppose that the initial approximation of (3) has the form

u0(z) =
∞∑
n=0

anPn(z), (11)

where an, n = 0, 1, 2, . . . are unknown coefficients and
Pn(z), n = 0, 1, 2, . . . are specific functions on the problem.
By substituting (8) and (11) into (10), we get

v0 + v1p = L−1

⎛
⎝ ∞∑
n=0

anPn(z)

⎞
⎠

+ p

⎛
⎝ L−1 f (z)−L−1N

(
v0 + pv1

)

−L−1

⎛
⎝ ∞∑
n=0

anPn(z)

⎞
⎠
⎞
⎠.

(12)

Equating the coefficients of like powers of p, we get following
set of equations:

Coefficient of p0 : v0 = L−1

⎛
⎝ ∞∑
n=0

anPn(z)

⎞
⎠,

Coefficient of p1 : v1 = L−1( f (z)
)−L−1

⎛
⎝ ∞∑
n=0

anPn(z)

⎞
⎠

−L−1N (v0).
(13)

Now, we solve these equations in such a way that v1(z) = 0.
Therefore, the approximate solution may be obtained as

u(z) = v0(z) = L−1

⎛
⎝ ∞∑
n=0

anPn(z)

⎞
⎠. (14)
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Figure 2: Error curves for α = 0.5 (a) Ha = 0.5 (b) Ha = 1 (c)
Ha = 2 (d) Ha = 4.

3. Analytical Solution

To obtain the solution of (1) by NHPM, we construct the
following homotopy:

(
1− p

)(d2W(r)
dr2

−W0(r)

)

+ p

(
d2W(r)
dr2

+
1
r

dW(r)
dr

− αW(r)

(
d2W(r)
dr2

+
1
r

dW(r)
dr

)

+Ha2(1− (1 + α)W(r))

)
= 0.

(15)

Applying the inverse operator, L−1(•) = ∫ r0
∫ ξ

0 (•)dηdξ to the
both sides of (15), we obtain

W(r) =W(0) + rW ′(0) +
∫ r

0

∫ ξ

0
w0
(
η
)
dηdξ

− p
∫ r

0

∫ ξ

0

(
w0
(
η
)− 1

r

dW(r)
dr

+ αW(r)

(
d2W(r)
dr2

+
1
r

dW(r)
dr

)

−Ha2
(

1− (1 + α)W(r)
))

dηdξ.

(16)

The solution of (16) to have the following form:

W(r) =W0(r) + pW1(r). (17)

Substituting (17) in (16) and equating the coefficients of like
powers of p, we get following set of equations:

W0(r) =W(0) + rW ′(0) +
∫ r

0

∫ ξ

0
w0
(
η
)
dηdξ (18)

W1(r) =
∫ r

0

∫ ξ

0

(
−w0

(
η
)

+

(
1
r

dW0(r)
dr

− αW0(r)

×
(
d2W0(r)

dr2
+

1
r

dW0(r)
dr

)))
dηdξ

+
∫ r

0

∫ ξ

0

(
Ha2(1− (1 + α)W0(r))

)
dηdξ.

(19)

Assuming w0(r) = ∑7
n=0 anPn, Pk = rk, a = W(0), solving

the above equation for W1(r) leads to the result

W1(r) =
(
−a0 − 3a

2
− a0 +

2aa1

2

)
r2

+
(
−a1

4
+
aa1

8

)
r4 + · · ·.

(20)
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Figure 3: Error curves for α = 1 (a) Ha = 0.5 (b) Ha = 1 (c) Ha = 2 (d) Ha = 4.

With vanishing W1(r), we have the following values for
coefficients ai, i = 0, 1, . . . , 7

a0 = −Ha2(−1 + a + αa)
2(−1 + αa)

,

a1 = −2Ha4(−1 + a + αa)

16(−1 + αa)4 , . . . .
(21)

Therefore, we obtain the solutions of (1) as

w(r) = a +
Ha2(−1 + a + αa)

4(1− αa)
r2

−Ha4(−1 + a + αa)

64(−1 + αa)3 r4 + · · · .
(22)

4. Numerical Results and Concluding Remarks

In this paper we have studied electrohydrodynamic flow of
a fluid in an ion drag configuration in a circular cylindrical
conduit by using two-component homotopy perturbation
method. Figures 1(a) and 1(b) and Table 1 clearly show
that the results by NHPM are in good agreement with the
results of numerical solution (N.S). The main interest in

this section is to investigate the effects of Hartmann electric
number Ha and the strength of nonlinearity α on the
velocity emerging in the electrohydrodynamics flows. For all
of the cases considered, the maximum difference between
the analytical solution and the numerical solution was
determined to be less than 10−3 as shown in Figures 2 and 3.
Unlike the Adomian decomposition method (ADM), the
NHPM is free from the need to use Adomian polynomials.
In this method we do not need the Lagrange multiplier,
correction functional, stationary conditions, and calculating
integrals, which eliminate the complications that exist in
the variational iteration method VIM. In contrast to the
HPM and HAM, in this method, it is not required to solve
the functional equations in each iteration. The efficiency
of HAM is very much depending on choosing auxiliary
parameter �.

It has been noted that the nonlinearity confronted in
this problem is in the form of a rational function and, thus,
poses a significant challenge in regard to obtaining analytical
solutions. Despite this fact, we have shown that the solutions
obtained are convergent and that they compare extremely
well with numerical solutions (N.S). It is interesting to note
that NHPM yields convergent solutions for all of the cases
considered. However, HPM yields divergent solutions for
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Table 1

α 0.5 0.5 0.5 0.5 1 1 1 1

Ha2 0.5 1 2 4 0.5 1 2 4

a N.S 0.1137 0.2070 0.3447 0.4975 0.1132 0.2034 0.3254 0.4123

a NHPM 0.1132 0.2034 0.3447 0.4975 0.1132 0.2034 0.3252 0.4297

all of the cases considered. The NHPM improves the per-
formance of standard HPM. It was shown that NHPM
requires less computational work and less consuming time
when compared with the standard HPM.
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