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The notion of asymptotically regularmapping in partial metric spaces is introduced, and a fixed point result for themappings of this
class is proved. Examples show that there are cases when new results can be applied, while old ones (in metric space) cannot. Some
common fixed point theorems for sequence of mappings in partial metric spaces are also proved which generalize and improve
some known results in partial metric spaces.

1. Introduction

Matthews [1] introduced partial metric spaces as a part of
the study of denotational semantics of data flow networks.
In partial metric space, the usual metric was replaced by
partial metric, with a property that the self-distance of any
point may not be zero. In fact, it is widely recognized that
partial metric spaces play an important role in constructing
models in the theory of computation. Partial metric has
applications in the branches of science where the size of data
point is represented by its self-distance. The fixed point of a
contraction mapping in partial metric space has zero self-
distance; that is, fixed point is a total object. Every metric
space is a partial metric space with zero self-distance that
is, partial metric spaces are the generalization of metric
spaces.

O’Neill [2] generalized the concept of partial metric space
a bit further by admitting negative distances. The partial
metric defined by O’Neill is called dualistic partial metric.
Heckmann [3] generalized it by omitting small self-distance
axiom. The partial metric defined by Heckmann is called
weak partial metric.

Banach contraction principle ensures the existence and
uniqueness of a fixed point of a contractive self-map ofmetric
space andhasmany applications in applied sciences.Thefixed
point result ofMatthews is the generalization of the following
Banach contraction principle.

Let (𝑋, 𝑑) be a complete metric space and let 𝑓 be a self-
map on 𝑋. If there exists 𝜆 ∈ [0, 1) such that 𝑑(𝑓𝑥, f𝑦) ≤

𝜆𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, then 𝑓 has a unique fixed point in
𝑋.

The fixed point result of Matthews is generalized by
several authors for single self map in partial metric spaces
(see, e.g., [4–6]). Almost all contractive conditions in these
papers imply the asymptotic regularity of the mapping under
consideration.

The purpose of this paper is to prove some common fixed
point theorems for a sequence of self maps on partial metric
spaces and generalize the result of Matthews. The notion of
asymptotically regular mapping in partial metric spaces is
introduced and a fixed point result for the mappings of this
class is also proved.
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2. Definitions and Preliminaries

First, we recall some definitions and properties of partial
metric spaces.

Definition 1 (see [1]). A partial metric on a nonempty set 𝑋
is a function 𝑝 : 𝑋 × 𝑋 → R+ (R+ stands for nonnegative
reals) such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

(p1) 𝑥 = 𝑦 ⇔ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦),
(p2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦),
(p3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥),
(p4) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

A partial metric space is a pair (𝑋, 𝑝) such that 𝑋 is a
nonempty set and 𝑝 is a partial metric on𝑋.

It is clear that if 𝑝(𝑥, 𝑦) = 0, then from (p1) and (p2),
𝑥 = 𝑦. But if 𝑥 = 𝑦, 𝑝(𝑥, 𝑦)may not be 0.

Example 2. Let 𝑝 : R+ × R+ → R+ be defined by 𝑝(𝑥, 𝑦) =
max{𝑥, 𝑦}, for all 𝑥, 𝑦 ∈ R+, and then (R+, 𝑝) is a partial
metric space.

Each partial metric on𝑋 generates a 𝑇
0
topology 𝜏

𝑝
on𝑋

which has a base the family of open 𝑝-balls {𝐵
𝑝
(𝑥, 𝜖) : 𝑥 ∈

𝑋, 𝜖 > 0}, where 𝐵
𝑝
(𝑥, 𝜖) = {𝑦 ∈ 𝑋 : 𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑥) + 𝜖}

for every 𝑥 ∈ 𝑋 and 𝜖 > 0.

Theorem 3 (see [1]). For each partial metric 𝑝: 𝑋×𝑋 → R+

the pair (𝑋, 𝑑), where 𝑑(𝑥, 𝑦) = 2𝑝(𝑥, 𝑦) − 𝑝(𝑥, 𝑥) − 𝑝(𝑦, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋 is a metric space.

Here, (𝑋, 𝑑) is called inducedmetric space, and𝑑 ismetric
induced by 𝑝.

Throughout this paper, we suppose that (𝑋, 𝑝) is induced
metric space and 𝑑 is metric induced by 𝑝.

Let (𝑋, 𝑝) be partial metric space. Then,

(1) a sequence {𝑥
𝑛
} in (𝑋, 𝑝) converges to a point 𝑥 ∈ 𝑋

if and only if 𝑝(𝑥, 𝑥) = lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑥),

(2) a sequence {𝑥
𝑛
} in (𝑋, 𝑝) is called Cauchy sequence if

there exists lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) and is finite,

(3) (𝑋, 𝑝) is said to be complete if every Cauchy sequence
{𝑥
𝑛
} in𝑋 converges, with respect to 𝜏

𝑝
, to a point 𝑥 ∈

𝑋 such that 𝑝(𝑥, 𝑥) = lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

Lemma 4 (see [1, 7]). Let (𝑋, 𝑝) be partial metric space, and
then

(a) {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑝) if and only if it is a

Cauchy sequence in metric space (𝑋, 𝑑).
(b) (𝑋, 𝑝) is complete if and only if the metric space (𝑋, 𝑑)

is complete. Furthermore, lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 0 if and

only if

𝑝 (𝑥, 𝑥) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥) = lim

𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) . (1)

Definition 5. A self map 𝑓 on a partial metric space (𝑋, 𝑝) is
said to be asymptotically regular at a point 𝑥 in𝑋, if

lim
𝑛→∞

𝑝 (𝑓
𝑛

𝑥, 𝑓
𝑛+1

𝑥) = 0, (2)

where 𝑓𝑛 denotes the 𝑛th iterate of 𝑓 at 𝑥.

Note that Banach type contractions, generalized contrac-
tions, and so forth are asymptotically regular at every point
of space.

Example 6. Let 𝑝 : R+ × R+ → R+ be defined by 𝑝(𝑥, 𝑦) =
max{𝑥, 𝑦}, for all 𝑥, 𝑦 ∈ R+, and then (R+, 𝑝) is a partial
metric space. The mapping 𝑓 : 𝑋 → 𝑋 is defined by
𝑓𝑥 = 𝑥/2, for every 𝑥 ∈ R+. Then 𝑓 is asymptotically regular
at every point of R+.

3. Fixed Point Theorems

First, we prove the fixed point result for asymptotically
regular mappings.

Theorem 7. Let (𝑋, 𝑝) be a complete partial metric space and
let 𝑓 be a self map on𝑋, satisfying the following condition:

𝑝 (𝑓𝑥, 𝑓𝑦)

≤ 𝑎
1
𝜙 [min {𝑝 (𝑥, 𝑓𝑥) , 𝑝 (𝑦, 𝑓𝑦)}]

+ 𝑎
2
𝜓 [𝑝 (𝑥, 𝑓𝑥) ⋅ 𝑝 (𝑦, 𝑓𝑦)] + 𝑎

3
𝑝 (𝑥, 𝑦)

+ 𝑎
4
[𝑝 (𝑥, 𝑓𝑥) + 𝑝 (𝑦, 𝑓𝑦)]

+ 𝑎
5
[𝑝 (𝑥, 𝑓𝑦) + 𝑝 (𝑦, 𝑓𝑥)]

(3)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑎
𝑖
= 𝑎
𝑖
(𝑥, 𝑦) (𝑖 = 1, 2, 3, 4, 5) are

nonnegative functions such that for arbitrarily fixed 𝑘 > 0, 0 <

𝜆 < 1 and for all 𝑥, 𝑦 ∈ 𝑋

𝑎
1
(𝑥, 𝑦) , 𝑎

2
(𝑥, 𝑦) ≤ 𝑘, (4)

𝑎
3
(𝑥, 𝑦) + 𝑎

4
(𝑥, 𝑦) + 2𝑎

5
(𝑥, 𝑦) ≤ 𝜆, (5)

where 𝜙, 𝜓 : R+ → R+ are functions such that 𝜙(0) = 𝜓(0) =

0 and 𝜙, 𝜓 are continuous at 0. If 𝑓 is asymptotically regular at
some 𝑥

0
∈ 𝑋, and then 𝑓 has a unique fixed point 𝑢 in𝑋 with

𝑝(𝑢, 𝑢) = 0.

Proof. Let 𝑥
𝑛+1

= 𝑓𝑥
𝑛
for every 𝑛 ≥ 0. If there exists 𝑛 such

that 𝑥
𝑛
= 𝑥
𝑛+1

, then 𝑥
𝑛
is a fixed point of 𝑓. Suppose that

𝑥
𝑛+1

̸= 𝑥
𝑛
for every 𝑛 ≥ 0. We show that {𝑥

𝑛
} is a Cauchy

sequence.
Let 𝑚 > 𝑛 denote 𝑝

𝑛
= 𝑝(𝑥

𝑛+1
, 𝑥
𝑛
) and then from (3) we

obtain
𝑝 (𝑥
𝑛
, 𝑥
𝑚
)

≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+1

, 𝑥
𝑚+1

)

+ 𝑝 (𝑥
𝑚+1

, 𝑥
𝑚
) − 𝑝 (𝑥

𝑛+1
, 𝑥
𝑛+1

) − 𝑝 (𝑥
𝑚+1

, 𝑥
𝑚+1

)

≤ 𝑝
𝑛
+ 𝑝
𝑚
+ 𝑝 (𝑓𝑥

𝑛
, 𝑓𝑥
𝑚
) .

(6)
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Using (3), we obtain

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝑝
𝑛
+ 𝑝
𝑚
+ 𝑎
1
𝜙 [min {𝑝

𝑛
, 𝑝
𝑚
}] + 𝑎

2
𝜓 [𝑝
𝑛
⋅ 𝑝
𝑚
]

+ 𝑎
3
𝑝 (𝑥
𝑛
, 𝑥
𝑚
) + 𝑎
4
[𝑝
𝑛
+ 𝑝
𝑚
]

+ 𝑎
5
[𝑝 (𝑥
𝑛
, 𝑥
𝑚+1

) + 𝑝 (𝑥
𝑚
, 𝑥
𝑛+1

)] ,

(7)

where 𝑎
𝑖
= 𝑎
𝑖
(𝑥
𝑛
, 𝑥
𝑚
). As

𝑝 (𝑥
𝑛
, 𝑥
𝑚+1

) + 𝑝 (𝑥
𝑚
, 𝑥
𝑛+1

)

≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑚
) + 𝑝
𝑚
− 𝑝 (𝑥

𝑚
, 𝑥
𝑚
) + 𝑝 (𝑥

𝑚
, 𝑥
𝑛
)

+ 𝑝
𝑛
− 𝑝 (𝑥

𝑛
, 𝑥
𝑛
)

≤ 2𝑝 (𝑥
𝑛
, 𝑥
𝑚
) + 𝑝
𝑛
+ 𝑝
𝑚
.

(8)

Therefore from (7), it follows that

𝑝 (𝑥
𝑛
, 𝑥
𝑚
)

≤ 𝑝
𝑛
+ 𝑝
𝑚
+ 𝑎
1
𝜙 [min {𝑝

𝑛
, 𝑝
𝑚
}] + 𝑎

2
𝜓 [𝑝
𝑛
⋅ 𝑝
𝑚
]

+ 𝑎
3
𝑝 (𝑥
𝑛
, 𝑥
𝑚
) + 𝑎
4
[𝑝
𝑛
+ 𝑝
𝑚
]

+ 𝑎
5
[2𝑝 (𝑥

𝑛
, 𝑥
𝑚
) + p
𝑛
+ 𝑝
𝑚
]

= (1 + 𝑎
4
+ 𝑎
5
) (𝑝
𝑛
+ 𝑝
𝑚
) + (𝑎

3
+ 2𝑎
5
) 𝑝 (𝑥

𝑛
, 𝑥
𝑚
)

+ 𝑎
1
𝜙 [min {𝑝

𝑛
, 𝑝
𝑚
}] + 𝑎

2
𝜓 [𝑝
𝑛
⋅ 𝑝
𝑚
] .

(9)

Using (4) and (5), we obtain

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) ≤ (1 + 𝜆) (𝑝

𝑛
+ 𝑝
𝑚
) + 𝜆𝑝 (𝑥

𝑛
, 𝑥
𝑚
)

+ 𝑘𝜙 [min {𝑝
𝑛
, 𝑝
𝑚
}] + 𝑘𝜓 [𝑝

𝑛
⋅ 𝑝
𝑚
]

(1 − 𝜆) 𝑝 (𝑥
𝑛
, 𝑥
𝑚
) ≤ (1 + 𝜆) (𝑝

𝑛
+ 𝑝
𝑚
)

+ 𝑘𝜙 [min {𝑝
𝑛
, 𝑝
𝑚
}] + 𝑘𝜓 [𝑝

𝑛
⋅ 𝑝
𝑚
] .

(10)

Since 𝑓 is asymptotically regular at 𝑥
0
and 𝜙 and 𝜓 are

continuous at zero, therefore from the above inequality we
obtain

lim
𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (11)

Hence, {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑝), and by Lemma 4,

it is aCauchy sequence in (𝑋, 𝑑). Using completeness of (𝑋, 𝑝)
and Lemma 4, it follows that (𝑋, 𝑑) is complete and {𝑥

𝑛
}

converges in (𝑋, 𝑑). Thus, lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑢) = 0 for some

𝑢 ∈ 𝑋.
Again, from Lemma 4, and (11), we have

𝑝 (𝑢, 𝑢) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑢) = lim

𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (12)

To prove that 𝑓𝑢 = 𝑢, let us consider the following inequali-
ties:

𝑝 (𝑢, 𝑓𝑢) ≤ 𝑝 (𝑢, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+1

, 𝑓𝑢) − 𝑝 (𝑥
𝑛+1

, 𝑥
𝑛+1

)

≤ 𝑝 (𝑢, 𝑥
𝑛+1

) + 𝑝 (𝑓𝑥
𝑛
, 𝑓𝑢) ,

𝑝 (𝑢, 𝑓𝑢) ≤ 𝑝 (𝑢, 𝑥
𝑛+1

) + 𝑎
1
𝜙 [min {𝑝

𝑛
, 𝑝 (𝑢, 𝑓𝑢)}]

+ 𝑎
2
𝜓 [𝑝
𝑛
⋅ 𝑝 (𝑢, 𝑓𝑢)] + 𝑎

3
𝑝 (𝑥
𝑛
, 𝑢)

+ 𝑎
4
[𝑝
𝑛
+ 𝑝 (𝑢, 𝑓𝑢)]

+ 𝑎
5
[𝑝 (𝑥
𝑛
, 𝑓𝑢) + 𝑝 (𝑢, 𝑓𝑥

𝑛
)] ,

(13)

where 𝑎
𝑖
= 𝑎
𝑖
(𝑥
𝑛
, 𝑢). As

𝑝 (𝑥
𝑛
, 𝑓𝑢) + 𝑝 (𝑢, 𝑓𝑥

𝑛
)

≤ 𝑝 (𝑥
𝑛
, 𝑢) + 𝑝 (𝑢, 𝑓𝑢) − 𝑝 (𝑢, 𝑢) + 𝑝 (𝑢, 𝑥

𝑛+1
)

= 𝑝 (𝑥
𝑛
, 𝑢) + 𝑝 (𝑢, 𝑓𝑢) + 𝑝 (𝑢, 𝑥

𝑛+1
) .

(14)

Therefore, (13) gives

𝑝 (𝑢, 𝑓𝑢)

≤ (1 + 𝑎
5
) 𝑝 (𝑢, 𝑥

𝑛+1
) + (𝑎

3
+ 𝑎
5
) 𝑝 (𝑥

𝑛
, 𝑢) + 𝑎

4
𝑝
𝑛

+ (𝑎
4
+ 𝑎
5
) 𝑝 (𝑢, 𝑓𝑢) + 𝑎

1
𝜙 [min {𝑝

𝑛
, 𝑝 (𝑢, 𝑓𝑢)}]

+ 𝑎
2
𝜓 [𝑝
𝑛
⋅ 𝑝 (𝑢, 𝑓𝑢)] .

(15)

Using (4) and (5), we obtain

𝑝 (𝑢, 𝑓𝑢) ≤ (1 + 𝜆) 𝑝 (𝑢, 𝑥
𝑛+1

) + 𝜆𝑝 (𝑥
𝑛
, 𝑢)

+ 𝜆𝑝
𝑛
+ 𝜆𝑝 (𝑢, 𝑓𝑢)

+ 𝑘𝜙 [min {𝑝
𝑛
, 𝑝 (𝑢, 𝑓𝑢)}] + 𝑘𝜓 [𝑝

𝑛
⋅ 𝑝 (𝑢, 𝑓𝑢)] .

(16)

From (12) and the above inequality, it follows that
𝑝 (𝑢, 𝑓𝑢) ≤ 𝜆𝑝 (𝑢, 𝑓𝑢) < 𝑝 (𝑢, 𝑓𝑢) . (17)

This contradiction shows that 𝑝(𝑢, 𝑓𝑢) = 0, that is, 𝑓𝑢 = 𝑢.
Thus, 𝑢 is a fixed point of 𝑓.

Let V be another fixed point of 𝑓 and 𝑝(𝑢, V) > 0. From
(3), we obtain

𝑝 (𝑢, V) = 𝑝 (𝑓𝑢, 𝑓V)

≤ 𝑎
1
𝜙 [min {𝑝 (𝑢, 𝑓𝑢) , 𝑝 (V, 𝑓V)}]

+ 𝑎
2
𝜓 [𝑝 (𝑢, 𝑓𝑢) ⋅ 𝑝 (V, 𝑓V)] + 𝑎

3
𝑝 (𝑢, V)

+ 𝑎
4
[𝑝 (𝑢, 𝑓𝑢) + 𝑝 (V, 𝑓V)]

+ 𝑎
5
[𝑝 (𝑢, 𝑓V) + 𝑝 (V, 𝑓𝑢)]

= 𝑎
1
𝜙 [min {𝑝 (𝑢, 𝑢) , 𝑝 (V, V)}]

+ 𝑎
2
𝜓 [𝑝 (𝑢, 𝑢) ⋅ 𝑝 (V, V)] + 𝑎

3
𝑝 (𝑢, V)

+ 𝑎
4
[𝑝 (𝑢, 𝑢) + 𝑝 (V, V)] + 𝑎

5
[𝑝 (𝑢, V) + 𝑝 (V, 𝑢)]

= 𝑎
1
𝜙 [0] + 𝑎

2
𝜙 [0] + 𝑎

3
𝑝 (𝑢, V)

+ 𝑎
4
𝑝 (V, V) + 𝑎

5
[𝑝 (𝑢, V) + 𝑝 (V, 𝑢)]

≤ (𝑎
3
+ 𝑎
4
+ 2𝑎
5
) 𝑝 (𝑢, V) ,

(18)
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where 𝑎
𝑖
= 𝑎
𝑖
(𝑢, V). The above inequality with (5) gives

𝑝 (𝑢, V) ≤ 𝜆𝑝 (𝑢, V) < 𝑝 (𝑢, V) . (19)

This contradiction proves uniqueness.

Taking 𝑎
1
(𝑥, 𝑦) = 𝑎

2
(𝑥, 𝑦) = 1/(1+𝑝(𝑥, 𝑦)),𝜙(𝑡) = 𝜓(𝑡) =

𝛼 ⋅ 𝑡, 0 < 𝛼 < 1, 𝑎
3
(𝑥, 𝑦) = 𝛽, 𝑎

4
(𝑥, 𝑦) = 𝑎

5
(𝑥, 𝑦) = 0 in the

above theorem, we obtain following corollary.

Corollary 8. Let (𝑋, 𝑝) be a complete partial metric space and
let 𝑓 be a self map on𝑋, satisfying the following condition:

𝑝 (𝑓𝑥, 𝑓𝑦)

≤ 𝛼
min {𝑝 (𝑥, 𝑓𝑥) , 𝑝 (𝑦, 𝑓𝑦)} + 𝑝 (𝑥, 𝑓𝑥) ⋅ 𝑝 (𝑦, 𝑓𝑦)

1 + 𝑝 (𝑥, 𝑦)

+ 𝛽𝑝 (𝑥, 𝑦)

(20)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛽 are nonnegative reals, such that
𝛼 < 1, 𝛽 < 1. If 𝑓 is asymptotically regular at some 𝑥

0
∈ 𝑋,

then 𝑓 has a unique fixed point 𝑢 in𝑋 with 𝑝(𝑢, 𝑢) = 0.

Again taking 𝑎
1
(𝑥, 𝑦) = 𝑎

2
(𝑥, 𝑦) = 0 and 𝑎

3
(𝑥, 𝑦) =

𝛼, 𝑎
4
(𝑥, 𝑦) = 𝛽, 𝑎

5
(𝑥, 𝑦) = 𝛾 in Theorem 7, we obtain

following corollary.

Corollary 9. Let (𝑋, 𝑝) be a complete partial metric space and
𝑓 be a self map on𝑋, satisfying following condition:

𝑝 (𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝑝 (𝑥, 𝑦) + 𝛽 [𝑝 (𝑥, 𝑓𝑥) + 𝑝 (𝑦, 𝑓𝑦)]

+ 𝛾 [𝑝 (𝑥, 𝑓𝑦) + 𝑝 (𝑦, 𝑓𝑥)]
(21)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛽, 𝛾 are nonnegative reals, such that
𝛼 + 𝛽 + 2𝛾 < 1. If 𝑓 is asymptotically regular at some 𝑥

0
∈ 𝑋,

then 𝑓 has a unique fixed point 𝑢 in𝑋 with 𝑝(𝑢, 𝑢) = 0.

Taking 𝛼 = 𝛾 = 0 in above the corollary, we obtain the
following result.

Corollary 10. Let (𝑋, 𝑝) be a complete partial metric space
and let 𝑓 be a self map on𝑋, satisfying the following condition:

𝑝 (𝑓𝑥, 𝑓𝑦) ≤ 𝛽 [𝑝 (𝑥, 𝑓𝑥) + 𝑝 (𝑦, 𝑓𝑦)] (22)

for all 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝛽 < 1. If 𝑓 is asymptotically regular
at some 𝑥

0
∈ 𝑋, then 𝑓 has a unique fixed point 𝑢 in 𝑋 with

𝑝(𝑢, 𝑢) = 0.

The following example shows that the assumption of
asymptotic regularity in above theorems cannot be dropped.

Example 11. Let 𝑋 = [0, 1], then (𝑋, 𝑝), where 𝑝(𝑥, 𝑦) =

max{𝑥, 𝑦} is a complete partialmetric space.Define a selfmap
𝑓 on𝑋, as follows:

𝑓𝑥 =

{{{

{{{

{

1 if 𝑥 ∈ [0,
1

2
] ;

𝑥

2
if 𝑥 ∈ (

1

2
, 1] .

(23)

Take 𝛽 = 7/10 then 𝑓 satisfies the contractive condition of
Corollary 10, but 𝑓 is not asymptotically regular at any point
of𝑋, and has no fixed point in𝑋.

Results similar to the above corollaries are available in
usual metric spaces (see, e.g., [8]). In the following we
illustrate the existence of self map which satisfies contractive
condition of Corollary 10, in partial metric space but not in
usual metric space.

Example 12. Let 𝑋 = [0, 1], then (𝑋, 𝑝), where 𝑝(𝑥, 𝑦) =

max{𝑥, 𝑦} is a complete partialmetric space.Define a selfmap
𝑓 on𝑋, as follows:

𝑓𝑥 =

{{{

{{{

{

𝑥

2
if 𝑥 ∈ [0,

1

2
) ;

1

4
if 𝑥 ∈ [

1

2
, 1] .

(24)

Note that 𝑓 satisfies all the conditions of Corollary 10, with
𝛽 = 9/10, and has a unique fixed point 𝑢 = 0. But 𝑓 does not
satisfy the contractive condition 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝛽[𝑑(𝑥, 𝑓𝑥) +

𝑑(𝑦, 𝑓𝑦)] for all 𝑥, 𝑦 ∈ 𝑋, in usual metric space (𝑋, 𝑑) with
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| (which is also the induced metric); for
example, if we take𝑥 = 1/2, 𝑦 = 0, then there is no𝛽 such that
0 ≤ 𝛽 < 1 and 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝛽[𝑑(𝑥, 𝑓𝑥) + 𝑑(𝑦, 𝑓𝑦)]. Therefore,
results of usual metric spaces cannot be applied.

Now, we will prove some common fixed point theorems.

Theorem 13. Let (𝑋, 𝑝) be a complete partial metric space and
{𝑓
𝑛
} be a sequence of self maps on 𝑋 satisfying the following.
There exist 𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
∈ [0, 1) with 𝑎

1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
+

𝑎
5
< 1 such that for all 𝑥, 𝑦 ∈ 𝑋

𝑝 (𝑓
𝑖
𝑥, 𝑓
𝑗
𝑦) ≤ 𝑎

1
𝑝 (𝑥, 𝑦) + 𝑎

2
𝑝 (𝑥, 𝑓

𝑖
𝑥) + 𝑎

3
𝑝 (𝑦, 𝑓

𝑗
𝑦)

+ 𝑎
4
𝑝 (𝑦, 𝑓

𝑖
𝑥) + 𝑎

5
𝑝 (𝑥, 𝑓

𝑗
𝑦) .

(25)

Then, all the mappings of sequence {𝑓
𝑛
} have a unique common

fixed point 𝑢 in𝑋 with 𝑝(𝑢, 𝑢) = 0.

Proof. Let 𝑥
0
∈ 𝑋 and 𝑥

𝑛+1
= 𝑓
𝑛+1

𝑥
𝑛
for every 𝑛 ≥ 0. We

show that {𝑥
𝑛
} is a Cauchy sequence.

If there exists 𝑘 ≥ 0, such that 𝑥
𝑘
= 𝑥
𝑘+1

, then from (25)
we obtain
𝑝 (𝑥
𝑘+2

, 𝑥
𝑘+1

)

= 𝑝 (𝑓
𝑘+2

𝑥
𝑘+1

, 𝑓
𝑘+1

𝑥
𝑘
)

≤ 𝑎
1
𝑝 (𝑥
𝑘+1

, 𝑥
𝑘
) + 𝑎
2
𝑝 (𝑥
𝑘+1

, 𝑓
𝑘+2

𝑥
𝑘+1

)

+ 𝑎
3
𝑝 (𝑥
𝑘
, 𝑓
𝑘+1

𝑥
𝑘
) + 𝑎
4
𝑝 (𝑥
𝑘
, 𝑓
𝑘+2

𝑥
𝑘+1

)

+ 𝑎
5
𝑝 (𝑥
𝑘+1

, 𝑓
𝑘+1

𝑥
𝑘
)

= 𝑎
1
𝑝 (𝑥
𝑘+1

, 𝑥
𝑘
) + 𝑎
2
𝑝 (𝑥
𝑘+1

, 𝑥
𝑘+2

) + 𝑎
3
𝑝 (𝑥
𝑘
, 𝑥
𝑘+1

)

+ 𝑎
4
𝑝 (𝑥
𝑘
, 𝑥
𝑘+2

) + 𝑎
5
𝑝 (𝑥
𝑘+1

, 𝑥
𝑘+1

)

= 𝑎
1
𝑝 (𝑥
𝑘+1

, 𝑥
𝑘+1

) + 𝑎
2
𝑝 (𝑥
𝑘+1

, 𝑥
𝑘+2

) + 𝑎
3
𝑝 (𝑥
𝑘+1

, 𝑥
𝑘+1

)

+ 𝑎
4
𝑝 (𝑥
𝑘+1

, 𝑥
𝑘+2

) + 𝑎
5
𝑝 (𝑥
𝑘+1

, 𝑥
𝑘+1

) .

(26)
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As 𝑝(𝑥
𝑘+1

, 𝑥
𝑘+1

) ≤ 𝑝(𝑥
𝑘+2

, 𝑥
𝑘+1

) we have

𝑝 (𝑥
𝑘+2

, 𝑥
𝑘+1

) ≤ (𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5
) 𝑝 (𝑥

𝑘+2
, 𝑥
𝑘+1

) ,

(27)

as 𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5
< 1, it follows that 𝑝(𝑥

𝑘+2
, 𝑥
𝑘+1

) =

0, that is, 𝑥
𝑘+2

= 𝑥
𝑘+1

.
Similarly, it can be seen that 𝑥

𝑘
= 𝑥
𝑘+𝑟

for every 𝑟 > 0.
Thus, {𝑥

𝑛
} is a Cauchy sequence.

Assume that 𝑥
𝑛

̸= 𝑥
𝑛+1

for every 𝑛 ≥ 0. Denote 𝑝
𝑛

=

𝑝(𝑥
𝑛+1

, 𝑥
𝑛
), then from (25) it follows that

𝑝
𝑛
= 𝑝 (𝑓

𝑛+1
𝑥
𝑛
, 𝑓
𝑛
𝑥
𝑛−1

)

≤ 𝑎
1
𝑝 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑎
2
𝑝 (𝑥
𝑛
, 𝑓
𝑛+1

𝑥
𝑛
) + 𝑎
3
𝑝 (𝑥
𝑛−1

, 𝑓
𝑛
𝑥
𝑛−1

)

+ 𝑎
4
𝑝 (𝑥
𝑛−1

, 𝑓
𝑛+1

𝑥
𝑛
) + 𝑎
5
𝑝 (𝑥
𝑛
, 𝑓
𝑛
𝑥
𝑛−1

)

= 𝑎
1
𝑝 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑎
2
𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑎
3
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)

+ 𝑎
4
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛+1

) + 𝑎
5
𝑝 (𝑥
𝑛
, 𝑥
𝑛
)

≤ 𝑎
1
𝑝
𝑛−1

+ 𝑎
2
𝑝
𝑛
+ 𝑎
3
𝑝
𝑛−1

+ 𝑎
4
𝑝
𝑛−1

+ 𝑎
4
𝑝
𝑛
− 𝑎
4
𝑝 (𝑥
𝑛
, 𝑥
𝑛
)

+ 𝑎
5
𝑝 (𝑥
𝑛
, 𝑥
𝑛
)

(28)

and so

(1 − 𝑎
2
− 𝑎
4
) 𝑝
𝑛
≤ (𝑎
1
+ 𝑎
3
+ 𝑎
4
) 𝑝
𝑛−1

+ (𝑎
5
− 𝑎
4
) 𝑝 (𝑥

𝑛
, 𝑥
𝑛
) .

(29)

Using, symmetry of 𝑝, we obtain

(1 − 𝑎
3
− 𝑎
5
) 𝑝
𝑛
≤ (𝑎
1
+ 𝑎
2
+ 𝑎
5
) 𝑝
𝑛−1

+ (𝑎
4
− 𝑎
5
) 𝑝 (𝑥

𝑛
, 𝑥
𝑛
) .

(30)

It follows from (29) and (30) that

(2 − 𝑎
2
− 𝑎
3
− 𝑎
4
− 𝑎
5
) 𝑝
𝑛
≤ (2𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5
) 𝑝
𝑛−1

𝑝
𝑛
≤
2𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5

2 − 𝑎
2
− 𝑎
3
− 𝑎
4
− 𝑎
5

𝑝
𝑛−1

𝑝
𝑛
≤ 𝜆𝑝
𝑛−1

,

(31)

where 𝜆 = (2𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5
)/(2 − 𝑎

2
− 𝑎
3
− 𝑎
4
− 𝑎
5
) < 1,

which implies 𝑝
𝑛
≤ 𝜆𝑝
𝑛−1

≤ 𝜆2𝑝
𝑛−2

≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑛𝑝
0
, where

𝑝
0
= 𝑝(𝑥

1
, 𝑥
0
).

For𝑚 > 𝑛, we obtain

𝑝 (𝑥
𝑛
, 𝑥
𝑚
)

≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+1

, 𝑥
𝑛+2

) + ⋅ ⋅ ⋅ + 𝑝 (𝑥
𝑚−1

, 𝑥
𝑚
)

− [𝑝 (𝑥
𝑛+1

, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+2

, 𝑥
𝑛+2

)

+ ⋅ ⋅ ⋅ + 𝑝 (𝑥
𝑚−1

, 𝑥
𝑚−1

)]

≤ 𝑝
𝑛
+ 𝑝
𝑛+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑚−1

≤ 𝜆
𝑛

𝑝
0
+ 𝜆
𝑛+1

𝑝
0
+ ⋅ ⋅ ⋅ + 𝜆

𝑚−1

𝑝
0

= 𝜆
𝑛

𝑝
0
(1 + 𝜆 + 𝜆

2

+ ⋅ ⋅ ⋅ 𝜆
𝑚−1

)

≤
𝜆𝑛

1 − 𝜆
𝑝
0
.

(32)

As 𝜆 < 1, it follows that 𝜆𝑛 → 0 as 𝑛 → ∞, which implies

lim
𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (33)

Hence {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑝), and by Lemma 4,

it is a Cauchy sequence in (𝑋, 𝑑). Using completeness of
(𝑋, 𝑝) and Lemma 4, it follows that (𝑋, 𝑑) is complete and
{𝑥
𝑛
} converges in (𝑋, 𝑑). Thus lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑢) = 0 for some

𝑢 ∈ 𝑋.
Again from Lemma 4, and (33) we have

𝑝 (𝑢, 𝑢) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑢) = lim

𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (34)

To prove that 𝑓
𝑖
𝑢 = 𝑢 for any arbitrary fixed 𝑖 ∈ N, let us

consider the following inequalities:

𝑝 (𝑓
𝑖
𝑢, 𝑢)

≤ 𝑝 (𝑓
𝑖
𝑢, 𝑓
𝑛
𝑥
𝑛−1

) + 𝑝 (𝑓
𝑛
𝑥
𝑛−1

, 𝑢) − 𝑝 (𝑓
𝑛
𝑥
𝑛−1

, 𝑓
𝑛
𝑥
𝑛−1

)

≤ 𝑝 (𝑓
𝑖
𝑢, 𝑓
𝑛
𝑥
𝑛−1

) + 𝑝 (𝑥
𝑛
, 𝑢)

≤ 𝑎
1
𝑝 (𝑢, 𝑥

𝑛−1
) + 𝑎
2
𝑝 (𝑢, f

𝑖
𝑢) + 𝑎

3
𝑝 (𝑥
𝑛−1

, 𝑓
𝑛
𝑥
𝑛−1

)

+ 𝑎
4
𝑝 (𝑥
𝑛−1

, 𝑓
𝑖
𝑢) + 𝑎

5
𝑝 (𝑢, 𝑓

𝑛
𝑥
𝑛−1

) + 𝑝 (𝑥
𝑛
, 𝑢)

= 𝑎
1
𝑝 (𝑢, 𝑥

𝑛−1
) + 𝑎
2
𝑝 (𝑢, 𝑓

𝑖
𝑢) + 𝑎

3
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)

+ 𝑎
4
𝑝 (𝑥
𝑛−1

, 𝑓
𝑖
𝑢) + 𝑎

5
𝑝 (𝑢, 𝑥

𝑛
) + 𝑝 (𝑥

𝑛
, 𝑢)

≤ (𝑎
1
+ 𝑎
3
+ 𝑎
4
) 𝑝 (𝑥

𝑛−1
, 𝑢) + (𝑎

3
+ 𝑎
5
+ 1) 𝑝 (𝑥

𝑛
, 𝑢)

+ (𝑎
2
+ 𝑎
4
) 𝑝 (𝑢, 𝑓

𝑖
𝑢) − (𝑎

3
+ 𝑎
4
) 𝑝 (𝑢, 𝑢) ,

𝑝 (𝑢, 𝑓
𝑖
𝑢) ≤

𝑎
1
+ 𝑎
3
+ 𝑎
4

1 − 𝑎
2
− 𝑎
4

𝑝 (𝑥
𝑛−1

, 𝑢) +
𝑎
3
+ 𝑎
5
+ 1

1 − 𝑎
2
− 𝑎
4

𝑝 (𝑥
𝑛
, 𝑢) .

(35)

Using (34), it follows that 𝑝(𝑓
𝑖
𝑢, 𝑢) = 0; that is, 𝑓

𝑖
𝑢 = 𝑢.

Thus, 𝑢 is a common fixed point of all the maps of sequence
{𝑓
𝑛
}.
Let V be another common fixed point of all the maps of

sequence {𝑓
𝑛
} and 𝑝(𝑢, V) > 0.

For any 𝑛 ∈ N, from (25), we obtain

𝑝 (𝑢, V) = 𝑝 (𝑓
𝑛
𝑢, 𝑓
𝑛
V)

≤ 𝑎
1
𝑝 (𝑢, V) + 𝑎

2
𝑝 (𝑢, 𝑓

𝑛
𝑢) + 𝑎

3
𝑝 (V, 𝑓

𝑛
V)

+ 𝑎
4
𝑝 (V, 𝑓

𝑛
𝑢) + 𝑎

5
𝑝 (𝑢, 𝑓

𝑛
V)

= 𝑎
1
𝑝 (𝑢, V) + 𝑎

2
𝑝 (𝑢, 𝑢) + 𝑎

3
𝑝 (V, V)

+ 𝑎
4
𝑝 (V, 𝑢) + 𝑎

5
𝑝 (𝑢, V) .

(36)
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Using (p2), we have

𝑝 (𝑢, V) ≤ (𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5
) 𝑝 (𝑢, V) < 𝑝 (𝑢, V) . (37)

This contradiction proves uniqueness.

Taking𝑓
𝑛
= 𝑓 for every 𝑛 ∈ N in above theoremweobtain

following Hardy-Rogers-type result and an improvement to
Theorem 2, of Altun et al. [5].

Corollary 14. Let (𝑋, 𝑝) be a complete partial metric space.
Let 𝑓 be a self map on𝑋, satisfying the following.

There exist 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
∈ [0, 1) with 𝑎

1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
+

𝑎
5
< 1 such that for all 𝑥, 𝑦 ∈ 𝑋

𝑝 (𝑓𝑥, 𝑓𝑦) ≤ 𝑎
1
𝑝 (𝑥, 𝑦) + 𝑎

2
𝑝 (𝑥, 𝑓𝑥)

+ 𝑎
3
𝑝 (𝑦, 𝑓𝑦) + 𝑎

4
𝑝 (𝑦, 𝑓𝑥) + 𝑎

5
𝑝 (𝑥, 𝑓𝑦) .

(38)

Then, the 𝑓 has a unique fixed point 𝑢 in𝑋 with 𝑝(𝑢, 𝑢) = 0.

Theorem 15. Let (𝑋, 𝑝) be a complete partial metric space. Let
{𝑓
𝑛
} be a sequence of self maps on 𝑋 satisfying the following.
There exists 𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
∈ [0, 1) with 𝑎

1
+𝑎
2
+𝑎
3
+𝑎
4
+

𝑎
5
< 1 and positive integer 𝑚

𝑖
for each 𝑖 ∈ N, such that, for all

𝑥, 𝑦 ∈ 𝑋

𝑝 (𝑓
𝑚𝑖

𝑖
𝑥, 𝑓
𝑚𝑗

𝑗
𝑦) ≤ 𝑎

1
𝑝 (𝑥, 𝑦) + 𝑎

2
𝑝 (𝑥, 𝑓

𝑚𝑖

𝑖
𝑥)

+ 𝑎
3
𝑝 (𝑦, 𝑓

𝑚𝑗

𝑗
𝑦)

+ 𝑎
4
𝑝 (𝑦, 𝑓

𝑚𝑖

𝑖
𝑥) + 𝑎

5
𝑝 (𝑥, 𝑓

𝑚𝑗

𝑗
𝑦) .

(39)

Thenall themaps of sequence {𝑓
𝑛
} have a unique common fixed

point 𝑢 in𝑋 with 𝑝(𝑢, 𝑢) = 0.

Proof. Note that the sequence {𝑓𝑚𝑛
𝑛

} satisfies all the condi-
tions ofTheorem 13, therefore, all themaps of sequence {𝑓𝑚𝑛

𝑛
}

have a unique common fixed point 𝑢 in 𝑋 with 𝑝(𝑢, 𝑢) = 0,
that is, 𝑓𝑚𝑖

𝑖
𝑢 = 𝑢 for every 𝑖 ∈ N. Taking 𝑥 = 𝑓

𝑖
𝑢, 𝑦 = 𝑢 in

(39) with the fact that 𝑓𝑚𝑖
𝑖
𝑓
𝑖
𝑢 = 𝑓
𝑖
𝑓
𝑚𝑖

𝑖
𝑢 = 𝑓
𝑖
𝑢 for every 𝑖 ∈ N,

we obtain 𝑓
𝑖
𝑢 = 𝑢. Thus, 𝑢 is a common fixed point of all the

maps of sequence {𝑓
𝑛
}. Its uniqueness follows from the fact

that 𝑓
𝑖
𝑢 = 𝑢 implies 𝑓𝑚𝑖

𝑖
𝑢 = 𝑢 for every 𝑖 ∈ N.
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