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We consider a discrete-timeMarkov chainwith state space {1, 1+Δx, . . . , 1+kΔx = N}. We compute
explicitly the probability pj that the chain, starting from 1 + jΔx, will hit N before 1, as well as the
expected number dj of transitions needed to end the game. In the limit when Δx and the time
Δt between the transitions decrease to zero appropriately, the Markov chain tends to a geometric
Brownianmotion.We show that pj and djΔt tend to the corresponding quantities for the geometric
Brownian motion.

1. Introduction

Let {X(t), t ≥ 0} be a one-dimensional geometric Brownian motion defined by the stochastic
differential equation

dX(t) = μX(t)dt + σX(t)dB(t), (1.1)

where μ ∈ R, σ > 0, and {B(t), t ≥ 0} is a standard Brownian motion. Assume that X(0) = x ∈
(1,N), where N ∈ N (for simplicity), and define

τ(x) = inf{t > 0 : X(t) = 1 or N | X(0) = x}. (1.2)

As is well known (see, e.g., Lefebvre [1, page 220]), the probability

p(x) := P[X[τ(x)] = N] (1.3)
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satisfies the ordinary differential equation

1
2
σ2x2p′′(x) + μxp′(x) = 0, (1.4)

subject to the boundary conditions

p(1) = 0, p(N) = 1. (1.5)

We easily find that, if c := μ/σ2 /= 1/2,

p(x) =
x1−2c − 1
N1−2c − 1

for 1 ≤ x ≤ N. (1.6)

When c = 1/2, the solution is

p(x) =
lnx
lnN

for 1 ≤ x ≤ N. (1.7)

Moreover, the function

m(x) := E[τ(x)] (1.8)

satisfies the ordinary differential equation (see, again, Lefebvre [1, page 220])

1
2
σ2x2m′′(x) + μxm′(x) = −1, (1.9)

subject to

m(1) = m(N) = 0. (1.10)

This time, if c /= 1/2 we find that

m(x) =
2

(1 − 2c)σ2

{
lnx − lnN

x1−2c − 1
N1−2c − 1

}
for 1 ≤ x ≤ N (1.11)

and, for c = 1/2,

m(x) =
lnx
σ2 (lnN − lnx) for 1 ≤ x ≤ N. (1.12)
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Now, it can be shown (see Cox and Miller [2, page 213]) that the discrete-time Markov chain
{XmΔt, m = 0, 1, . . .}with state space {1, 1+Δx, . . . , 1+kΔx}, where k is such that 1+kΔx = N,
and transition probabilities

p1+jΔx,1+(j+1)Δx =
1
2A

{(
1 + jΔx

)2
σ2 +

(
1 + jΔx

)
μΔx

}
,

p1+jΔx,1+(j−1)Δx =
1
2A

{(
1 + jΔx

)2
σ2 − (1 + jΔx

)
μΔx

}
,

p1+jΔx,1+jΔx = 1 − 1
A

(
1 + jΔx

)2
σ2,

(1.13)

where j ∈ {1, . . . , k − 1}, converges to the geometric Brownian motion {X(t), t ≥ 0} as Δx and
Δt decrease to zero, provided that

(Δx)2 = AΔt, (1.14)

(
jΔx
)2

< A ∀j ∈ {0, . . . , k}. (1.15)

Remarks 1.1. (i) We assume that all the probabilities defined by (1.13) are well defined; that
is, they all belong to the interval [0, 1].

(ii) The condition in (1.15) implies that (Δx)2 < A/k2.
Let

Tj := inf
{
m > 0 : XmΔt = 1 or N | X0 = 1 + jΔx

}
, (1.16)

pj := P
[
XTj = N

]
. (1.17)

In the next section, we will compute the quantity pj for j ∈ {1, . . . , k − 1}. We will show that
pj converges to the function p(x) for the geometric Brownian motion as Δx decreases to zero
and k tends to infinity in such a way that 1 + kΔx remains equal toN.

In Section 3, we will compute the mean number of transitions needed to end the game,
namely,

dj := E
[
Tj
]
. (1.18)

By making a change of variable to transform the diffusion process {X(t), t ≥ 0} into a
geometric Brownian motion with infinitesimal mean equal to zero and by considering the
corresponding discrete-time Markov chain, we will obtain an explicit and exact expression
for dj that, when multiplied by Δt, tends to m(x) if the time Δt between the transitions is
chosen suitably.

The motivation for our work is the following. Lefebvre [3] computed the probability
p(x) and the expected durationm(x) for asymmetric Wiener processes in the interval (−d, d),
that is, for Wiener processes for which the infinitesimal means μ+ and μ−, and infinitesimal
variances σ2

+ and σ2
−, are not necessarily the same when x > 0 or x < 0. To confirm his results,

he considered a random walk that converges to the Wiener process. Lefebvre’s results were
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extended by Abundo [4] to general one-dimensional diffusion processes. However, Abundo
did not obtain the quantities pj and dj for the corresponding discrete-time Markov chains.
Also, it is worth mentioning that asymmetric diffusion processes need not be defined in an
interval that includes the origin. A process defined in the interval (a, b) can be asymmetric
with respect to any a < c < b.

Next, Lefebvre and Guilbault [5] and Guilbault and Lefebvre [6] computed pj and dj ,
respectively, for a discrete-time Markov chain that tends to the Ornstein-Uhlenbeck process.
The authors also computed the quantity pj in the case when the Markov chain is asymmetric
(as in Lefebvre [3]).

Asymmetric processes can be used in financial mathematics to model the price of a
stock when, in particular, the infinitesimal variance (i.e., the volatility) tends to increase with
the price of the stock. Indeed, it seems logical that the volatility is larger when the stock price
X(t) is very large than when it is close to zero. The prices of commodities, such as gold and
oil, are also more volatile when they reach a certain level.

In order to check the validity of the expressions obtained by Abundo [4] for p(x) and
m(x), it is important to obtain the corresponding quantities for the discrete-time Markov
chains and then proceed by taking the limit as Δx and Δt decrease to zero appropriately.
Moreover, the formulas that will be derived in the present paper are interesting in themselves,
since in reality stock or commodity prices do not vary completely continuously.

First passage problems for Markov chains have many applications. For example, in
neural networks, an important quantity is the interspike time, that is, the time between spikes
of a firing neuron (which means that the neuron sends a signal to other neurons). Discrete-
time Markov chains have been used as models in this context, and the interspike time is the
number of steps it takes the chain to reach the threshold at which firing occurs.

2. Computation of the Probability pj

Assume first thatΔx = 1, so that the state space is {1, 2, . . . ,N} and the transition probabilities
become

pj,j+1 =
1
2A

{
j2σ2 + jμ

}
, pj,j−1 =

1
2A

{
j2σ2 − jμ

}
, pj,j = 1 − j2σ2

A
(2.1)

for j ∈ {2, . . . ,N −1}. The probability defined in (1.17) satisfies the following difference equa-
tion:

pj = pj,j+1pj+1 + pj,j−1pj−1 + pj,jpj . (2.2)

That is,

2jpj =
(
j + c

)
pj+1 +

(
j − c

)
pj−1, (2.3)

where c = μ/σ2. The boundary conditions are

p1 = 0, pN = 1. (2.4)
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In the special case when μ = 0, (2.3) reduces to the second-order difference equation
with constant coefficients

pj+1 = 2pj − pj−1. (2.5)

We easily find that the (unique) solution that satisfies the boundary conditions (2.4) is

pj =
j − 1
N − 1

for j = 1, 2, . . . ,N. (2.6)

Assume now that μ/= 0. Letting

wj := pj+1 − pj . (2.7)

Equation (2.3) can be rewritten as

(
j + c

)
wj =

(
j − c

)
wj−1. (2.8)

Using the mathematical software program Maple, we find that the solution of this first-order
difference equation that satisfies the boundary condition w1 = p2 is given by

wj = −p2
π

sin[(2 + c)π]c
(
c2 − 1

)
Γ2(c − 1)

Γ
(
j + 1 − c

)
Γ
(
j + 1 + c

) , (2.9)

where Γ is the gamma function.
Next, we must solve the first-order difference equation

pj+1 − pj = f(c)
Γ
(
j + 1 − c

)
Γ
(
j + 1 + c

) , (2.10)

where

f(c) := −p2
π

sin[(2 + c)π]c
(
c2 − 1

)
Γ2(c − 1), (2.11)

subject to the boundary conditions (2.4). We find that, if c /= 1/2, then

pj =
f(c)
1 − 2c

(
j + c

)Γ(j + 1 − c
)

Γ
(
j + 1 + c

) + f(c)
c

2c − 1
Γ(1 − c)
Γ(1 + c)

+ κ, (2.12)

where κ is a constant. Applying the boundary conditions (2.4), we obtain that

pj =

(
j + c

)(
Γ
(
j + 1 − c

)
/Γ
(
j + 1 + c

)) − (1 + c)(Γ(2 − c)/Γ(2 + c))
(N + c)(Γ(N + 1 − c)/Γ(N + 1 + c)) − (1 + c)(Γ(2 − c)/Γ(2 + c))

for j = 1, 2, . . . ,N.

(2.13)
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Remark 2.1. When c tends to 1/2, the solution becomes

pj =
Ψ
(
j + 1/2

) − 2 + γ + 2 ln 2
Ψ(N + 1/2) − 2 + γ + 2 ln 2

, (2.14)

where γ is Euler’s constant and Ψ is the digamma function defined by

Ψ(z) =
Γ′(z)
Γ(z)

. (2.15)

Notice that

Ψ(3/2) = 2 − γ − 2 ln 2, (2.16)

so that we indeed have p1 = 0, and the solution (2.14) can be rewritten as

pj =
Ψ
(
j + 1/2

) −Ψ(3/2)
Ψ(N + 1/2) −Ψ(3/2)

for j = 1, 2, . . . ,N. (2.17)

Now, in the general case when Δx > 0, we must solve the difference equation

pj =
1
2A

{(
1 + jΔx

)2
σ2 +

(
1 + jΔx

)
μΔx

}
pj+1

+
1
2A

{(
1 + jΔx

)2
σ2 − (1 + jΔx

)
μΔx

}
pj−1

+
(
1 − 1

A

(
1 + jΔx

)2
σ2
)
pj ,

(2.18)

which can be simplified to

2
(
1 + jΔx

)
pj =

[(
1 + jΔx

)
+ cΔx

]
pj+1 +

[(
1 + jΔx

) − cΔx
]
pj−1. (2.19)

The boundary conditions become

p0 = 0, pk = 1. (2.20)

When μ = 0 (which implies that c = 0), the difference equation above reduces to the
same one as when Δx = 1, namely (2.5). The solution is

pj =
j

k
for j = 0, 1, . . . , k. (2.21)

Writing

n = 1 + jΔx (2.22)
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and using the fact that (by hypothesis) N = 1 + kΔx, we obtain that

pn =
n − 1
N − 1

for n = 1, 1 + Δx, . . . , 1 + kΔx = N. (2.23)

Notice that this solution does not depend on the increment Δx. Hence, if we let Δx decrease
to zero and k tend to infinity in such a way that 1 + kΔx remains equal toN, we have that

pn −→ n − 1
N − 1

for 1 ≤ n ≤ N, (2.24)

which is the same as the function p(x) in (1.6)when c = 0/σ2 = 0.
Next, proceeding as above, we obtain that, if c /= 1/2, the probability pj is given by

pj =

(
1 + jΔx + cΔx

)(
Γ
((
1 +
(
j + 1

)
Δx − cΔx

)
/Δx

)
/Γ
((
1 +
(
j + 1

)
Δx + cΔx

)
/Δx

)) −A
(1 + kΔx + cΔx)(Γ((1 + (k + 1)Δx − cΔx)/Δx) /Γ((1 + (k + 1)Δx + cΔx)/Δx)) −A ,

(2.25)

whereA denotes (1+ cΔx)(Γ((1+Δx− cΔx)/Δx)/Γ((1+Δx+ cΔx)/Δx)). In terms of n and
N, this expression becomes

pn =
(n + cΔx)(Γ((n + Δx − cΔx)/Δx)/(Γ(n + Δx + cΔx)/Δx)) −A

(N + cΔx)(Γ((N + Δx − cΔx)/Δx))/(Γ((N + Δx + cΔx)/Δx)) −A (2.26)

for n ∈ {1, 1 + Δx, . . . , 1 + kΔx = N}. The solution reduces to

pn =
Ψ((2n + Δx)/2Δx) −Ψ((2 + Δx)/2Δx)
Ψ((2N + Δx)/2Δx) −Ψ((2 + Δx)/2Δx)

if c = 1/2. (2.27)

We can now state the following proposition.

Proposition 2.2. Let n = 1 + jΔx for j ∈ {0, 1, . . . , k}, with k such that 1 + kΔx = N. The pro-
bability pn that the discrete-time Markov chain defined in Section 1, starting from n, will hitN before
1 is given by (2.23) if μ = 0, and by (2.26) if c = μ/σ2 /= 0. The value of pn tends to the function in
(2.27) when μ/σ2 tends to 1/2.

To complete this section, we will consider the case when Δx decreases to zero. We
have already mentioned that when c = 0, the probability pn does not depend on Δx, and it
corresponds to the function p(x) in (1.6)with c = 0.

Next, when c = 1/2, making use of the formula

Ψ(z) ∼ ln z for z large, (2.28)

we can write that

lim
Δx↓0

pn = lim
Δx↓0

ln(2n + Δx) − ln(2 + Δx)
ln(2N + Δx) − ln(2 + Δx)

=
lnn
lnN

for n ∈ [1,N]. (2.29)

Again, this expression corresponds to the function p(x) given in (1.7), obtainedwhen c = 1/2.
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Finally, we have:

Γ(z + a)
Γ(z + b)

∝ za−b
(
1 +O

(
1
z

))
(2.30)

as |z| tends to infinity (if |Arg(z + a)| < π). Hence, in the case when c /= 0, 1/2, we can write
that

lim
Δx↓0

pn = lim
Δx↓0

(n + cΔx)(n + Δx)−2c − (1 + cΔx)(1 + Δx)−2c

(N + cΔx)(N + Δx)−2c − (1 + cΔx)(1 + Δx)−2c

=
n1−2c − 1
N1−2c − 1

(2.31)

for 1 ≤ n ≤ N. Therefore, we retrieve the formula for p(x) in (1.6).
In the next section, we will derive the formulas that correspond to the function m(x)

in Section 1.

3. Computation of the Mean Number of Transitions dj Needed to
End the Game

As in Section 2, we will first assume that Δx = 1. Then, with n = 1 + j for j = 0, 1, . . . , k (and
1 + k = N), the function dn satisfies the following second-order, linear, nonhomogeneous
difference equation:

dn = pn,n+1dn+1 + pn,n−1dn−1 + pn,ndn + 1 for n = 2, . . . ,N − 1. (3.1)

The boundary conditions are

d1 = dN = 0. (3.2)

We find that the difference equation can be rewritten as

(n + c)dn+1 − 2ndn + (n − c)dn−1 = − 2A
nσ2

. (3.3)

Let us now assume that μ = 0, so that we must solve the second-order, linear, non-
homogeneous difference equation with constant coefficients

dn+1 − 2dn + dn−1 = − 2A
n2σ2

. (3.4)
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With the help of the mathematical software program Maple, we find that the unique solution
that satisfies the boundary conditions (3.2) is

dn = − n − 1
N − 1

2A
σ2

{
Ψ(N) +NΨ(1,N) − (1 − γ

) −N

(
−1 + π2

6

)}

+
2A
σ2

{
Ψ(n) + nΨ(1, n) − (1 − γ

) − n

(
−1 + π2

6

)}
,

(3.5)

where

Ψ(1, x) :=
d

dx
Ψ(x) (3.6)

is the first polygamma function.
Next, in the general case Δx > 0, we must solve (with c = 0)

dj+1 − 2dj + dj−1 = − 2A(
1 + jΔx

)2
σ2

(3.7)

for j = 0, 1, . . . , k. The solution that satisfies the boundary conditions

d0 = dk = 0 (3.8)

is given by

dj = − j

k

2A

σ2(Δx)3

{
(1 + kΔx)Ψ

(
1,

1 + kΔx

Δx

)
+ ΔxΨ

(
1 + kΔx

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}

+
2A

σ2(Δx)3

{(
1 + jΔx

)
Ψ
(
1,

1 + jΔx

Δx

)
+ ΔxΨ

(
1 + jΔx

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}
.

(3.9)

In terms of n := 1 + jΔx and N = 1 + kΔx, this expression becomes

dn = − n − 1
N − 1

2A

σ2(Δx)3

{
NΨ
(
1,

N

Δx

)
+ ΔxΨ

(
N

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}

+
2A

σ2(Δx)3

{
nΨ
(
1,

n

Δx

)
+ ΔxΨ

( n

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}
.

(3.10)

Finally, the mean duration of the game is obtained by multiplying dn by Δt. Making
use of the fact that (see (1.14)) Δt = (Δx)2/A, we obtain the following proposition.
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Proposition 3.1. When Δx > 0 and μ = 0, the mean duration Dn of the game is given by

Dn = − n − 1
N − 1

2
σ2Δx

{
NΨ
(
1,

N

Δx

)
+ ΔxΨ

(
N

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}

+
2

σ2Δx

{
nΨ
(
1,

n

Δx

)
+ ΔxΨ

( n

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)} (3.11)

for n = 1, 1 + Δx, . . . , 1 + kΔx = N.

Next, using the fact that

Ψ(x) ∼ lnx, Ψ(1, x) ∼ 1
x

for x large, (3.12)

we obtain that, as Δx decreases to zero and 1 + kΔx remains equal toN,

Dn −→ 2
σ2

{
−
(

n − 1
N − 1

)
lnN + lnn

}
for n ∈ [1,N]. (3.13)

Notice that Dn indeed corresponds to the function m(x) given in (1.11) if c = 0.
To complete our work, we need to find the value of the mean number of transitions dj

in the case when μ/= 0 and Δx > 0. To do so, we must solve the nonhomogeneous difference
equation with nonconstant coefficients (3.3). We can obtain the general solution to the corres-
ponding homogeneous equation. However, we then need to find a particular solution to the
nonhomogeneous equation. This entails evaluating a difficult sum. Instead, we will use the
fact that we know how to compute dj when μ = 0.

Let us go back to the geometric Brownian motion {X(t), t ≥ 0} defined in (1.1), and let
us define, for c /= 1/2,

Y (t) = [X(t)]1−2c. (3.14)

Then, we find (see Karlin and Taylor [7, page 173]) that {Y (t), t ≥ 0} remains a geometric
Brownianmotion, with infinitesimal variance σ2

Y = (1 − 2c)2σ2y2, but with infinitesimal mean
μY = 0. In the case when c = 1/2, we define

Y (t) = ln[X(t)], (3.15)

and we obtain that {Y (t), t ≥ 0} is a Wiener process with μY = 0 and σ2
Y = σ2.

Remark 3.2. When c = 1/2, we find that {X(t), t ≥ 0} can be expressed as the exponential of
a Wiener process {W(t), t ≥ 0} having infinitesimal mean μW = 0 and infinitesimal variance
σ2
W = σ2.
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When we make the transformation Y (t) = [X(t)]1−2c, the interval [1,N] becomes
[1,N1−2c], respectively [N1−2c, 1], if c < 1/2, respectively c > 1/2. Assume first that c < 1/2.
We have (see (1.2))

τ(x) = inf
{
t > 0 : Y (t) = 1 or N1−2c | Y (0) = x1−2c

}
. (3.16)

Now, we consider the discrete-time Markov chain with state space {1, 1 + Δx, . . . , 1 +
kΔx = N1−2c} and transition probabilities given by (1.13). Proceeding as above, we obtain
the expression in (3.9) for the mean number of transitions dj from state 1+ jΔx. This time, we
replace 1 + jΔx by n1−2c and 1 + kΔx byN1−2c, so that

dn = − n1−2c − 1
N1−2c − 1

2A

σ2(Δx)3

{
N1−2cΨ

(
1,

N1−2c

Δx

)
+ΔxΨ

(
N1−2c

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}

+
2A

σ2(Δx)3

{
n1−2cΨ

(
1,

n1−2c

Δx

)
+ ΔxΨ

(
n1−2c

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}

(3.17)

for n = 1, (1 + Δx)1/(1−2c), . . . , (1 + kΔx)1/(1−2c) = N.
Assume that each displacement takes

Δt =
(Δx)2

(1 − 2c)2A
(3.18)

time units. Taking the limit as Δx decreases to zero (and k → ∞), we obtain (making use of
the formulas in (3.12)) that

Dn −→ 2
(1 − 2c)σ2

{
−
(

n1−2c − 1
N1−2c − 1

)
lnN + lnn

}
for n ∈ [1,N]. (3.19)

This formula corresponds to the function m(x) in (1.11) when c < 1/2.
When c > 1/2, we consider the Markov chain having state space

{
1

N2c−1 =
1

1 + kΔx
,

1
1 + (k − 1)Δx

, . . . ,
1

1 + Δx
, 1
}

(3.20)

(and transition probabilities given by (1.13)). To obtain dj , we must again solve the difference
equation (3.7), subject to the boundary conditions d0 = dk = 0. However, once we have ob-
tained the solution, wemust now replace 1+jΔx by (1 + jΔx)−1 (and 1+kΔx by (1 + kΔx)−1).
Moreover, because

j =

(
1 + jΔx

) − 1
Δx

, (3.21)
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we replace j by

1/
(
1 + jΔx

) − 1
Δx

= − j

1 + jΔx
(3.22)

(and similarly for k).

Remark 3.3. The quantity dj here actually represents the mean number of steps needed to end
the game when the Markov chain starts from state 1/(1 + jΔx), with j ∈ {0, . . . , k}.

We obtain that

dj = − j

1 + jΔx

1 + kΔx

k

2A

σ2(Δx)3

{
1

1 + kΔx
Ψ
(
1,

1
(1 + kΔx)Δx

)
+ ΔxΨ

(
1

(1 + kΔx)Δx

)

−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}

+
2A

σ2(Δx)3

{
1

1 + jΔx
Ψ

(
1,

1(
1 + jΔx

)
Δx

)
+ ΔxΨ

(
1(

1 + jΔx
)
Δx

)

−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}
.

(3.23)

Next, since N2c−1 = 1 + kΔx, setting n2c−1 = 1 + jΔx we deduce from the previous
expression that

dn = −n
2c−1 − 1
n2c−1

N2c−1

N2c−1 − 1
2A

σ2(Δx)3

{
1

N2c−1Ψ

(
1,

N1−2c

Δx

)

+ΔxΨ

(
N2c−1

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}

+
2A

σ2(Δx)3

{
1

n2c−1Ψ

(
1,

n1−2c

Δx

)
+ ΔxΨ

(
n2c−1

Δx

)
−Ψ
(
1,

1
Δx

)
−ΔxΨ

(
1
Δx

)}

(3.24)

for n ∈ {1, (1 + Δx)1/(2c−1), . . . , (1 + kΔx)1/(2c−1) = N}.
Finally, if we assume, as above, that each step of the Markov chain takes

Δt =
(Δx)2

(2c − 1)2A
(3.25)

time units, we find that, when Δx decreases to zero, the mean duration of the game tends to

Dn =
2

(2c − 1)σ2

{
lnn −

(
1 − n1−2c

1 −N1−2c

)
lnN

}
for n ∈ [1,N]. (3.26)

This last expression is equivalent to the formula for m(x) in (1.11)when c > 1/2.
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Remark 3.4. Actually, the formula form(x) is the same whether c < 1/2 or c > 1/2.

At last, in the case when c = 1/2, we consider the random walk with state space
{0,Δx, . . . , kΔx = lnN} and transition probabilities

pjΔx,(j+1)Δx = pjΔx,(j−1)Δx =
σ2

2A
,

pjΔx,jΔx = 1 − σ2

A
.

(3.27)

Then, we must solve the nonhomogeneous difference equation

dj+1 − 2dj + dj−1 = −2A
σ2

, (3.28)

subject to the boundary conditions d0 = dk = 0. We find that

dj = − j

k

A

σ2
k(1 − k) +

A

σ2
j
(
1 − j

)
. (3.29)

With lnn := jΔx and lnN = kΔx, we get that

dn =
A

σ2(Δx)2
{lnn(lnN − lnn)} (3.30)

for n ∈ {1, eΔx, . . . , ekΔx = N}. Assuming that Δt = (Δx)2/A, we deduce at once that, as Δx
decreases to zero,

Dn −→ 1
σ2 {lnn(lnN − lnn)} for n ∈ [1,N]. (3.31)

Thus, we retrieve the formula (1.12) form(x)when c = 1/2.
We can now state the following proposition.

Proposition 3.5. If the state space of the Markov chain is

{
1, (1 + Δx)1/(1−2c), . . . , (1 + kΔx)1/(1−2c) = N

}
, (3.32)

respectively,

{
1, (1 + Δx)1/(2c−1), . . . , (1 + kΔx)1/(2c−1) = N

}
, (3.33)

where c < 1/2, respectively c > 1/2, and the transition probabilities are those in (1.13), then the
value of the mean number of steps dn needed to end the game is given by (3.17), respectively, (3.24).
If n ∈ {1, eΔx, . . . , ekΔx = N} and the transition probabilities are the ones in (3.27), then the value of
dn is given by (3.30).
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4. Concluding Remarks

We have obtained explicit and exact formulas for the quantities pj and dj defined respectively
in (1.17) and (1.18) for various discrete-time Markov chains that converge, at least in a finite
interval, to a geometric Brownian motion. In the case of the probability pj of hitting the
boundaryN before 1, because the appropriate difference equation is homogeneous, we were
able to compute this probability for any value of c = μ/σ2 by considering a Markov chain
with state space {1, (1 + Δx), . . . , (1 + kΔx) = N}. However, to obtain dj we first solved
the appropriate difference equation when c = 0. Then, making use of the formula that we
obtained, we were able to deduce the solution for any c ∈ R by considering a Markov
chain that converges to a transformation of the geometric Brownian motion. The transformed
process was a geometric Brownian motion with μ = 0 (if c /= 1/2), or a Wiener process with
μ = 0 (if c = 1/2). In each case, we showed that the expression that we derived tends to the
corresponding quantity for the geometric Brownian motion. In the case of the mean duration
of the game, the time increment Δt had to be chosen suitably.

As is well known, the geometric Brownian motion is a very important model in
financial mathematics, in particular. In practice, stock or commodity prices vary discretely
over time. Therefore, it is interesting to derive formulas for pj and dj for Markov chains that
are as close as we want to the diffusion process.

Now that we have computed explicitly the value of pj and dj forMarkov chains having
transition probabilities that involve parameters μ and σ2 that are the same for all the states,
we could consider asymmetric Markov chains. For example, at first the state space could be
{1, . . . ,N1, . . . ,N2}, and we could have

μ =

⎧⎨
⎩
μ1 if n ∈ {1, . . . ,N1 − 1},
μ2 if n ∈ {N1 + 1, . . . ,N2}

(4.1)

(and similarly for σ2). When the Markov chain hitsN1, it goes toN1 + 1, respectivelyN1 − 1,
with probability p0, respectively 1−p0. By increasing the state space to {1, 1+Δx, . . . , 1+k1Δx =
N1, . . . , 1 + k2Δx = N2}, and taking the limit as Δx decreases to zero (with k1 and k2 going
to infinity appropriately), we would obtain the quantities that correspond to pj and dj for an
asymmetric geometric Brownian motion. The possibly different values of σ2 depending on
the state n of the Markov chain reflect the fact that volatility is likely to depend on the price
of the stock or the commodity.

Finally, we could try to derive the formulas for pj and dj for other discrete-timeMarkov
chains that converge to important one-dimensional diffusion processes.
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