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A maximum-clique transversal set of a graph G is a subset of vertices intersecting all maximum
cliques of G. The maximum-clique transversal set problem is to find a maximum-clique transversal set
of G of minimum cardinality. Motivated by the placement of transmitters for cellular telephones,
Chang, Kloks, and Lee introduced the concept of maximum-clique transversal sets on graphs in
2001. In this paper, we study the weighted version of the maximum-clique transversal set problem
for split graphs, balanced graphs, strongly chordal graph, Helly circular-arc graphs, comparability
graphs, distance-hereditary graphs, and graphs of bounded treewidth.

1. Introduction

All graphs considered in this paper are undirected, finite, and simple. Let G = (V, E) be a
graph with vertex set V and edge set E. Unless stated otherwise, it is understood that |V | = n
and |E| = m. For a graph G, we also use V (G) and E(G) to denote the vertex set and edge
set of G, respectively. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. We use
G[W] to denote a subgraph of G induced by a subset W of V , that is, G[W] is the subgraph
with vertex set W in which two vertices are adjacent whenever they are adjacent in G. For
any vertex v ∈ V , the neighborhood of v in G is NG(v) = {u ∈ V | (u, v) ∈ E} and the closed
neighborhood of v in G is NG[v] = NG(v) ∪ {v}. The degree of a vertex v in G, denoted by
degG(v), is the number of edges incident with v. If degG(v) = 0, then v is an isolated vertex of
G. A clique is a subset of pairwise adjacent vertices of V . A maximal clique is a clique that is
not a proper subset of any other clique. We use C(G) to denote the collection of all maximal
cliques of G. A clique is maximum if there is no clique of G of larger cardinality. The clique
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number of G, denoted by ω(G), is the cardinality of a maximum clique of G. We use Q(G) to
denote the collection of all maximum cliques of G.

A maximum-clique transversal set of a graph G = (V, E) is a subset of V intersecting
all maximum cliques of G. The maximum-clique transversal number of G, denoted by τM(G),
is the minimum cardinality of a maximum-clique transversal set of G. The maximum-
clique transversal set problem is to find a maximum-clique transversal set of G of minimum
cardinality. Amaximum-clique independent set ofG is a collection of pairwise disjoint maximum
cliques of G. The maximum-clique independence number, denoted by αM(G), is the maximum
cardinality of a maximum-clique independent set of G. The maximum-clique independent set
problem is to find a maximum-clique independent set of G of maximum cardinality.

Maximum-clique transversal sets were introduced by Chang et al. in 2001 [1]. One of
the main objectives for their research on maximum-clique transversal sets is the placement
of transmitter towers for cellular telephones. Chang et al. stated a cellular telephone tower
placement problem as the maximum-clique transversal set problem. They considered the
problem and presented fixed parameter and approximation results for planar graphs. They
also investigated the problem for some other graph classes such as k-trees, strongly chordal
graphs, graphs with few P4s, comparability graphs, and distance-hereditary graphs. Recently,
Lee [2] introduced some variations of the maximum-clique transversal set problem and
presented complexity results for them on some well-known classes of graphs.

Maximum-clique transversal and maximum-clique independent sets are closely
related to clique transversal and clique independent sets on graphs. A clique transversal set
of a graph G = (V, E) is a subset of V intersecting all maximal cliques of G and a clique
independent set of G is a collection of pairwise disjoint maximal cliques of G. The clique
transversal number ofG, denoted by τC(G), is theminimum cardinality of a clique transversal
set of G. The clique independence number of G, denoted by αC(G), is the maximum
cardinality of a clique independent set of G. The clique transversal (resp., independent)
set problem is to find a clique transversal (resp., independent) set of G of minimum (resp.,
maximum) cardinality. The clique transversal and clique independent set problems have been
widely studied in [1, 3–20].

In this paper, we study the weighted version of the maximum-clique transversal set
problem. Letw : V → N be a function assigning to each vertex v of G = (V, E) a weightw(v)
such that all arithmetic operations on vertex weights can be performed in time O(1). We call
w a vertex-weight function and call G = (V, E,w) a weighted graph. We let w(S) =

∑
u∈S w(u)

for any subset S of V and letw(S) be the weight of S. The weighted maximum-clique transversal
set problem is to find a maximum-clique transversal set S of a weighted graph G = (V, E,w)
such that w(S) is minimized.

We present polynomial-time algorithms (most of them with linear running time) for
the weighted maximum-clique transversal set problem on split graphs, balanced graphs,
strongly chordal graphs, Helly circular-arc graphs, comparability graphs, distance-hereditary
graphs, and graphs of bounded treewidth.

2. Split Graphs

In this section, we consider the weighted maximum-clique transversal set problem on split
graphs.

Definition 2.1. A split graph is a graphG = (I∪Q,E), where the vertices ofG can be partitioned
into an independent set I and a clique Q.
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Throughout this section, we use G = (V, E,w) to denote a split graph G with a
vertex-weight function w. Without loss of generality, we may assume that G has no isolated
vertices and that the vertices of G have been partitioned into an independent set I and a
maximum clique Q. We give Algorithm 1 to solve the weighted maximum-clique transversal
set problem for a split graph G = (I ∪Q,E,w).

Theorem 2.2. Algorithm 1 finds a maximum-clique transversal set D of a split graph G = (I ∪
Q,E,w) of minimum weight in O(n +m) time.

Proof. The theorem holds trivially if G has only one maximum clique. We may assume that G
has more than one maximum clique. We show the correctness of Algorithm 1 as follows.

Initially, S = I and wN(v) = w(NG(v)) for each vertex v ∈ Q. At each iteration of
Steps (5)–(12), the algorithm removes from S an element s with degG(s) < ω(G) − 1, and
wN(v) is decreased by the weight w(s) if v is adjacent to s. At the end of the last iteration
of Steps (5)–(12), the set S consists of all vertices s with degG(s) = ω(G) − 1, and wN(v) =
w(NG(v) ∩Q) +w(NG(v) ∩ S) for each vertex v ∈ Q.

For everymaximum clique ofG other thanQ, it has exactly one vertex in I andω(G)−1
vertices in Q. For a vertex x ∈ I with degG(x) < ω(G) − 1, NG[x] is not a maximum clique of
G. Therefore, Q(G) = {Q} ∪

⋃
s∈S{NG[s]}.

Assume that D′ is a maximum-clique transversal set of G of minimum weight. Let x1

and x2 be two vertices in Q. For every maximum clique Q′ of G other than Q, it has exactly
one vertex in S and ω(G) − 1 vertices in Q. It is clear that Q′ contains at least one vertex in
{x1, x2} and thus D′ contains at most two vertices in Q.

Let v1 be a vertex in Q such that w(v1) = min{w(v) | v ∈ Q}. Let v2 be a vertex in
Q \ {v1} such that w(v2) = min{w(v) | v ∈ Q \ {v1}} and let v3 be a vertex in Q such that
w(S ∪Q) −wN(v3) = min{w(S ∪Q) −wN(v) | v ∈ Q}. We consider the following two cases.

Case 1 (|D′ ∩ Q| = 2). It can be easily verified that the set {v1, v2} is a maximum-clique
transversal set of G of minimum weight, and thus w(D′) = w(v1) +w(v2).

Case 2 (|D′ ∩ Q| = 1). Let D′ ∩ Q = {v′} and let D∗ = {v′} ∪ (S \NG(v′)). If S \NG(v′) = ∅,
then v′ is adjacent to every vertex in S. We have w(D′) = w(D∗) = w(v′). Suppose that
S \NG(v′)/= ∅. For any vertex x ∈ S \NG(v′), the maximum clique NG[x] does not contain
the vertex v′. Since D′ does not contain any vertex in Q \ {v′}, x must be included in D′.
In other words, the set S \NG(v′) is a subset of D′. Then, the set D∗ = {v′} ∪ (S \NG(v′))
is a maximum-clique transversal set of G and w(D′) = w(D∗). Note that S ∩ Q = ∅ and
wN(v′) = w(NG(v′) ∩Q) +w(NG(v′) ∩ S). We have

w(S ∪Q) −wN

(
v′
)
= w(S) +w(Q) −

(
w
(
NG

(
v′
)
∩Q

)
+w

(
NG

(
v′
)
∩ S

))

=
(
w(S) −w

(
NG

(
v′
)
∩ S

))
+
(
w(Q) −w

(
NG

(
v′
)
∩Q

))

= w
(
S \NG

(
v′
))

+w
(
v′
)
= w(D∗).

(2.1)

Sincew(S∪Q)−wN(v3) = min{w(S∪Q)−wN(v) | v ∈ Q}, the setD = {v3}∪ (S \NG(v3)) is
a maximum-clique transversal set of G of minimum weight. Following the discussion above,
the algorithm is correct.

Clearly, Step (1) and Steps (13)–(21) of Algorithm 1 can be done in O(n) time. Steps
(2)–(4) and Steps (5)–(12) can be done in O(

∑
v∈V (G)(degG(v) + 1)) = O(n +m) time. Hence,

the running time of the algorithm is O(n +m) time.
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Input: A split graph G = (I ∪Q,E,w).
Output: A maximum-clique transversal set D of G of minimum weight.
(1) S = I;
(2) for each vertex v ∈ Q do
(3) wN(v) = w(NG(v));
(4) end for
(5) for each vertex s ∈ I do
(6) if degG(s) < ω(G) − 1 then
(7) S← S \ {s};
(8) for each v ∈NG(s) do
(9) wN(v) = wN(v) −w(s);
(10) end for
(11) end if
(12) end for
(13) Find a vertex v1 ∈ Q such that w(v1) = min{w(v) | v ∈ Q};
(14) Find a vertex v2 ∈ Q \ {v1} such that w(v2) = min{w(v) | v ∈ Q \ {v1}};
(15) Find a vertex v3 ∈ Q such that w(S ∪Q) −wN(v3) = min{w(S ∪Q) −wN(v) | v ∈ Q};
(16) ifmin{w(v1) +w(v2), w(S ∪Q) −wN(v3)} = w(v1) +w(v2) then
(17) D = {v1, v2};
(18) else
(19) D = {v3} ∪ (S \NG(v3));
(20) end if
(21) Output the set D;

Algorithm 1: Finding a maximum-clique transversal set of a split graph of minimum weight.

3. Balanced Graphs

In this section, we consider the weighted maximum-clique transversal set problem on
balanced graphs.

Let G be a graph. Suppose that V (G) = {v1, v2, . . . , vn}, C(G) = {C1, C2, . . . , Cp}, and
Q(G) = {Q1, Q2, . . . , Q�}. A clique matrix (resp., maximum-clique matrix) of G, is the (0,1)-
matrix whose entry (i, j) is 1 if vj ∈ Ci (resp., vj ∈ Qi), and 0 otherwise. A (0,1)-matrix is
balanced if it does not contain the vertex-edge incidence matrix of an odd cycle as a submatrix,
or equivalently, if it does not contain a square submatrix of odd order with exactly two ones
per row and column. A (0, 1)-matrix is totally balanced if it does not contain the vertex-edge
incidence matrix of a cycle as a submatrix [21]. A graph G is balanced (resp., totally balanced)
if a clique matrix of G is balanced (resp., totally balanced).

Balanced graphs have been considered in [2, 8, 12, 15, 22]. It can be easily verified that
if a clique matrix of a graph G is balanced (resp., totally balanced), then all clique matrices of
G are balanced (resp., totally balanced). Note that a maximum-clique matrix of a graph G is a
submatrix of some clique matrix of G. By definition, a submatrix of a balanced matrix is also
balanced. We have the following lemma.

Lemma 3.1. If a graph G is balanced, then any maximum-clique matrix of G is balanced.

Let 1 (resp., 0) be a vector with n 1’s (resp., 0’s) and let x = (x1, x2, . . . , xn) be a column
vector. Let G = (V, E,w) be a weighted graph with V = {v1, v2, . . . , vn}. Suppose that M is
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a maximum-clique matrix of G. The weighted maximum-clique transversal set problem for
G can be formulated as the following integer linear programming problem:

Minimize
n∑

i=1

w(vi) · xi

subject to Mx ≥ 1

xi = 1 or 0 for i = 1, 2, . . . ,n.

(3.1)

Fulkerson et al. proved the following important property of balanced matrices.

Theorem 3.2 (Fulkerson et al. [22]). If A is a balanced matrix, then the polyhedra P1(A) = {x |
Ax ≥ 1, x ≥ 0} and P2(A) = {x | Ax ≤ 1, x ≥ 0} have only integer extreme points.

Theorem 3.3. For any weighted balanced graph G, the weighted maximum-clique transversal set
problem can be solved in polynomial time.

Proof. Balanced graphs are a subclass of hereditary clique-Helly graphs [8]. Prisner [23] showed
that no connected hereditary clique-Helly graphs has more maximal cliques than edges.
Then, a connected balanced graph has O(m) maximal cliques. Since all maximal cliques of
a hereditary clique-Helly graph can be enumerated in polynomial time by the algorithms in
[24], all the maximum cliques can be extracted in polynomial time. Therefore, a maximum-
clique matrix M of G can be computed in polynomial time.

Note that if the extreme points of the polyhedra defined by the linear relaxation of
an integer linear programming problem are integers, then the optimal solution of the integer
linear programming problem is equal to the optimal solution of its linear relaxation. It is
wellknown that linear programming problems can be solved in polynomial time. Following
Lemma 3.1 and Theorem 3.2, the weighted maximum-clique transversal set problem is
polynomial-time solvable for balanced graphs.

4. Strongly Chordal Graphs

In this section, we consider the weighted maximum-clique transversal set problem for
strongly chordal graphs.

Let G = (V, E) be a graph. A vertex v is simplicial if all vertices of NG[v] form a clique.
The ordering (v1, v2, . . . , vn) of the vertices of V is a perfect elimination ordering of G if for all
i ∈ {1, . . . , n}, vi is a simplicial vertex of the subgraphGi ofG induced by {vi, vi+1, . . . , vn}. Let
Ni[v] denote the closed neighborhood of v in Gi. Rose [25] showed the characterization that
a graph is chordal if and only if it has a perfect elimination ordering. A perfect elimination
ordering is called a strong elimination ordering if the following condition is satisfied.

For i ≤ j ≤ k if vj and vk belong toNi[vi] in Gi, then Ni[vj] ⊆Ni[vk].
Farber [26] showed that a graph is strongly chordal if and only if it admits a strong

elimination ordering. So far, the fastest algorithm to recognize a strongly chordal graph and
give a strong elimination ordering takes O(m logn) [27] or O(n2) time [28].

Definition 4.1. Let G = (V, E) be a graph and Q(G) = {Q1, Q2, . . . , Q�}. Let X(G) =
⋃�

i=1 Qi.
The VQ-incidence graph of G, denoted byH′(G), is defined as follows. The vertex set ofH′(G)
is X(G) ∪ S′(G) where S′(G) = {s′1, s

′
2, . . . , s

′
�
}. InH′(G), (1) S′(G) is an independent set, (2)
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two vertices of X(G) are adjacent if they are adjacent in G, and (3) for 1 ≤ i ≤ �, s′i ∈ S′(G) is
adjacent to vj ∈ X(G) if vj ∈ Qi in G.

Definition 4.2. A dominating set S of a graph G is a subset of V (G) such that |S ∩NG[v]| ≥ 1
for every vertex v ∈ V (G). The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. The weighted dominating set problem is to find a
dominating set S of a weighted graph G = (V, E,w) such that w(S) is minimized.

Lemma 4.3. Let G = (V, E,w) be a weighted graph. Let wH′ be a vertex-weight function ofH′(G)
defined by wH′(v) = ∞ if v ∈ S′(G) and wH′(v) = w(v) if v ∈ X(G). A maximum-clique
transversal set of G of minimum weight is equivalent to a dominating set of H′(G) of minimum
weight.

Proof. Let τ̃M be the minimum weight of a maximum-clique transversal set of G and let γ̃ be
the minimum weight of a dominating set ofH′(G).

Suppose that D̂ is a maximum-clique transversal set of G of minimum weight. Then
everymaximum clique ofG has at least one vertex in D̂. By the construction ofH′(G), a vertex
s′ ∈ S′(G) is adjacent to the vertices of a maximum clique of G. Therefore, D̂ is a dominating
set ofH′(G). We have γ̃ ≤ τ̃M.

Conversely, we let D be a dominating set of H′(G) of minimum weight. Clearly, D
does not contain any vertex in S′(G). For any vertex s ∈ S′(G), the set D has a vertex in
NH′(G)(s). By the construction ofH′(G),NH′(G)(s) is a maximum clique of G. Therefore, D is
a maximum-clique transversal of G. We have τ̃M ≤ γ̃ .

Following the discussion above, τ̃M = γ̃ and thus the lemma holds.

Lemma 4.4. LetG be a strongly chordal graph. ThenH′(G) is a strongly chordal graph, and a strong
elimination ordering ofH′(G) can be obtained from a strong elimination ordering of G in O(n +m)
time.

Proof. A strongly chordal graph is chordal. It has at most n maximal cliques, and all of
its maximal cliques can be enumerated in O(n + m) time [29]. Then, all maximum cliques
Q1, Q2, . . . , Q� of a strongly chordal graph can be enumerated in O(n +m) time.

Let C(G) = {C1, C2, . . . , Cp} and S(G) = {s1, s2, . . . , sp}. The vertex-clique incidence graph
ofG, denoted byH(G), is defined as follows. The vertex set ofH(G) is V (G)∪S(G). InH(G),
(1) S(G) is an independent set, (2) two vertices of V are adjacent if they are adjacent in G,
and (3) for 1 ≤ i ≤ p, si ∈ S(G) is adjacent to vj ∈ V (G) if vj ∈ Ci in G. Let S′ be a maximum
subset of S(G) such thatNH(G)(s′) is a maximum clique of G for each vertex s′ ∈ S′. Note that
Q(G) ⊆ C(G) and X(G) ⊆ V (G). Therefore, H′(G) is isomorphic to the subgraph of H(G)
induced by X(G) ∪ S′.

Guruswami and Rangan [17] showed thatH(G) is a strongly chordal graphwithO(n+
m) edges and O(n) vertices, and that a strong elimination ordering ofH(G) can be obtained
from a given one for G in O(n + m) time. Therefore, H′(G) is also a strongly chordal graph
and can be constructed fromH(G) in O(n +m) time.

Suppose that n1 = |V (H(G))| and n2 = |V (H′(G))|. Then, n2 ≤ n1. Let
(w1, w2, . . . , wn1 ) be a strong elimination ordering of H(G). Let (wx1 , wx2 , . . . , wxn2

) be
the ordering of the vertices in H′(G) obtained by removing all the vertices in V (H(G)) \
V (H′(G)) from the ordering (w1, w2, . . . , wn1). It can be easily verified that the ordering
(wx1 , wx2 , . . . , wxn2

) is also a strong elimination ordering ofH′(G). Following the discussion
above, the lemma holds.
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Theorem 4.5. The weighted maximum-clique transversal set problem can be solved inO(n+m) time
for a strongly chordal graph G if a strong elimination ordering is given.

Proof. It follows from Lemmas 4.3 and 4.4 and the result that the weighted dominating set
problem can be solved in O(n +m) time for a strongly chordal graph if a strong elimination
ordering is given [30].

5. Helly Circular-Arc Graphs

In the section, we consider the weighted maximum-clique transversal set problem for Helly
circular-arc graphs.

Definition 5.1. Let S be a set. Let P be a set of some positive integers. A collection {Si}i∈P of
subsets of S is said to satisfy the Helly property if J ⊆ P and Si ∩ Sj /= ∅ for all i, j ∈ J implies
⋂

j∈J Sj /= ∅.

Let F be a collection of nonempty sets. The intersection graph G of F is obtained by
representing each set in F as a vertex and connecting two vertices with an edge if and only if
their corresponding sets intersect. A circular-arc modelM is a pair (C,A), where C is a circle
and A is a collection of arcs of C. If a graph G is the intersection graph of A, then G is a
circular-arc graph. If A satisfies the Helly property, then G is a Helly circular-arc graph and
M is called a Helly circular-arc model of G. For an arc A ∈ A, let v(A) be the vertex of G
corresponding to A. ForA′ ⊆ A, let V (A′) =

⋃
A∈A′{v(A)}. Let p be a point of C and letA(p)

be the collection of arcs that contain p. If V (A(p)) is a maximal clique of G, then p is called
a clique point. Suppose that p1 and p2 are distinct points of C. If A(p1) = A(p2), then p1 and
p2 are equivalent. A clique point representation ofM is a maximum set of nonequivalent clique
points of C.

Let M = (C,A) be a circular-arc model of a Helly circular-arc graph G. Let X be a
maximal clique of G and letW = {c1, c2, . . . , cp} be a clique point representation ofM. Due to
Helly property, the arcs corresponding to vertices inX have a point on the circleC in common.
It is clear that a point b of C is a clique point if and only if V (A(b)) is a maximal clique of G.
Then, we have C(G) = {V (A(c1)), V (A(c2)), . . . , V (A(cp))}.

If s and t are points of C, we use (s, t) to denote an arc of A starting at s and ending
at t in clockwise direction. For each arc A = (s, t) ∈ A, the points s, t are called the extremes
of A. We also use s(A) and t(A) to denote the starting point and ending point of the arc A,
respectively. Without loss of generality, we assume that (1) all arcs of C are open arcs, (2) no
single arc entirely covers C, and (3) no two extremes of distinct arcs ofA coincide.

Let A = {A1, A2, . . . , An} and Ai = (si, ti) for 1 ≤ i ≤ n. An intersection segment (si, tj)
is the contiguous part of C formed by two consecutive extremes si and tj , where si is the
starting point of some arc Ai ∈ A and tj is the ending point of an arc Aj ∈ A in clockwise
direction. A point inside an intersection segment is called an intersection point. There are at
most n intersection segments and every clique point is an intersection point [13].

Let H be a weighted Helly circular-arc graph with a Helly circular-arc model M =
(C,A). Lin et al. [31] proposed a linear-time algorithm that finds a clique point representation
W ofM. Based upon their algorithm, we have the following theorem.

Theorem 5.2. Let M = (C,A) be a Helly circular-arc model of a Helly circular-arc graph G. Let
W = {c1, c2, . . . , cp} be a clique point representation of M. Then, the clique number ω(G) and
A(c1),A(c2), . . . ,A(cp) can be computed in linear time.
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Guruswami and Rangan [17] showed that a Helly circular-arc graph G has at most n
maximal cliques. The following lemma can be easily verified according to the Helly property.

Lemma 5.3. Suppose thatG is a Helly circular-arc graph with a Helly circular-arc modelM = (C,A)
andω(G) > 1. Let v be a vertex ofG. Then, there are at most degG(v)maximal cliques ofG containing
the vertex v.

Lemma 5.4. Suppose that G = (V, E) is a Helly circular-arc graph with a Helly circular-arc model
(C,A).

(1) The VQ-incidence graphH′(G) has O(n +m) edges and O(n) vertices.

(2) TheVQ-incidence graphH′(G) is a Helly circular-arc graph and a Helly circular-arc model
(C,A′) ofH′(G) can be obtained from (C,A) in O(n +m) time.

Proof. (1) By Definition 4.1, V (H′(G)) = X(G)∪S′(G). Since G is a Helly circular-arc graph, it
has at most nmaximal cliques [17]. ThenH′(G) hasO(n) vertices. Without loss of generality,
we assume that the clique number ω(G) > 1. By Lemma 5.3 and the construction of H′(G),
every vertex v ∈ X(G) is adjacent to at most degG(v) vertices in S′(G). Hence, the number of
E(H′(G)) is O(m +

∑
v∈X(G)(degG(v) + 1)) = O(n +m).

(2) Let W = {c1, c2, . . . , cp} be a clique point representation of M. The clique point
representation Q can be constructed in linear time [31]. Following Theorem 5.2, the clique
number ω(G) and the arc sets A(c1),A(c2), . . . ,A(cp) can be computed in linear time. Then
C(G) = {V (A(c1)), V (A(c2)), . . . , V (A(cp))}.

Let P = {p1, p2, . . . , p�} be a maximum subset of Q such that V (A(pi)) is a maximum
clique of G for 1 ≤ i ≤ �. The set P and the arc setsA(p1),A(p2), . . . ,A(p�) can be computed
in linear time. Then Q(G) = {V (A(p1)), V (A(p2)) , . . . , V (A(p�))}.

LetAP =
⋃�

i=1A(pi) and letAW be a set of � arcs of C such that each arc ofAW contains
exactly one clique point of P and contains no extremes of arcs ofAP . It follows thatH′(G) is
a Helly circular-arc graph and (C,AP ∪ AW) is a Helly circular-arc graph model for H′(G).
Hence, H′(G) is a Helly circular-arc graph, and a Helly circular-arc model (C,A′) of H′(G)
can be obtained from (C,A) in O(n +m) time.

Theorem 5.5. The weighted maximum-clique transversal set problem can be solved inO(n+m) time
for a Helly circular-arc graph G = (V, E,w) if a Helly circular-arc modelM = (C,A) is given.

Proof. It follows from Lemmas 4.3 and 5.4, and the result that the weighted dominating set
problem can be solved inO(n+m) time for a circular-arc graph if a circular-arc model is given
[32].

6. Comparability Graphs

A directed graph (or just digraph)D = (V,A) consists of a nonempty finite set V of vertices and
a finite set A of ordered pairs of distinct vertices called arrows. We call V the vertex set and
A the arrow set of D. We also use V (D) and A(D) to denote the vertex set and arrow set of
D, respectively. For an arrow 〈u, v〉, the first vertex u is its tail and the second vertex v is its
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head. We also say that the arrow 〈u, v〉 leaves u and enters v. For a vertex v of D, we use the
following notations:

N+
D(v) = {w ∈ V \ {v} | 〈v,w〉 ∈ A}, N−

D(v) = {u ∈ V \ {v} | 〈u, v〉 ∈ A}. (6.1)

The sets N+
D(v),N

−
D(v), and ND(v) = N+

D(v) ∪ N−
D(v) are called the outneighborhood,

inneighborhood, and neighborhood of v, respectively. We call the vertices in N+
D(v),N

−
D(v), and

ND(v) the outneighbors, inneighbors, and neighbors of v, respectively.
A directed walk in a digraph D = (V,A) from vertex u to vertex v, or simply a directed

(u, v)-walk is a sequence of vertices (v0, v1, . . . , vn) such that u = v0, v = vn, and 〈vi−1, vi〉 is an
arrow in D for 1 ≤ i ≤ n, where n is called the length of this walk. A directed path is a directed
walk in which no vertex is repeated. A directed (s, t)-path is directed path starting at s and
ending at t. A directed Hamiltonian path is a directed path that visits each vertex of D exactly
once. A directed cycle is a directed (v, v)-walk in which no vertex is repeated except v. Arrow
set A is a transitive relation on V if for all u, v,w ∈ V , the following holds:

If 〈u, v〉 ∈ A and 〈v,w〉 ∈ A, then 〈u,w〉 ∈ A. (6.2)

Let G = (V, E) be an undirected graph. Then the directed graph D = (V,A) is an
orientation of G if for all (x, y) ∈ E, either 〈x, y〉 ∈ A or 〈y, x〉 ∈ A and for all 〈x, y〉 ∈ A,
(x, y) ∈ E holds. IfA is a transitive relation on V , thenD is a transitive orientation ofG. If there
are no directed cycles in D, then D is an acyclic orientation of G. Assume that D′ = (V ′, A′)
is a directed graph. An undirected graph G = (V ′, E) is the underlying graph of D′ if for all
〈x, y〉 ∈ A′, (x, y) ∈ E and for all (x, y) ∈ E, either 〈x, y〉 ∈ A′ or 〈y, x〉 ∈ A′.

An undirected graph G is a comparability graph if and only if it has a transitive
orientation. Figure 1 shows a comparability graph G and its transitive orientation.

Given a comparability graph G = (V, E), a transitive orientation of G can be found
in linear time [33]. Chang et al. [1] solved the maximum-clique transversal set problem in
O(m

√
n) time for comparability graphs. In this section, we show how to use a transitive

orientation of a comparability graph G = (V, E) to solve the weighted maximum-clique
transversal set problem on G in O(nm log(n2/m)) time.

Definition 6.1. A tournament is an orientation of a complete graph.

Theorem 6.2 (Rédei [34]). Every tournament contains a directed Hamiltonian path.

Lemma 6.3. There exists a one-to-one correspondence between the set of maximum cliques of a
comparability graph G and the set of longest directed paths of a transitive orientation D of G.

Proof. Let G = (V, E) be a comparability graph and let D = (V,A) be a transitive orientation
of G. By the transitive relation on V , each directed path inD corresponds to a clique of G. Let
(v1, v2, . . . , vk) be a longest directed path ofD. If S = {v1, v2, . . . , vk} is not a maximum clique
of G, then there exists a vertex v ∈ V \ S such that S ∪ {v} is a clique of G. With the help of
Theorem 6.2, we know that there is a directed path of length k+1. However, it contradicts that
the length of a longest directed path is k. Hence, each longest directed path ofD corresponds
to a maximum clique of G.
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Figure 1: (a) A comparability graph G. (b) A transitive orientation of G.

Conversely, let S = {v1, v2, . . . , vk} be a maximum clique of G. With the help of
Theorem 6.2, we know that there exists a directed path P of length k. Assume that P is
not a longest directed path in D. Then there exists a path of length greater than k. By the
transitive relation on V , there is a clique whose number of vertices is larger than k. However,
it contradicts that S is a maximum clique ofG. Hence, eachmaximum clique ofG corresponds
to a longest directed path in D. Following the discussion above, the lemma holds.

Suppose that G = (V, E) is a comparability graph and D = (V,A) is a transitive
orientation of G. By the transitive relation on V , D has no directed cycle. It is known that
an acyclic digraph H has a topological sort of V (H), that is, a linear ordering of all vertices in
V (H) such that if H contains an arrow 〈u, v〉 ∈ A, then u precedes v in the ordering [35].
Clearly, there exists at least one vertex u such that no vertex enters it. We call such vertices
the source vertices. Similarly, there exists at least one vertex v such that no vertex leaves it.
Such vertices are called the sink vertices. We add a new vertex s to D and add arrows from s
to every source vertex in D. Correspondingly we add another new vertex t and arrows from
every sink vertex inD to t. LetD′ = (V ′, A′) be the resulting digraph. The digraphD′ is called
an (s, t)-transitive orientation of G.

Lemma 6.4. Every longest directed path in a transitive orientation D of a comparability graph G =
(V, E) starts at a source vertex and ends at a sink vertex.

Proof. It can be easily verified according to the transitive relation on V and the definition of a
longest directed path.

Lemma 6.5. Let G = (V, E) be a comparability graph and let D be a transitive orientation of G.
Suppose that D′ is the (s, t)-transitive orientation of G. Let P = (s = v0, v1, v2, . . . , vi−1, vi = t) be
an arbitrary directed (s, t)-path in D′. Directed path P has the longest length if and only if the path
(v1, v2, . . . , vi−1) is a longest directed path in D.

Proof. It can be easily verified by Lemma 6.4.
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Definition 6.6. Let G = (V, E) be an undirected graph. A vertex set S ⊂ V is a vertex separator
of G if G[V \ S] is disconnected. A set S ⊂ V is an (a, b)-vertex separator of G if a and b are in
distinct connected components of G[V \ S].

In [1], Chang et al. remove some vertices (except for s and t) and arrows from an (s, t)-
transitive orientationD′ of a comparability graph G to obtain a new digraphD∗ such that (1)
every directed (s, t)-path in D∗ is a longest directed path in D′ and (2) every longest directed
path in D′ is a directed (s, t)-path in D∗. The construction of D∗ can be done in linear time.
We call D∗ the (s, t)-longest-path digraph of G. By Lemmas 6.3 and 6.5, a subset S of V (G) is a
maximum clique if and only if s, t, and all vertices in S can form a directed (s, t)-path in D∗.
Therefore, we have the following theorem.

Theorem 6.7. LetG be a comparability graph with a vertex-weight functionw and letD∗ be an (s, t)-
longest-path digraph of G. Suppose that G∗ is the underlying graph of D∗. An (s, t)-vertex separator
S of G∗ of minimum weightw(S) is equivalent to a maximum-clique transversal set of G of minimum
weight.

Definition 6.8. LetD = (V,A) be a flow network with a capacity function c. Let s be the source
vertex of the network, and let t be the sink vertex. Let S be a subset of vertices such that s ∈ S
and t ∈ V \ S. Let S = V \ S. We use (S;S) to denote the set of arrows which leave from a
vertex of S and enter a vertex of S. The (S;S) is called a cut of D. Let c(S) =

∑
e∈(S;S) c(e)

be the capacity of the cut determined by S. A minimum cut S is a cut of D such that c(S) is
minimized.

Theorem 6.9 (Max-flow min-cut theorem [36, 37]). In every network, the maximum total value
of a flow equals the minimum capacity of a cut.

Suppose that G is a comparability graph with a vertex-weight functionw andD∗ is an
(s, t)-longest-path digraph of G. We construct a flow network D̂ = (V̂ , Â) from D∗ as follows:

(1) V̂ = {s, t} ∪ {v1, v2 | v ∈ V (D∗) \ {s, t}};

(2) Â = A1 ∪ A2 ∪ A3 ∪ A4, where A1 = {〈s, v1〉 | 〈s, v〉 ∈ A(D∗)}, A2 = {〈v1, v2〉 |
v ∈ V (D∗) \ {s, t}}, A3 = {〈u2, v1〉 | 〈u, v〉 ∈ A(D∗) and u, v ∈ V (D∗) \ {s, t}}, and
A4 = {〈v2, t〉 | 〈v, t〉 ∈ A(D∗)};

(3) For each arrow 〈v1, v2〉 ∈ A2, let the weight w(v) be its capacity. For each edge in
A1 ∪A3 ∪A4, we assign the capacity∞ to it.

Let (S;S) be a minimum cut of D̂. By the max-flow min-cut theorem, (S;S) does not
contain any arrow in A1 ∪ A3 ∪ A4. The set (S;S) is a subset of A2. Suppose that (S;S) =
{〈x1

�1
, x2

�1
〉, 〈x1

�2
, x2

�2
〉, . . . , 〈x1

�i
, x2

�i
〉}. Let S′ = {x�1 , x�2 , . . . , x�i}. It can be easily verified that S′

is an (s, t)-vertex separator of G∗ of minimum weight. Following Theorem 6.7, we know that
the set S′ is a maximal-clique transversal set of G of minimum weight. Note that a minimum
cut of a flow network can be computed in O(nm log(n2/m)) time [38]. Therefore, we have
the following result.

Theorem 6.10. Given a comparability graph G with a vertex-weight function w, the weighted
maximum-clique transversal set problem can be solved in O(nm log(n2/m)) time.
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7. Graphs of Bounded Treewidth k

In this section we show that the weighted maximum-clique transversal set problem can be
solved in linear time for graphs of bounded treewidth.

A clique with k vertices is called a k-clique. A (k + 1)-clique is a k-tree. A k-tree with
n + 1 vertices can be obtained from a k-tree with n vertices by making a new vertex adjacent
to exactly all vertices of a k-clique. For a k-tree G, ω(G) = k if G is a k-clique and ω(G) =
k + 1 otherwise. For convenience, we define k-trees as having at least k + 1 vertices. With this
definition, the treewidth of a k-tree is k and the clique number of a k-tree is k + 1. Then, a
k-clique is a (k − 1)-tree and the treewidth of a k-clique is k − 1.

Subgraphs of k-trees are called partial k-trees. If a partial k-tree G is a subgraph of a
k-tree H, then we call H a k-tree embedding for G. The smallest k such that a graph G is a
partial k-tree is called the treewidth ofG. It is clear that a graph of treewidth k is also a partial
�-tree for every � ≥ k. The class of partial k-trees is exactly the class of graphs of treewidth at
most k.

The treewidth of a graph can be defined by the concept of tree decompositions of a graph
(see, e.g., [39]).

Definition 7.1. A tree decomposition of a graph G = (V, E) is a pair (T,S), where T is a tree with
� nodes and S is a collection of subsets S1, S2, . . . , S� of V such that a node i in T corresponds
to the subset Si ∈ S for 1 ≤ i ≤ � and the following three conditions are satisfied.

(1) Every vertex x ∈ V appears in at least one subset Si ∈ S.
(2) For every edge e ∈ E, there is at least one subset Si ∈ S containing both endpoints

of e.

(3) If a vertex x appears in two subsets Si, Sj ∈ S, then it appears in every subset Sk for
k on the (unique) path from node i to node j in T .

Definition 7.2. The width of a tree decomposition (T,S) of a graph G is the maximum
cardinality minus one over all subsets of S. The treewidth of a graph G is the minimum width
over all tree decompositions of G.

Lemma 7.3 (Bodlaender [40]). If the treewidth of a graph G = (V, E) is at most k, then |E| ≤
k|V| − (1/2)k(k + 1).

By Lemma 7.3, O(|V | + |E|) = O(kn) for a partial k-tree G = (V, E) with bounded k.
It was shown in [40] that for each constant k it can be determined in linear time whether a
graph G has treewidth at most k.

A tree decomposition (T,S) is rooted if the tree T is equipped with some root node. A
rooted tree decomposition is called nice if the following conditions are satisfied.

(1) Every node of T has at most two children.

(2) If a node i has two children j and k then Si = Sj = Sk.

(3) If a node i has only one child j then either |Si| = |Sj | + 1 and Sj ⊂ Si or |Si| = |Sj | − 1
and Si ⊂ Sj .

By [39], it is fairly easy to see that every graph with treewidth k has a nice tree
decomposition of width k and that it can be obtained in linear time from an ordinary
tree decomposition with the same width. Furthermore any graph on n vertices has a nice
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tree decomposition with at most 4n nodes. In the following, we assume that a nice tree
decomposition (T,S) of G of width k is part of the input.

Lemma 7.4 (Bodlaender and Möhring [41]). Let (T,S) be a tree decomposition for a graph G. For
every clique C of G, there exists a subset X ∈ S such that C is a subset of X.

Lemma 7.5. Given a nice tree decomposition (T,S) of a graph G of bounded treewidth k, the
maximum cliques of G = (V, E) can be enumerated in O(3k/3n) time.

Proof. Note that a nice tree decomposition of a graph of bounded treewidth k has at most
4n nodes. In other words, S contains at most 4n subsets of V . Let S = {S1, S2, . . . , S�}. For
1 ≤ i ≤ �, |Si| ≤ k + 1. By Lemma 7.4, a maximum clique is contained in a subset Si ∈ S. For
each Si ∈ S, all maximal cliques of G[Si] can be enumerated inO(3k/3) time by the algorithm
in [42]. Therefore, all maximum cliques of G can be extracted in O(3k/3n) time.

Lemma 7.6. Suppose that G is a graph of bounded treewidth k with a nice tree decomposition (T,S).

(1) The VQ-incidence graphH′(G) is a partial (k + 1)-tree.

(2) A tree decomposition of the VQ-incidence graphH′(G) can be constructed in linear time.

Proof. Clearly, ω(G) ≤ k + 1 and G is also a partial (k + 1)-tree. By Definition 4.1, V (H′(G)) =
X(G)∪S′(G), and each vertex in S′(G) is adjacent to all vertices of exactly onemaximum clique
of G. It can be easily verified that there exists a (k+1)-treeH ′ such that V (H ′) = V (G)∪S′(G)
andH′(G) is a subgraph ofH ′. Therefore,H′(G) is a partial (k + 1)-tree. It was shown in [40]
that for each constant k there is a linear-time algorithm for finding a treewidth decomposition
for a graph of bounded treewidth k. Hence, a tree decomposition ofH′(G) can be constructed
in linear time. Following the discussion above, the lemma holds.

Theorem 7.7. The weighted maximum-clique transversal set problem can be solved in O(4kn) time
for a graph G of bounded treewidth k with a tree decomposition (T,S).

Proof. Note that the weighted dominating set problem can be solved in O(4kn) time for a
weighted graph G = (V, E,w) of bounded treewidth k if a tree decomposition of G is given
[43]. By Lemmas 4.3, 7.5, and 7.6, the theorem holds.

8. Distance-Hereditary Graphs

This section deals with the weighted maximum-clique transversal set problem on distance-
hereditary graphs. We show that the problem is linear-time solvable for distance-hereditary
graphs.

A graph is distance-hereditary if any two distinct vertices have the same distance in
every connected induced subgraph containing them. Chang et al. [44] showed that distance-
hereditary graphs can be defined, recursively.

Theorem 8.1 (Chang et al. [44]). Distance-hereditary graphs can be defined recursively as follows.

(1) A graph consisting of only one vertex is distance-hereditary, and the twin set is the vertex
itself.
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(2) IfG1 andG2 are disjoint distance-hereditary graphs with the twin sets TS(G1) and TS(G2),
respectively, then the graph G = G1 ∪G2 is a distance-hereditary graph and the twin set of
G is TS(G1) ∪ TS(G2). G is said to be obtained from G1 and G2 by a false twin operation.

(3) IfG1 andG2 are disjoint distance-hereditary graphs with the twin sets TS(G1) and TS(G2),
respectively, then the graph G obtained by connecting every vertex of TS(G1) to all vertices
of TS(G2) is a distance-hereditary graph, and the twin set of G is TS(G1) ∪ TS(G2). G is
said to be obtained from G1 and G2 by a true twin operation.

(4) IfG1 andG2 are disjoint distance-hereditary graphs with the twin sets TS(G1) and TS(G2),
respectively, then the graph G obtained by connecting every vertex of TS(G1) to all vertices
of TS(G2) is a distance-hereditary graph, and the twin set of G is TS(G1). G is said to be
obtained from G1 and G2 by a pendant vertex operation.

By Theorem 8.1, a distance-hereditary graph G has its own twin set TS(G), the twin
set TS(G) is a subset of vertices of G, and it is defined recursively. The construction of G from
disjoint distance-hereditary graphs G1 and G2 as described in Theorem 8.1 involves only the
twin sets of G1 and G2.

Following Theorem 8.1, we can construct a binary ordered decomposition tree. In this
decomposition tree, each leaf is a single vertex graph, and each internal node represents one
of the three operations: pendant vertex operation (labeled by P), true twin operation (labeled
by T), and false twin operation (labeled by F). This binary ordered decomposition tree is
called a PTF-tree. It has 2n − 1 tree nodes and can be obtained in linear time [44].

Definition 8.2. Let G = (V, E) be a distance-hereditary graph and let TS(G) be the twin set of
G. We useQ(G) to denote the collection of maximum cliques of G. ThereforeQ(G[TS(G)]) is
the collection of all maximum cliques of G[TS(G)]. Let QE(G) = Q(G) ∪ Q(G[TS(G)]). The
set QE(G) denotes the collection of all maximum cliques of G and all maximum cliques of
G[TS(G)].

Definition 8.3. Suppose that G is a distance-hereditary graph obtained from two disjoint
distance-hereditary graphsG1 andG2 by a true twin operation or a pendant vertex operation.
We useQX12(G) to denote the set {Q1 ∪Q2 | Q1 ∈ Q(G1[TS(G1)]) andQ2 ∈ Q(G2[TS(G2)])}.

Lemma 8.4. Let G be a distance-hereditary graph obtained from two disjoint distance-hereditary
graphs G1 and G2 by a true twin operation or a pendant vertex operation. Then QX12(G) =
Q(G[TS(G1) ∪ TS(G2)]).

Proof. This lemma can be easily proved by contradiction.

Lemma 8.5. Suppose G is a graph obtained from two disjoint distance-hereditary graphs G1 and G2

by a true twin operation or a pendant vertex operation. LetS be a subset of V (G) such thatS intersects
with all maximum cliques of G[TS(G1) ∪ TS(G2)]. Then either S ∩ TS(G1) is a maximum-clique
transversal set of G1[TS(G1)] or S ∩ TS(G2) is a maximum-clique transversal set of G2[TS(G2)].

Proof. Assume for contrary that neither S ∩ TS(G1) is a maximum-clique transversal set of
G1[TS(G1)] nor S ∩ TS(G2) is a maximum-clique transversal set of G2[TS(G2)]. There exist
maximum cliques Q1 and Q2 of G1[TS(G1)] and G2[TS(G2)], respectively, such that S does
not contain any vertex in them. By Lemma 8.4, Q1 ∪ Q2 is a maximum clique of G[TS(G1) ∪
TS(G2)]. Then, S does not contain any vertex in Q1 ∪ Q2, which contradicts the assumption
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thatS intersects all maximum cliques ofG[TS(G1)∪TS(G2)]. Following the discussion above,
the lemma holds.

Definition 8.6. Let G = (V, E,w) be a weighted graph. Suppose that W = {V1, V2, . . . , V�},
where Vi is a subset of V for 1 ≤ i ≤ �. Let minW be an element in W such that the weight of
the element is minimum.

In the paper [1], Chang et al. presented a linear-time algorithm for the maximum-
clique transversal set problem. Based upon their algorithm, we develop a linear-time
algorithm to solve the weighted maximum-clique transversal set problem by the dynamic
programming technique.

For a distance-hereditary graph G = (V, E), we use ω(G) (resp., ωt(G)) to denote the
clique number of G (resp., G[TS(G)]) and use CT(G) (resp., CTt(G)) to denote a maximum-
clique transversal set of G (resp., G[TS(G)]) of minimum weight. A strong maximum-clique
transversal set S of a distance-hereditary graph G is a subset of V (G) such that S intersects all
cliques in QE(G). We use SCT(G) to denote a strong maximum-clique transversal set of G of
minimum weight.

Lemma 8.7. Suppose that G is a distance-hereditary graph of only one vertex v. Then, ω(G) =
ωt(G) = 1, and CT(G) = CTt(G) = SCT(G) = {v}.

Proof. It follows from the definitions.

Lemma 8.8. Suppose that G is formed from two disjoint distance-hereditary graphs G1 and G2 by a
“false twin” operation.

(1) If ωt(G1) = ωt(G2) and ω(G1) = ω(G2), then ω(G) = ω(G1) = ω(G2), ωt(G) =
ωt(G1) = ωt(G2), CT(G) = CT(G1) ∪ CT(G2), CTt(G) = CTt(G1) ∪ CTt(G2), and
SCT(G) = SCT(G1) ∪ SCT(G2).

(2) If ωt(G1) = ωt(G2) and ω(G1) > ω(G2), then ω(G) = ω(G1), ωt(G) = ωt(G1) =
ωt(G2), CT(G) = CT(G1), CTt(G) = CTt(G1) ∪ CTt(G2), and SCT(G) = SCT(G1) ∪
CTt(G2).

(3) If ωt(G1) = ωt(G2) and ω(G2) > ω(G1), then ω(G) = ω(G2), ωt(G) = ωt(G1) =
ωt(G2), CT(G) = CT(G2), CTt(G) = CTt(G2) ∪ CTt(G1), and SCT(G) = SCT(G2) ∪
CTt(G1).

(4) Ifωt(G1) > ωt(G2) andω(G1) = ω(G2), thenω(G) = ω(G1) = ω(G2),ωt(G) = ωt(G1),
CT(G) = CT(G1)∪CT(G2), CTt(G) = CTt(G1), and SCT(G) = SCTv(G1)∪CT(G2).

(5) Ifωt(G2) > ωt(G1) andω(G1) = ω(G2), thenω(G) = ω(G1) = ω(G2),ωt(G) = ωt(G2),
CT(G) = CT(G1) ∪ CT(G2), CTt(G) = CTt(G2), and SCT(G) = SCT(G2) ∪ CT(G1).

(6) If ωt(G1) > ωt(G2) and ω(G1) > ω(G2), then ω(G) = ω(G1), ωt(G) = ωt(G1),
CT(G) = CT(G1), CTt(G) = CTt(G1), and SCT(G) = SCT(G1).

(7) If ωt(G2) > ωt(G1) and ω(G2) > ω(G1), then ω(G) = ω(G2), ωt(G) = ωt(G2),
CT(G) = CT(G2), CTt(G) = CTt(G2), and SCT(G) = SCT(G2).

(8) If ωt(G1) > ωt(G2) and ω(G1) < ω(G2), then ω(G) = ω(G2), ωt(G) = ωt(G1),
CT(G) = CT(G2), CTt(G) = CTt(G1), and SCT(G) = CTt(G1) ∪ CT(G2).

(9) If ωt(G2) > ωt(G1) and ω(G2) < ω(G1), then ω(G) = ω(G1), ωt(G) = ωt(G2),
CT(G) = CT(G1), CTt(G) = CTt(G2), and SCT(G) = CTt(G2) ∪ CT(G1).
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Proof. In the following, we just show the correctness for Statement (4) since other statements
can be verified in similar ways. Note that G = G1 ∪ G2 and TS(G) = TS(G1) ∪ TS(G2). Since
ωt(G1) > ωt(G2) and ω(G1) = ω(G2), ω(G) = ω(G1) = ω(G2), and ωt(G) = ωt(G1). Therefore,
Q(G) = Q(G1) ∪ Q(G2) and Q(G[TS(G)]) = Q(G1[TS(G1)]). We have CT(G) = CT(G1) ∪
CT(G2) and CTt(G) = CTt(G1).

By definition, QE(G) = Q(G) ∪ Q(G[TS(G)]) and thus QE(G) = Q(G1) ∪ Q(G2) ∪
Q(G1[TS(G1)]). Then QE(G) = QE(G1) ∪ Q(G2). Hence, SCT(G) = SCT(G1) ∪ CT(G2).
Following the discussion above, the statement is true.

Lemma 8.9. Suppose that G is formed from two disjoint distance-hereditary graphs G1 and G2 by a
“pendant vertex” operation.

(1) If ωt(G1) + ωt(G2) > max{ω(G1), ω(G2)}, then ω(G) = ωt(G1) + ωt(G2), ωt(G) =
ωt(G1), CT(G) = min{CTt(G1),CTt(G2)}, CTt(G) = CTt(G1), and SCT(G) =
CTt(G1).

(2) If ωt(G1) + ωt(G2) = ω(G1) > ω(G2), then ω(G) = ω(G1) = ωt(G1) + ωt(G2),
ωt(G) = ωt(G1), CT(G) = min{SCT(G1),CTt(G2) ∪ CT(G1)}, CTt(G) = CTt(G1),
and SCT(G) = SCT(G1).

(3) If ωt(G1) + ωt(G2) = ω(G2) > ω(G1), then ω(G) = ω(G2) = ωt(G1) + ωt(G2),
ωt(G) = ωt(G1), CT(G) = min{SCT(G2),CTt(G1) ∪ CT(G2)}, CTt(G) = CTt(G1),
and SCT(G) = CTt(G1) ∪ CT(G2).

(4) If ωt(G1) +ωt(G2) = ω(G1) = ω(G2), then ω(G) = ω(G1) = ω(G2) = ωt(G1) +ωt(G2),
ωt(G) = ωt(G1), CT(G) = min{SCT(G1) ∪ CT(G2),SCT(G2) ∪ CT(G1)}, CTt(G) =
CTt(G1), and SCT(G) = SCT(G1) ∪ CT(G2).

(5) If ωt(G1) +ωt(G2) < ω(G1) and ω(G1) > ω(G2), then ω(G) = ω(G1), ωt(G) = ωt(G1),
CT(G) = CT(G1), CTt(G) = CTt(G1), and SCT(G) = SCT(G1).

(6) If ωt(G1) +ωt(G2) < ω(G2) and ω(G2) > ω(G1), then ω(G) = ω(G2), ωt(G) = ωt(G1),
CT(G) = CT(G2), CTt(G) = CTt(G1), and SCT(G) = CTt(G1) ∪ CT(G2).

(7) If ωt(G1) + ωt(G2) < ω(G2) and ω(G2) = ω(G1), then ω(G) = ω(G1) = ω(G2),
ωt(G) = ωt(G1), CT(G) = CT(G1) ∪ CT(G2), CTt(G) = CTt(G1), and SCT(G) =
SCT(G1) ∪ CT(G2).

Proof. In the following, we just show the correctness for Statement (3) since other statements
can be verified in similar ways.

By Theorem 8.1, TS(G) = TS(G1) and G is obtained from G1 and G2 by connecting
every vertex of TS(G1) to all vertices of TS(G2). Therefore, ωt(G) = ωt(G1) and CTt(G) =
CTt(G1).

We now consider ω(G) and CT(G). In this case, ωt(G1) + ωt(G2) = ω(G2) > ω(G1).
Then, ω(G) = ω(G2) = ωt(G1) + ωt(G2) and thus Q(G) = Q(G2) ∪ QX12(G). Clearly, CT(G)
is a subset of TS(G1) ∪ V (G2) and CT(G) ∩ V (G2) is a maximum-clique transversal set of G2.
By Lemma 8.4, we know that QX12(G) = G[TS(G1) ∪ TS(G2)]. Therefore, CT(G) intersects
all maximum cliques of G[TS(G1) ∪ TS(G2)]. By Lemma 8.5, either CT(G) ∩ TS(G1) is a
maximum-clique transversal set of G1[TS(G1)] or CT(G) ∩ TS(G2) is a maximum-clique
transversal set of G2[TS(G2)]. If CT(G) ∩ TS(G1) is a maximum-clique transversal set of
G1[TS(G1)], then we have CT(G) = CT(G2) ∪ CTt(G1). If CT(G) ∩ TS(G2) is a maximum-
clique transversal set of G2[TS(G2)], then CT(G) ∩ V (G2) is not only a maximum-clique
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transversal set of G but also a strong maximum-clique transversal set of G2. We have
CT(G) = SCT(G2). Hence, CT(G) = min{CTt(G1) ∪ CT(G2), SCT(G2)}.

We now consider SCT(G). By definition, SCT(G) intersects all maximum cliques in
Q(G[TS(G)]) and Q(G), respectively. Recall that TS(G) = TS(G1) and Q(G) = Q(G2) ∪
QX12(G). Therefore, SCT(G)∩TS(G1) is a maximum-clique transversal set ofG[TS(G1)] and
it also intersects all maximum cliques in QX12(G). Besides, SCT(G) ∩ V (G2) is a maximum-
clique transversal set of G2. Hence, SCT(G) = CTt(G1) ∪ CT(G2).

Following the discussion above, the statement is true.

Lemma 8.10. Suppose that a distance-hereditary graph G is formed from two disjoint distance-
hereditary graphs G1 and G2 by a “true twin” operation. Let i ∈ {1, 2}.

(1) If ωt(G1) + ωt(G2) > max{ω(G1), ω(G2)}, then ω(G) = ωt(G1) + ωt(G2),
ωt(G) = ωt(G1) + ωt(G2), CT(G) = min{CTt(G1),CTt(G2)}, CTt(G) =
min{CTt(G1),CTt(G2)}, and SCT(G) = min{CTt(G1),CTt(G2)}.

(2) If ωt(G1) + ωt(G2) = ω(G1) > ω(G2), then ω(G) = ω(G1) = ωt(G1) + ωt(G2),
ωt(G) = ωt(G1) + ωt(G2), CT(G) = min{SCT(G1),CTt(G2) ∪ CT(G1)}, CTt(G) =
min{CTt(G1),CTt(G2)}, and SCT(G) = min{SCT(G1),CTt(G2) ∪ CT(G1)}.

(3) If ωt(G1) + ωt(G2) = ω(G2) > ω(G1), then ω(G) = ω(G2) = ωt(G1) + ωt(G2),
ωt(G) = ωt(G1) + ωt(G2), CT(G) = min{SCT(G2),CTt(G1) ∪ CT(G2)}, CTt(G) =
min{CTt(G1),CTt(G2)}, and SCT(G) = min{SCT(G2),CTt(G1) ∪ CT(G2)}.

(4) If ωt(G1) + ωt(G2) = ω(G1) = ω(G2), then ω(G) = ω(G1) = ω(G2) = ωt(G1) +
ωt(G2), ωt(G) = ωt(G1) + ωt(G2), CT(G) = min{SCT(G1) ∪ CT(G2),SCT(G2) ∪
CT(G1)}, CTt(G) = min{CTt(G1),CTt(G2)}, and SCT(G) = min{SCT(G1) ∪
CT(G2),SCT(G2) ∪ CT(G1)}.

(5) Ifωt(G1)+ωt(G2) < ω(G1) andω(G1) > ω(G2), thenω(G) = ω(G1),ωt(G) = ωt(G1)+
ωt(G2), CT(G) = CT(G1), CTt(G) = min{CTt(G1),CTt(G2)}, and SCT(G) =
min{SCT(G1),CT(G1) ∪ CTt(G2)}.

(6) Ifωt(G1)+ωt(G2) < ω(G2) andω(G2) > ω(G1), thenω(G) = ω(G2),ωt(G) = ωt(G1)+
ωt(G2), CT(G) = CT(G2), CTt(G) = min{CTt(G1),CTt(G2)}, and SCT(G) =
min{SCT(G2),CT(G2) ∪ CTt(G1)}.

(7) Ifωt(G1)+ωt(G2) < ω(G2) andω(G2) = ω(G1), thenω(G) = ω(G1) = ω(G2),ωt(G) =
ωt(G1)+ωt(G2), CT(G) = CT(G1)∪CT(G2), CTt(G) = min{CTt(G1),CTt(G2)}, and
SCT(G) = min{SCT(G1) ∪ CT(G2),SCT(G2) ∪ CT(G1)}.

Proof. In the following, we just show that the correctness for Statement (3) since other
statements can be verified in similar ways.

By Theorem 8.1, TS(G) = TS(G1) ∪ TS(G2), and G is obtained from G1 and G2

by connecting every vertex in TS(G1) to all vertices in TS(G2). By Lemma 8.4, we have
Q(G[TS(G)]) = QX12(G). By Lemma 8.5, either CTt(G) ∩ TS(G1) is a maximum-clique
transversal set of G1[TS(G1)] or CTt(G) ∩ TS(G2) is a maximum-clique transversal set of
G2[TS(G2)]. Hence, we have ωt(G) = ωt(G1)+ωt(G2) and CTt(G) = min{CTt(G1),CTt(G2)}.

We now consider ω(G) and CT(G). In this case, ωt(G1) + ωt(G2) = ω(G2) > ω(G1).
Then, ω(G) = ω(G2) = ωt(G1) + ωt(G2) and thus Q(G) = Q(G2) ∪ QX12(G). Clearly,
CT(G) is a subset of TS(G1) ∪ V (G2) and CT(G) ∩ V (G2) is a maximum-clique transversal
set of G2. Note that QX12(G) = G[TS(G1) ∪ TS(G2)] = G[TS(G)]. By Lemma 8.5, either
CT(G) ∩ TS(G1) is a maximum-clique transversal set of G1[TS(G1)] or CT(G) ∩ TS(G2) is
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a maximum-clique transversal set of G2[TS(G2)]. If CT(G) ∩ TS(G1) is a maximum-clique
transversal set ofG1[TS(G1)], then we have CT(G) = CT(G2)∪CTt(G1). If CT(G)∩TS(G2) is
a maximum-clique transversal set ofG2[TS(G2)], then CT(G)∩V (G2) is not only amaximum-
clique transversal set of G but also a strong maximum-clique transversal set of G2. We have
CT(G) = SCT(G2). Hence, CT(G) = min{CTt(G1) ∪ CT(G2),SCT(G2)}.

We now consider SCT(G). By definition, SCT(G) intersects all maximum cliques in
Q(G[TS(G)]) andQ(G), respectively. Recall thatQX12(G) = G[TS(G1)∪TS(G2)] = G[TS(G)]
and Q(G) = Q(G2) ∪ QX12(G). Clearly SCT(G) ∩ V (G2) is a maximum-clique transversal
set of G2. By Lemma 8.5, either SCT(G) ∩ TS(G1) is a maximum-clique transversal set
of G1[TS(G1)] or SCT(G) ∩ TS(G2) is a maximum-clique transversal set of G2[TS(G2)].
If SCT(G) ∩ TS(G1) is a maximum-clique transversal set of G1[TS(G1)], then we have
SCT(G) = CT(G2) ∪ CTt(G1). If SCT(G) ∩ TS(G2) is a maximum-clique transversal set of
G2[TS(G2)], then SCT(G) ∩ V (G2) is not only a strong maximum-clique transversal set of G
but also a strongmaximum-clique transversal set ofG2. We have SCT(G) = SCT(G2). Hence,
SCT(G) = min{CTt(G1) ∪ CT(G2), SCT(G2)}.

Following the discussion above, the statement is true.

We can develop a dynamic programming algorithm to solve the weighted maximum-
clique transversal set problem in linear time for distance-hereditary graphs as follows.

Without loss of generality, we assume that G is a connected distance-hereditary graph
with a vertex-weight function w. Given a PTF-tree PTF(G) of G rooted at node r, our
algorithm starts from the leaves of PTF(G) and works upward to the root. For each node � of
PTF(G), let T� be the subtree of PTF(G) rooted at node �, and let G� represent the subgraph
of G induced by the leaves of T� . A node � represents either a single-vertex subgraph of G
or a subgraph G� of G obtained by applying one of pendant vertex, true twin, or false twin
operations to children of node �. We use �1 and �2 to denote the left and right children of node
�, respectively, if node � is a nonleaf node of PTF(G). ThereforeG = Gr andGr is formed from
Gr1 and Gr2 . For each node �, our algorithm computes ω(G�), ωt(G�), CT(G�), CTt(G�), and
SCT(G�), in O(1) time by Lemmas 8.7–8.10. Then CT(Gr) is a maximum-clique transversal
set of G of minimum weight. Note that PTF(G) has 2n − 1 tree nodes and can be constructed
in linear time. Hence, we obtain the following result.

Theorem 8.11. If G is a weighted distance-hereditary graph, then maximum-clique transversal set of
G of minimum weight can be computed in linear time.

9. Conclusions

In this paper, we have presented polynomial-time algorithms (most of them with linear
running time) for the weighted maximum-clique transversal set problem on split graphs,
balanced graphs, strongly chordal graphs, Helly circular-arc graphs, comparability graphs,
distance-hereditary graphs, and graphs of bounded treewidth. For further study, it is a great
challenge to work on the complexity of this problem for other classes of graphs.
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