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In the Steiner triple system, Bose (1939) constructed the 2−(v, 3, 1) design for v = 6n+3 and later on
Skolem (1958) constructed the same for v = 6n + 1. In the literature we found a pairwise balanced
design (PBD) for v = 6n + 5. We also found the 2-fold triple system of the orders 3n and 3n + 1. In
this paper, we construct a PBD for v = 6n + 4 and a 2-fold system of the order 3n + 2. The second
construction completes the 2-fold system for all n ∈ N.

1. Introduction

A Latin square of order n is an n × n array, each cell of which contains exactly one of the
symbols in {1, 2, . . . , n}, such that each row and each column of the array contain each of
the symbols in {1, 2, . . . , n} exactly once. A latin square is said to be idempotent if cell (i, i)
contains symbol i for 1 ≤ i ≤ n. A latin square of order 2n is said to be half-idempotent if
for 1 ≤ i ≤ n cells (i, i) and (n + i, n + i) contain the symbol i. A latin square is said to be
commutative if cells (i, j) and (j, i) contain the same symbol, for all 1 ≤ i, j ≤ n.

A quasi-group of order n is a pair (Q, ◦), where Q is a set of size n and “◦” is a binary
operation on Q such that for every pair of elements a, b ∈ Q the equations a ◦ x = b and
y ◦ a = b have unique solutions. As far as we are concerned a quasi-group is just a latin
square with a headline and a sideline.

A t−(v, k, λ) design is an ordered pair (X,B)whereX is a v set of points and B, called a
block set, is of k subsets ofX with the property that every t subset ofX is contained in exactly
λ blocks [1]. A t − (v, k, 1) design is defined as a Steiner system and denoted by S(t, k, v).
A Steiner triple system (STS) 2 − (v, 3, 1) is an ordered pair (S, B), where S is a finite set of
points or symbols, and B is a set of 3-element subsets of S called triples, such that each pair of
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distinct elements of S occurs together in exactly one triple of B. The order of a Steiner triple
system (S, B) is the size of the set S, denoted by |S| = v.

Theorem 1.1 (see [2, Theorem 1.1.3]). A Steiner triple system of order v exists if and only if v ≡ 1
or 3 (mod 6).

The Bose Construction (v ≡ 3 (mod 6), see [2, 3])

Let v = 6n+3 and let (Q, ◦) be an idempotent commutative quasi-group of order 2n+1, where
Q = {1, 2, . . . , 2n + 1}. Let S = Q × {1, 2, 3}), and define B to contain the following two types
of triples.

Type 1. For 1 ≤ i ≤ 2n + 1, {(i, 1), (i, 2), (i, 3)} ∈ B (see Figure 2).

Type 2. For 1 ≤ i ≤ 2n+1, {(i, 1), (j, 1), (i◦ j, 2)}, {(i, 2), (j, 2), (i◦ j, 3)}, {(i, 3), (j, 3), (i◦ j, 1)} ∈ B
(see Figure 2).

Then (S, B) is a Steiner triple system of order 6n + 3.

The Skolem Construction (v ≡ 1 (mod 6), see [2, 4])

Let v = 6n+1 and let (Q, ◦) be a half idempotent commutative quasi-group of order 2n, where
Q = {1, 2, . . . , 2n}. Let S = {∞} ∪ (Q × {1, 2, 3}), and define B as follows.

Type 1. For 1 ≤ i ≤ n, {(i, 1), (i, 2), (i, 3)} ∈ B.

Type 2. For 1 ≤ i ≤ n, {∞, (n + i, 1), (i, 2)}, {∞, (n + i, 2), (i, 3)}, {∞, (n + i, 3), (i, 1)} ∈ B.

Type 3. For 1 ≤ i ≤ 2n, {(i, 1), (j, 1), (i ◦ j, 2)}, {(i, 2), (j, 2), (i ◦ j, 3)}, {(i, 3), (j, 3), (i ◦ j, 1)} ∈ B
(see Figure 3).

Then (S, B) is a Steiner triple system of order 6n + 1.
For t a positive integer, a t-wise balanced design D is an ordered pair (S, B), where S

is a finite nonempty set (of points) and B is a finite nonempty multiset of subsets of S (called
blocks), such that every t subset of S is contained in a constant number λ > 0 of blocks. If
v = |S| andK is the set of sizes of the blocks, then we callD a t − (v,K, λ) design. If all blocks
of D have the same size k (i.e., K = {k}), then D is called a t design or a t − (v, k, λ) design.
A pairwise balanced design of order v with block sizes from K is a pair (S, B), B is a family
of subsets (blocks) of S that satisfy (1) if Bi ∈ B, then |Bi| ∈ K and (2) every pair of distinct
elements of S occurs in exactly λ blocks of B.

The 6n + 5 Construction (see [2])

Let (Q, ◦) be an idempotent commutative quasi-group of order 2n+1, whereQ = {1, 2, . . . , 2n+
1} and let α be the permutation (1)(2, 3, . . . , 2n + 1). Let S = {∞1,∞2} ∪ (Q × {1, 2, 3} and let B
contain the following blocks.

Type 1. {∞1,∞2, (1, 1), (1, 2), (1, 3)}.
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Type 2. {∞1, (2i, 1), (2i, 2)}, {∞1, (2i, 3), ((2i)α, 1)}, {∞1, ((2i)α, 2), ((2i)α, 3)}, {∞2, (2i, 1),
((2i)α−1, 3)}, for 1 ≤ i ≤ n.

Type 3. {(i, 1), (j, 1), (i ◦ j, 2)}, {(i, 2), (j, 2), (i ◦ j, 3)}, {(i, 3), (j, 3), ((i ◦ j)α, 1)} for 1 ≤ i ≤ 2n+ 1.

Then (S, B) is a PBD(6n + 5) with exactly one block of size 5 and the rest of size 3.
A λ-fold triple system is a pair of (S, B), where S is a finite set and B is a collection of

3-element subsets of S called triples such that each pair of distinct elements of S belongs to
exactly λ triples of B.

Theorem 1.2 (see [2, Theorem 2.3.7]). The spectrum of 2-fold triple systems is precisely the set of
all v ≡ 0 or 1 (mod 3).

3n Construction (see [2])

Let (Q, ◦) be an idempotent (not necessarily commutative) quasi-group, where Q =
{1, 2, . . . , n}. Let S = Q × {1, 2, 3}. We denote B which contains the following two types of
triples.

Type 1. {(x, 1), (x, 2), (x, 3)} occurs exactly twice in B for all x ∈ Q.

Type 2. For x /=y, the six triples, {(x, 1), (y, 1), (x ◦ y, 2)}, {(y, 1), (x, 1), (y ◦ x, 2)},
{(x, 2), (y, 2), (x ◦ y, 3)}, {(y, 2), (x, 2), (y ◦ x, 3)}, {(x, 3), (y, 3), (x ◦ y, 1)}, {(y, 3), (x, 3), (y ◦
x, 1)} ∈ B.

Then (S, B) is a 2-fold triple system of order 3n.

3n + 1 Construction (see [2, 4])

Let (Q, ◦) be an idempotent (not necessarily commutative) quasi-group, where Q =
{1, 2, . . . , n}. Let S = {∞} ∪ (Q × {1, 2, 3}). We denote B which contains the following two
types of triples.

Type 1. The four triples {∞, (x, 1), (x, 2)}, {∞, (x, 2), (x, 3)}, {∞, (x, 1), (x, 3)}, {(x, 1),
(x, 2), (x, 3)} ∈ B for all x ∈ Q

Type 2. If x /=y, the six triples {(x, 1), (y, 1), (x◦y, 2)}, {(y, 1), (x, 1), (y◦x, 2)},{(x, 2), (y, 2), (x◦
y, 3)}, {(y, 2), (x, 2), (y ◦ x, 3)}, {(x, 3), (y, 3), (x ◦ y, 1)}, {(y, 3), (x, 3), (y ◦ x, 1)} ∈ B.

Then (S, B) is a 2-fold triple system of order 3n + 1.

2. Main Results

6n + 4 Construction

Let (Q, ◦) be an idempotent commutative quasi-group of order 2n+1, whereQ = {1, 2, . . . , 2n+
1}. Now we construct (S, B) where S = {∞} ∪ {Q × {1, 2, 3}} and B contains the following
blocks.

Type 1. {∞, (i, 1), (i, 2), (i, 3)} ∈ B, for 1 ≤ i ≤ 2n + 1.
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Figure 1: Graphical representation of (6n + 4) construction.

Type 2. {(i, 1), (j, 1), (i ◦ j, 2)}, {(i, 2), (j, 2), (i ◦ j, 3)}, {(i, 3), (j, 3), (i ◦ j, 1)} ∈ B for 1 ≤ i < j ≤
2n + 1.

Theorem 2.1. The ordered pair (S, B) is a pairwise balanced design 2 − (6n + 4, {4, 3}, 1).

Proof. The number of points v is 6n + 4 (see Figure 1). The blocks of Type 1 are of length 4,
whereas the blocks of Type 2 are of length 3. It is clear from the construction that any pair of
points of S occurs in exactly one block. Hence (S, B) is a PBD 2 − (6n + 4, {4, 3}, 1).

The number of blocks of the PBD 2 − (6n + 4, {4, 3}, 1) are (2n + 1) + (3.2n+1C2) = (2n +
1)(3n + 1).

For example, n = 2, that is, v = 6.2 + 4 = 16, the quasi-group of order 5 is

o 1 2 3 4 5

1 1 5 2 3 4
2 5 2 4 1 3
3 2 4 3 5 1
4 3 1 5 4 2
5 4 3 1 2 5

(2.1)

Let S = {∞, 1, 2, . . . , 15} and B contains the following blocks.

Type 1. {∞, 1, 6, 11}, {∞, 2, 7, 12}, {∞, 3, 8, 13}, {∞, 4, 9, 14}, {∞, 5, 10, 15} ∈ B.

Type 2. {1, 2, 10}, {1, 3, 7}, {1, 4, 8}, {1, 5, 9}, {2, 3, 9}, {2, 4, 6}, {2, 5, 8}, {3, 4, 10}, {3, 5, 6},
{4, 5, 7}, {6, 7, 15}, {6, 8, 12}, {6, 9, 13}, {6, 10, 14}, {7, 8, 14}, {7, 9, 11}, {7, 10, 13}, {8, 9, 15},
{8, 10, 11}, {9, 10, 12}, {11, 12, 5}, {11, 13, 2}, {11, 14, 4}, {11, 15, 4}, {12, 13, 4}, {12, 14, 1},
{12, 15, 3}, {13, 14, 5}, {13, 15, 1}, {14, 15, 2} ∈ B.

So (S, B) is a PBD 2 − (16, {4, 3}, 1) with a total of 35 blocks in which 2.2 + 1(=5) blocks
of size 4 and 3.5C2(=30) blocks of size 3.
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Figure 2: Graphical representation of (3n + 2) construction (Type 1 and Type 2).
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Figure 3: Graphical representation of (3n + 2) construction (Type 3).
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3n + 2 Construction

Let (Q, ◦) be an idempotent (not necessarily commutative) quasi-group, where Q = {1,
2, . . . , n}. Let S = {∞1,∞2} ∪ (Q × {1, 2, 3}). We define B as follows.

Type 1. {∞1,∞2, (1, 1), (1, 2), (1, 3)} occurs exactly twice in B.

Type 2. For 1 ≤ x ≤ n, {∞1, (x, 1), (x, 2)}, {∞1, (x, 2), (x, 3)}, {∞1, (x, 1), (x, 3)},
{∞2, (x, 1), (x, 2)}, {∞2, (x, 2), (x, 3)}, {∞2, (x, 1), (x, 3)} ∈ B for all x ∈ Q.

Type 3. If x /=y, the six triples {(x, 1), (y, 1), (x ◦ y, 2)}, {(y, 1), (x, 1), (y ◦ x, 2)},
{(x, 2), (y, 2), (x ◦ y, 3)}, {(y, 2), (x, 2), (y ◦ x, 3)}, {(x, 3), (y, 3), (x ◦ y, 1)}, {(y, 3), (x, 3), (y ◦
x, 1)} ∈ B.

Theorem 2.2. The ordered pair (S, B) is a 2-fold system of order 3n + 2.

Proof. The number of points is v = 3n + 2. The Type 1 of new (S, B) construction consists of
block length 5. The Type 2 and Type 3 of the above construction consist of length 3. Any pair
of points of S occurs in exactly two blocks. Hence the construction (S, B) is a 2-fold system.
Also the ordered pair (S, B) holds 2 − (3n + 2, {3, 5}, 2) design.

For example, n = 4, the quasi-group of order 4 is

o 1 2 3 4

1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

(2.2)

Let S = {∞1,∞2, 1, 2, . . . , 12} and B contains the following blocks.

Type 1. {∞1,∞2, 1, 5, 9}, {∞1,∞2, 1, 5, 9} ∈ B.

Type 2. {∞1, 2, 6}, {∞1, 2, 10}, {∞1, 6, 10}, {∞1, 3, 7}, {∞1, 7, 11}, {∞1, 3, 11}, {∞1, 4, 8},
{∞1, 8, 12}, {∞1, 4, 12}, {∞2, 2, 6}, {∞2, 2, 10}, {∞2, 6, 10}, {∞2, 3, 7}, {∞2, 7, 11}, {∞2, 3, 11},
{∞2, 4, 8}, {∞2, 8, 12}, {∞2, 4, 12} ∈ B.

Type 3. {1, 2, 7}, {2, 1, 8}, {1, 3, 8}, {3, 1, 6}, {1, 4, 6}, {4, 1, 7}, {2, 3, 5}, {3, 2, 8}, {2, 4, 7}, {4, 2, 5},
{3, 4, 5}, {4, 3, 6}, {5, 6, 11}, {6, 5, 12}, {5, 7, 12}, {7, 5, 10}, {5, 8, 10}, {8, 5, 11}, {6, 7, 9}, {7, 6, 12},
{6, 8, 11}, {8, 6, 9}, {7, 8, 9}, {8, 7, 10}, {9, 10, 3}, {10, 9, 4}, {9, 11, 4}, {11, 9, 2}, {9, 12, 2},
{12, 9, 3}, {10, 11, 1}, {11, 10, 4}, {10, 12, 3}, {12, 10, 1}, {11, 12, 1}, {12, 11, 2} ∈ B.

So (S, B) is a PBD 2 − (14, {5, 3}, 1) with 2 blocks of size 5 and the rest of the blocks of
size 3.

3. Conclusion

There already exist STS for v = 6n+ 1 and v = 6n+ 3 and PBD for v = 6n+ 5. In this paper, we
construct PBD for v = 6n + 4. The PBD for v = 6n and, v = 6n + 2 is still now open. The 2-fold
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triple system exists for v ≡ 0 or 1 (mod3) and, in this paper, we construct 2-fold system exits
for 3n + 2. These complete that the 2-fold system holds for all natural numbers n.
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