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A bipartite graph G = (V, E) is bipancyclic if it contains cycles of every even length from 4 to |V |
and edge bipancyclic if every edge lies on a cycle of every even length from 4 to |V |. LetQn denote
the n-dimensional hypercube. Let F be a subset of V (Qn) ∪ E(Qn) such that F can be decomposed
into two parts Fav and Fe, where Fav is a union of fav disjoint adjacent pairs of V (Qn), and Fe

consists of fe edges. We prove thatQn −F is bipancyclic if fav +fe ≤ n−2. Moreover,Qn −F is edge
bipancyclic if fav + fe ≤ n − 2 with fav < n − 2.

1. Introduction

Interconnection networks play an important role in parallel computing/communication
systems. The graph embedding problem, which is a central issue in evaluating a network,
asks if the guest graph is a subgraph of a host graph. A benefit of graph embedding is
that we can apply an existing algorithm for guest graphs to host graphs. This problem
has attracted a burst of studies in recent years. Note that cycle networks are useful for
designing simple algorithms with low communication costs. Thus, there are many studies
on the cycle embedding problem. The cycle embedding problem deals with identifying all
possible lengths of the cycles in a given graph. For the graph definition and notation, we
follow [1].

Let u = unun−1 · · ·u2u1 be n-bit binary strings. The Hamming weight of u, denoted by
w(u), is the number of i such that ui = 1. Let u = unun−1 · · ·u2u1 and v = vnvn−1 · · ·v2v1

be two n-bit binary strings. The Hamming distance h(u,v) between two vertices u and v is
the number of different bits in the corresponding strings of both vertices. The n-dimensional
hypercube, denoted by Qn, has all n-bit binary strings as its vertices; two vertices u and v are
adjacent if and only if h(u,v) = 1. Obviously, Qn is a bipartite graph with bipartition A = {u |
w(u) is even} and B = {u | w(u) is odd}. A vertex u of Qn is white if w(u) is odd, otherwise
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u is black. It is known that the distance between u and v is dQn(u,v) = h(u,v). For i = 0, 1,
letQi

n denote the subgraph ofQn induced by {u = unun−1 · · ·u2u1 | uj = i for some 1 ≤ j ≤ n}.
Obviously,Qi

n is isomorphic toQn−1. For any vertex u = unun−1 . . . u2u1, we use (u)j to denote

the bit uj . Moreover, we use (u)k to denote the vertex v = vnvn−1 · · ·v2v1 with vi = ui for
1 ≤ i /= k ≤ n and vk = 1 − uk. An edge (u,v) ∈ E(Qn) is of dimension k if v = (u)k.

The hypercube Qn is one of the most popular interconnection networks for parallel
computers/communication systems [2]. This is partly due to its attractive properties, such as
regularity, recursive structure, vertex and edge symmetry, maximum connectivity as well as
effective routing and broadcasting algorithms.

Note that the hypercubeQn is a bipartite graph for every integer n. The corresponding
cycle embedding problem on bipartite graphs is called the bipancyclic property. A bipartite
graph G is bipancyclic if it contains cycles of every even length from 4 to |V (G)|, inclusive.

There are some variations of the bipancyclic property. A bipartite graph G is edge
bipancyclic if every edge lies on a cycle of every even length from 4 to |V (G)|, inclusive. A
bipartite graph is k-edge fault tolerant bipancyclic if G − F is bipancyclic for any F ⊂ E(G) with
|F| ≤ k. Moreover, a bipartite graph is k-edge fault tolerant edge bipancyclic if G − F is edge
bipancyclic for any F ⊂ E(G) with |F| ≤ k. The following theorem is proved.

Theorem 1.1 (see [3]). Qn is (n − 2)-edge fault tolerant edge bipancyclic if n ≥ 2.

In this paper, we improve Theorem 1.1 by considering both edge faults and vertex
faults. However, we restrict the faults on the vertex set to those occurring only on disjoint
adjacent pairs. Let F be a subset of V (Qn) ∪ E(Qn) such that F can be decomposed into two
parts Fav and Fe where Fav is a union of fav disjoint adjacent pairs of Qn, and Fe consists of
fe edges. More precisely, Fav = ∪fav

i=1{bi,wi}, where (bi,wi) ∈ E(Qn) and {bi,wi}∩{bj ,wj} = ∅
for i /= j. Without loss of generality, we assume that {bi | 1 ≤ i ≤ fav} is a set of fav black
vertices, and {wi | 1 ≤ i ≤ fav} is a set of fav white vertices. We will prove that Qn − F is
bipancyclic if fav + fe ≤ n − 2. Moreover, Qn − F is edge bipancyclic if fav + fe ≤ n − 2 with
fav < n − 2.

2. Preliminary

We need the following lemmas.

Lemma 2.1 (see [4]). Let e be any edge of Qn for n ≥ 2. There are n − 1 cycles of length four that
contain e in common.

Lemma 2.2 (see [5]). Assume that n is any positive integer with n ≥ 2, and F is a subset of E(Qn)
with |F| ≤ n−2. Then there exists a Hamiltonian path ofQn−F joining any two vertices from different
bipartite sets. Moreover, there exists a Hamiltonian path joining y to z of Qn − F − {x} for x in some
partite set and y,z in the other partite set for |F| ≤ n − 3.

Lemma 2.3 (see [6]). Assume that n is any positive integer with n ≥ 2. Let u and x be two distinct
white vertices of Qn and v and y be two distinct black vertices of Qn. There are two disjoint paths P1

and P2 such that (1) P1 joins u to v, (2) P2 joins x to y, and (3) P1 ∪ P2 spans Qn.

We extend the above lemma by considering the occurrence of edge faults.
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Lemma 2.4. Assume that n is any positive integer with n ≥ 3, and F is a subset of E(Qn) with
|F| ≤ n − 3. Let u and x be two distinct white vertices of Qn and v and y be two distinct black vertices
of Qn. There are two disjoint paths P1 and P2 of Qn − F such that (1) P1 joins u to v, (2) P2 joins x to
y, and (3) P1 ∪ P2 spans Qn − F.

Proof. We prove this lemma by induction on n. By Lemma 2.3, this lemma is true for n = 3.
Thus, we assume n ≥ 4 and |F| ≥ 1. For 1 ≤ i ≤ n, let Fi denote the set of i-dimensional edges
in F. Thus,

∑n
i=1 |Fi| = |F|. Without loss of generality, we assume that |Fn| ≥ 1. For i = 0, 1, we

use Fi to denote the set E(Qi
n)∩F. Obviously, |Fi| ≤ n−4. Let Si = {u,v, x,y}∩V (Qi

n) for i = 0,
1. Without loss of generality, we can assume that |S0| ≥ |S1|. We have the following cases.

Case 1 (|S0| = 4). By induction, there exist two spanning disjoint paths R1 and R2 of
Q0

n−F0 such thatR1 joins u to v, andR2 joins x to y. Since 2n−1−2 > 2(n−3), there exists an edge
(s, t) ofR1 orR2 such that {(s, (s)n), (t, (t)n)}∩F = ∅. Without loss of generality, we can assume
that (s, t) is in R1. Thus, R1 can be written as 〈u,H1, s, t,H2,v〉. By Lemma 2.2, there exists a
Hamiltonian pathQ joining (s)n to (t)n ofQ1

n − F1. We set P1 as 〈u,H1, s, (s)
n,Q, (t)n, t,H2,v〉

and set P2 as R2.
Case 2 (|S0| = 3). Without loss of generality, we can assume that y ∈ Q1

n. Since there are
2n−2 black vertices in Q0

n and 2n−2 − 1 > n − 3 for n ≥ 4, there exists a black vertex z of Q0
n such

that z/= v and (z, (z)n) /∈ F. By induction, there exist two spanning disjoint paths P1 and R1 of
Q0

n −F0 such that P1 joins u to v, and R1 joins x to z. By Lemma 2.2, there exists a Hamiltonian
path R2 joining (z)n to y of Q1

n − F1. We set P2 as 〈x, R1, z, (z)
n, R2,y〉. Thus, P1 and P2 form

the required paths.
Case 3 (|S0| = 2 and Si = {u,v} for some i = 0, 1). Without loss of generality, we can

assume that S0 = {u,v}. By Lemma 2.2, there exists a Hamiltonian path P1 of Q0
n − F0 joining

u to v, and there exists a Hamiltonian path P2 of Q1
n − F1 joining x to y. Obviously, P1 and P2

form the required paths.
Case 4 (|S0| = 2 and Si /= {u,v} for each i = 0, 1). Without loss of generality, we can

assume that S0 = {u, x}. Since there are 2n−2 black vertices in Q0
n and 2n−2 > n − 2 for n ≥ 4,

there exist two black vertices s and t of Q0
n such that {(s, (s)n), (t, (t)n)} ∩ F = ∅. By induction,

there exist two spanning disjoint paths Q1 and Q2 of Q0
n − F0 such that Q1 joins u to s and

Q2 joins x to t. Similarly, there exist two spanning disjoint paths R1 and R2 of Q1
n − F1 such

that R1 joins (s)n to v, and R2 joins (t)n to y. We set P1 as 〈u, Q1, s, (s)
n, R1,v〉 and set P2 as

〈x, Q2, t, (t)
n, R2,y〉.

Lemma 2.5 (see [7]). Assume that n ≥ 3. Let F be a subset of V (Qn) ∪ E(Qn) such that F can be
decomposed into two parts Fav and Fe where Fav is a union of fav disjoint adjacent pairs of V (Qn)
and Fe consists of fe edges. Then there exists a Hamiltonian cycle of Qn − F if fav + fe ≤ n − 2.

Lemma 2.6 (see [7]). Assume that n ≥ 3. Let F be a subset of V (Qn) ∪ E(Qn) such that F can be
decomposed into two parts Fav and Fe, where Fav is a union of fav disjoint adjacent pairs of V (Qn),
and Fe consists of fe edges. Then there exists a Hamiltonian path of Qn − F between any two vertices
from different partite sets of Qn if fav + fe ≤ n − 3.

We improve Lemma 2.6 into the following lemma.

Lemma 2.7. Assume that n ≥ 3. Let F be a subset of V (Qn) ∪ E(Qn) such that F can be decomposed
into two parts Fav and Fe, where Fav is a union of fav disjoint adjacent pairs of V (Qn), and Fe

consists of fe edges. Then there exists a Hamiltonian path of Qn − F between any two vertices from
different partite sets of Qn if fav + fe ≤ n − 2 with fav ≤ n − 3.
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Proof. Let w be any fault-free white vertex and b be any fault-free black vertex. We need to
construct a Hamiltonian path ofQn−F joiningw to b by induction on n. LetH = Fe∪{(bi,wi) |
{bi,wi} ⊂ Fav}. For 1 ≤ i ≤ n, let Hi denote the set of i-dimensional edges in H. Thus,
∑n

i=1 |Hi| = fe + fav. Without loss of generality, we assume that |Hn| = 0.
By brute force, we can check that the required paths exist for n = 3, 4. By Lemmas 2.2

and 2.6, the required paths exist when fav = 0 or fe + fav ≤ n − 3. Therefore, we only need
to consider the case fav ≥ 1 and fav + fe = n − 2 for n ≥ 5. Thus, Fe /= ∅. Let Fi

e = Fe ∩ E(Qi
n),

Fi
av = Fav ∩ V (Qi

n), and Fi = Fi
av ∪ Fi

e for i = 0, 1. Let b1 and w1 be a pair of F0
av where b1 is a

black vertex.
Case 1 (F/⊂Qi

n and |Fi
av| ≤ n − 4, for i = 0, 1). We first consider the case that w and

b are in the same subcube. Without loss of generality, we can assume that both w and b are
in Q0

n. By induction, there exists a Hamiltonian path P1 of Q0
n − F0 joining w to b. Note that

l(P1)−4f1
av = 2n−1−2f0

av−1−4f1
av ≥ 2n−1−4n+15 > 0. We can write P1 as 〈w, R1,u,v, R2,b〉 for

some u and v such that {(u)n, (v)n} ∩ F1
av = ∅. By induction, there exists a Hamiltonian path

R3 of Q1
n − F1 joining (u)n to (v)n. Thus, 〈w, R1,u, (u)

n, R3, (v)
n,v, R2,b〉 is a desired path.

Thus we consider the case that w and b are in different subcubes. Without loss of
generality, we can assume that w ∈ Q0

n and b ∈ Q1
n. Since there are 2n−2 black vertices in Q0

n

and 2n−2 ≥ n − 3 for n ≥ 5, there exists a black vertex x in Q0
n such that {x, (x)n} ∩ Fav = ∅.

By induction, there exists a Hamiltonian path P1 of Q0
n − F0 joining w to x and there exists a

Hamiltonian path P2 of Q1
n − F1 joining (x)n to b. Thus, 〈w, P1, x, (x)

n, P2,b〉 is a desired path.
Case 2 (F ⊂ Qi

n or |Fi
av| = n − 3 for some i = 0, 1). Without loss of generality, we can

assume that F ⊂ Q0
n or |F0

av| = n − 3. Thus, |F1
av| = 0.

Assume that both w and b are in Q0
n. By induction, there exists a Hamiltonian path P1

of Q0
n − (F − {b1,w1}) joining w to b. Suppose that the edge (b1,w1) is in P1. Without loss of

generality, we can write P1 as 〈w, Z1, x,b1,w1,y, Z2,b〉. By Lemma 2.2, there exists a Hamil-
tonian path Z3 of Q1

n − F1
e joining (x)n to (y)n. Obviously, 〈w, Z1, x, (x)

n, Z3, (y)
n,y, Z2,b〉 is a

desired Hamiltonian path. Thus, we consider the case that (b1,w1) is not in P1. Without loss
of generality, P1 can be written as 〈w, R1,u,b1,v, R2, x,w1,y, R3,b〉. By Lemma 2.4, there are
two disjoint spanning paths R4 and R5 of Q1

n − F1
e such that R4 joins (u)

n to (x)n and R5 joins
(v)n to (y)n ofQ1

n −F1
e . Obviously, 〈w, R1,u, (u)

n, R4, (x)
n, x, R2

−1,v, (v)n, R5, (y)
n,y, R3,b〉 is a

desired path.
Now, we consider the case that w and b are in different subcubes. Without loss of

generality, we can assume that w ∈ Q0
n and b ∈ Q1

n. By induction, there exists a Hamiltonian
path P1 of Q0

n − (F − {b1,w1}) joining w and b1. Suppose that the edge (b1,w1) is in P1. We
can write P1 as 〈w, Z1,y,w1,b1〉. By Lemma 2.2, there exists a Hamiltonian path Z2 ofQ1

n−F1
e

joining (y)n to b. Obviously, 〈w, Z1,y, (y)
n, Z2,b〉 is a desired path. Thus, we consider the case

that (b1,w1) is not in P1. We can write P1 as 〈w, R1,u,w1,v, R2, x,b1〉. Assume that (x)n /=b.
By Lemma 2.4, there are two disjoint spanning paths R3 and R4 of Q1

n − F1
e such that R3 joins

(u)n to (x)n and R4 joins (v)
n to b. Obviously, 〈w, R1,u, (u)

n, R3, (x)
n, x, R2

−1,v, (v)n, R4,b〉 is
a desired path. Assume that (x)n = b. By Lemma 2.2, there exists a Hamiltonian path R5 of
Q1

n − F1
e − {b} joining (u)n to (v)n. Obviously, 〈w, R1,u, (u)

n, R5, (v)
n,v, R2, x, (x)

n = b〉 is a
desired path.

Finally, we consider the case that w and b are in Q1
n. Let e = (x,y) be any faulty

edge of F, where x is a white vertex. By Lemma 2.5, there exists a Hamiltonian cycle C1 of
Q0

n − (F − {e}).
Suppose that e is not an edge of C1. Since the length of C is at least 2n−1 − 2(n − 3),

we can write C1 as 〈u, Z1,v,u〉 such that {(u)n, (v)n} ∩ {w,b} = ∅ and u is a white vertex. By
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Lemma 2.4, there exist two disjoint spanning paths Z2 and Z3 ofQ1
n − F1

e such that Z2 joinsw
to (u)n and Z3 joins (v)

n to b. Obviously, 〈w, Z2, (u)
n,u, Z1,v, (v)

n, Z3,b〉 is a desired path.
Thus, we consider the case that e is in C1. We can write C1 as 〈x, P1,y, x〉. Suppose

that {(x)n, (y)n} ∩ {w,b} = ∅. By Lemma 2.4, there exist two disjoint spanning paths
P2 and P3 of Q1

n − F1
e such that P2 joins w to (x)n and P3 joins (y)n to b. Obviously,

〈w, P2, (x)
n, x, P1,y, (y)

n, P3,b〉 is a desired path. Suppose that |{(x)n, (y)n} ∩ {w,b}| = 1.
Without loss of generality, we assume that (x)n = b. By Lemma 2.2, there exists a Hamiltonian
path P4 of Q1

n − F1
e − {b} joining w to (y)n. Thus, 〈w, P4, (y)

n,y, P1
−1, x, (x)n = b〉 is

a Hamiltonian path of Qn − F. Suppose that {(x)n, (y)n} = {w,b}. Obviously, C1 can
be written as 〈y, P5,u,v, P6, x,y〉 for some black vertex u. By induction, there exists a
Hamiltonian path P7 of Q1

n − F1
e − {w,b} joining (u)n to (v)n. Obviously, 〈w = (y)n,y, P5,

u, (u)n, P7, (v)
n,v, P6, x, (x)

n = b〉 is a desired path.

3. Bipancyclic Properties

Theorem 3.1. Assume that n ≥ 3. Let F be a subset of V (Qn)∪E(Qn) such that F can be decomposed
into two parts Fav and Fe, where Fav is a union of fav disjoint adjacent pairs of V (Qn), and Fe consists
of fe edges. Then Qn − F is bipancyclic if fav + fe ≤ n − 2.

Proof. To prove this theorem, we will construct a cycle in Qn − F of length t for every even
integer with 4 ≤ t ≤ 2n−2fav by induction. LetH = Fe∪{(bi,wi)|{bi,wi} ⊂ Fav}. For 1 ≤ i ≤ n,
let Hi denote the set of i-dimensional edges in H. Thus,

∑n
i=1 |Hi| = fe + fav. Without loss of

generality, we assume that |Hn| = 0. Let Fi
av = Fav ∩V (Qi

n), F
i
e = Fe ∩E(Qi

n), F
i = Fi

av ∪Fi
e and

fi
av = |Fi

av| for i = 0, 1.
By brute force, we can check that the required cycles exist for n = 3, 4. By Theorem 1.1,

the required cycles exist if fav = 0. Therefore, we consider the case fav ≥ 1 and n ≥ 5. Assume
t is an even integer from 4 to 2n − 2fav. Let Hi = H ∩ E(Qi

n) for i = 0, 1. Without loss of
generality, we can assume |H0| ≥ |H1|.

Suppose that |H0| ≤ n−3.We first consider the case that t ≤ 2n−1−2f1
av. By induction, the

desired cycle exists inQ1
n−F1. Suppose that t > 2n−1−2f1

av. LetC be a cycle of length 2n−1−2f0
av

inQ0
n − F0. Let t′ = t − 2n−1 + 2f0

av − 1. Note that there are 2n−1 − 2f0
av + 1 sections in C of length

t′ depending on choice of the beginning and terminating vertices. Since 2n−1 > 4(n − 2) ≥
2f0

av + 4f1
av, one such section, say P , joins vertex p to vertex q such that {(p)n, (q)n} ∩ F1

av = ∅.
By Lemma 2.6, there exists a Hamiltonian path R of Q1

n − F1 joining (q)n to (p)n. Obviously,
〈p, P,q, (q)n, R, (p)n,p〉 is a desired cycle.

Thus, we consider |H0| = n − 2. Therefore, |H1| = 0. Assume that 4 ≤ t ≤ 2n−1. By
Theorem 1.1, the desired cycle exists in Q1

n. Thus, we consider t > 2n−1. Let {b1,w1} be a
pair of adjacent vertices of Fav with b1 being a black vertex. By Lemma 2.5, there exists a
Hamiltonian cycle C inQ0

n−(H −{b1,w1}). Obviously, C can be written as 〈b1, P1,w1, P2,b1〉.
Without loss of generality, we assume that l(P1) ≤ l(P2). Thus, 2n−2−f0

av ≤ l(P2) ≤ 2n−1−2f0
av−1.

We can write P2 as 〈w1, x, P ′
2,y,b1〉.

Suppose that 2n−1 < t ≤ 2n−1 + l(P2) − 1. Let t′ = t − 2n−1 − 1. Let R be the section of
P ′
2 joining vertex x to z of length t′. By Lemma 2.2, there exists a Hamiltonian path S of Q1

n

joining (z)n to (x)n. Obviously, 〈x, R, z, (z)n, S, (x)n, x〉 is a desired cycle.
Suppose that 2n−1 + l(P2) < t ≤ 2n − 2fav. Since l(P1) + l(P2) = 2n−1 − 2fav,

l(P1) ≥ 3. We can write P1 as 〈w1,u, P ′
1,v,b1〉. Let t′ = t − 2n−1 − l(P2). Let T be the section
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of P ′
1 joining vertex u to c of length t′. By Lemma 2.4, there exist two spanning disjoint

paths R1 and R2 of Q1
n such that R1 joins (y)n to (u)n and R2 joins (c)n to (x)n. Thus,

〈x, P ′
2,y, (y)

n, R1, (u)
n,u, T, c, (c)n, R2, (x)

n, x〉 forms a desired cycle.
The theorem is proved.

Theorem 3.2. Assume that n ≥ 3. Let F be a subset of V (Qn)∪E(Qn) such that F can be decomposed
into two parts Fav and Fe where Fav is a union of fav disjoint adjacent pairs of V (Qn) and Fe consists
of fe edges. Then Qn − F is edge bipancyclic if fav + fe ≤ n − 2 and fav ≤ n − 3.

Proof. Let e = (u,v) be any fault-free edge ofQn where u is a black vertex. For 4 ≤ t ≤ 2n−2fav,
we will construct a cycle containing (u,v) of length t in Qn − F by induction to prove this
theorem. Suppose t = 4, the desired cycle exists by Lemma 2.1. Thus, we consider t ≥ 6.

Let H = Fe ∪ {(bi,wi) | {bi,wi} ⊂ Fav} ∪ {(u,v)}. For 1 ≤ i ≤ n, let Hi denote the set of
i-dimensional edges inH. Since fe+fav ≤ n−2, we can assume without loss of generality that
|Hn| = 0. Thus, u,v are vertices inQi

n for some i ∈ {0, 1}. Let Fi
av = V (Qi

n)∩Fav and fi
av = |Fi

av|
for i = 0, 1.

By Theorem 1.1, the desired cycles exist if fav = 0. Thus, the desired cycles exist for n =
3. By brute force, we can check that the desired cycles exist for n = 4. Thus, we only consider
the case fav ≥ 1 with n ≥ 5. Without loss of generality, we can assume that f0

av + f0
e ≥ f1

av + f1
e .

Suppose that f0
av + f0

e ≤ n − 3 and f0
av ≤ n − 4. Without loss of generality, we can

assume that both u and v are in Q0
n. Suppose that 6 ≤ t ≤ 2n−1 − 2f0

av. By induction, the
desired cycle exists in Q0

n − F0. Thus, we consider that 2n−1 − 2f0
av + 2 ≤ t ≤ 2n − 2fav. Let

t′ = t − 2n−1 − 2f0
av − 1. By induction, there exists a Hamiltonian cycle C of Q0

n − F0 containing
the edge (u,v). Since 2n−1 > 4(n−3)+1 ≥ 2f0

av+4f
1
av+1, there exists an edge (x,y) inC such that

{(x)n, (y)n}} ∩F1
av = ∅. Thus, C can be written as 〈u,v, P1, x,y, P2,u〉. By induction, there exist

cycles 〈(x)n,Q, (y)n, (x)n〉 of length t′ of Q1
n − F1. Obviously, 〈u,v, P1, x, (x)

n,Q, (y)n,y, P2,u〉
forms the desired cycle.

Thus, we consider f0
av + f0

e = n − 2 or f0
av = n − 3. We have the following two cases.

Case 1 ((u,v) ∈ Q1
n). Suppose that 6 ≤ t ≤ 2n−1. By Theorem 1.1, the desired cycle exists.

Thus, we consider t ≥ 2n−1+2. Let b1 andw1 be a pair of adjacent vertices in F0
av. By induction,

there exists a Hamiltonian cycle C in Q0
n − F0

e − (F0
av − {b1,w1}) containing the edge (b1,w1).

Thus, we can write C as 〈b1,w1, x, P,y,b1〉.
Suppose that 2n−1 + 2 ≤ t ≤ 2n − 2fav. Let t′ = t − 2n−1 − 1. Obviously, there

exists a section P ′ of P joining s and t of length t′ such that s is a black vertex. Suppose
that {(s)n, (t)n} ∩ {u,v} = ∅. By Lemma 2.4, there exist two spanning disjoint paths
Q1 and Q2 of Q1

n − F1
e such that Q1 joins u to (s)n and Q2 joins (t)n to v. Obviously,

〈u, Q1, (s)
n, s, P ′, t, (t)n,Q2,v,u〉 forms the desired cycle. Suppose that |{(s)n, (t)n}∩{u,v}| = 1.

Without loss of generality, we assume that u = (t)n. By Lemma 2.2, there exists a Hamiltonian
path Q of Q1

n − F1
e − {u} joining (s)n to v. Obviously, 〈u = (t)n, t, P ′−1, s, (s)n,Q,v,u〉 forms

the desired cycle. Suppose that {(s)n, (t)n} = {u,v}. Thus, u = (t)n and v = (s)n. We can
write P ′−1 as 〈t, R1, c,d, R2, s〉 for some c and d. By induction, there exists a Hamiltonian
cycle C′ of Q1

n − F1
e − {u,v} containing the edge ((c)n, (d)n). Thus, C′ can be written as

〈(c)n,Q′, (d)n, (c)n〉. Obviously, 〈u = (t)n, t, R1, c, (c)
n,Q′, (d)n,d, R2, s, (s)

n = v,u〉 forms the
desired cycle.

Case 2 ((u,v) in Q0
n). Suppose that 6 ≤ t ≤ 2n−1 + 2. Let t′ = t − 2. By

Theorem 1.1, there exists a cycle C of length t′ in Q1
n − F1

e containing the edge ((u)n, (v)n).
We can write C as 〈(u)n, (v)n, R, (u)n〉. Obviously, 〈u,v, (v)n, R, (u)n,u〉 forms the desired
cycle.
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Now, we consider 2n−1+4 ≤ t ≤ 2n−2fav. Let b1 andw1 be a pair of adjacent vertices in
F0
av. By induction, there exists a Hamiltonian cycle C in Q0

n − Fe − (Fav − {b1,w1}) containing
(u,v).

Suppose that (b1,w1) ∈ C. Obviously, C can be written as 〈w1,b1,y, P, x〉. Let
t′ = t − 2n−1 − 1. Obviously, there exists a section Q of P joining s to t of length t′ containing
(u,v). By Lemma 2.2, there exists a Hamiltonian path R joining (t)n to (s)n of Q1

n − F1
e .

Obviously, 〈s, Q, t, (t)n, R, (s)n, s〉 forms the desired cycle.
Suppose that (b1,w1) /∈ C. The cycle C can be written as 〈w1, x, P1,y, b1, s, P2, t,w1〉.

Without loss of generality, we can assume that (u,v) is on the path P1. Suppose that
2n−1 + 4 ≤ t ≤ 2n−1 + 1 + l(P1). Let t′ = t − 2n−1 − 1. There exists a section P ′

1 of P1 such that (1)
P ′
1 joins c to d, (2) P ′

1 contains (u,v), and (3) P ′
1 is of length t′. By Lemma 2.2, there exists a

Hamiltonian path R of Q1
n − F1

e joining (d)n to (c)n. Obviously, 〈c, P ′
1,d, (d)

n, R, (c)n, c〉 forms
the desired cycle. Suppose that 2n−1 + 3+ l(P1) ≤ t ≤ 2n − 2fav. Let t′ = t− 2n−1 − 2− l(P1). There
exists a section P ′

2 of P2 joining r to t of length t′. By Lemma 2.4, there exist two spanning
disjoint paths R1 and R2 of Q1

n − F1
e such that R1 joins (y)n to (r)n and R2 joins (t)n to (x)n.

Obviously, 〈x, P1,y, (y)
n, R1, (r)

n, r, P ′
2, t, (t)

n, R2, (x)
n, x〉 forms the desired cycle.

4. Conclusion

In this paper, we study the bipancyclic property of faulty hypercubes. We improve previous
results by considering both edge faults and vertex faults. Let F be a subset of V (Qn) ∪ E(Qn)
such that F can be decomposed into two parts Fav and Fe where Fav is a union of fav disjoint
adjacent pairs of V (Qn) and Fe consists of fe edges. We prove that Qn − F is bipancyclic if
fav + fe ≤ n − 2. This result is optimal. Let x be any vertex of Qn. Assume that F = {(x, (x)i) |
1 ≤ i ≤ n − 1} forms a set of (n − 1) faulty edges. Obviously, degQn−F(x) = 1. Qn − F is not
bipancyclic.

We also prove that Qn − F is edge bipancyclic if fav + fe ≤ n − 2 with fav <
n − 2. Again, this result is optimal. Assume that F = ∪n−1

i=2 {(x)i, ((x)1)i} forms a set of
(n − 2) adjacent faulty vertices. Obviously, degQn−F(x) = degQn−F((x)

1) = 2. Thus, any

Hamiltonian cycle of Qn − F contains the path 〈(x)n, x, (x)1, ((x)1)n〉. Therefore, there is no
Hamiltonian cycle containing the edge ((x)n, ((x)1)n) for n ≥ 3. Thus, Qn − F is not edge
bipancyclic.

Two interesting observations, Lemmas 2.4 and 2.7, are used in this paper. In the
following, we claim that these two lemmas are also optimal.

Let z, u, and x be three distinct white vertices of Qn. Assume that F = {(z, (z)i) | for
2 ≤ i ≤ n−1} forms a set of (n−2) faulty edges. It is observed that {(z)1, (z)n} are the neighbors
of z in Qn − F. Moreover, (z)1 and (z)n are black vertices. Obviously, z cannot be any vertex
in P1 ∪ P2 for any two disjoint paths P1 and P2 of Qn − F such that P1 joins u to (z)1 and P2

joins x to (z)n. Therefore, there do not exist two disjoint paths P1 and P2 of Qn − F such that
P1 joins u to (z)1 and P2 joins x to (z)n. Thus, the number of faulty edges of Lemma 2.4 is
optimal.

Assume that n ≥ 3. Let x be any vertex of Qn and F = ∪n−1
i=2 {(x)i, ((x)1)i} be a set of

(n − 2) adjacent faulty vertices. Obviously, (x)n and ((x)1)n are vertices in different partite
sets. Assume that there is a Hamiltonian path P joining (x)n to ((x)1)n. Since degQn−F(x) =

degQn−F((x)
1) = 2, P must include the section 〈(x)1, x, (x)n, ((x)n)1〉. Obviously, P is not a

Hamiltonian path and we get a contradiction. Thus, the number of adjacent faulty vertices of
Lemma 2.7 is optimal.
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