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We introduce two new combinatorial optimization problems: the Maximum Spider Problem and
the Spider Cover Problem; we study their approximability and illustrate their applications. In these
problems we are given a directed graph G = (V, E), a distinguished vertex s, and a family D of
subsets of vertices. A spider centered at vertex s is a collection of arc-disjoint paths all starting at
s but ending into pairwise distinct vertices. We say that a spider covers a subset of vertices X if
at least one of the endpoints of the paths constituting the spider other than s belongs to X. In
the Maximum Spider Problem the goal is to find a spider centered at s that covers the maximum
number of elements of the family D. Conversely, the Spider Cover Problem consists of finding the
minimum number of spiders centered at s that covers all subsets in D. We motivate the study of
the Maximum Spider and Spider Cover Problems by pointing out a variety of applications. We
show that a natural greedy algorithm gives a 2-approximation algorithm for the Maximum Spider
Problem and a (log |D| + 1)-approximation algorithm for the Spider Cover Problem.

1. Introduction

Given a digraph G = (V, E) and a vertex s ∈ V , a spider centered at s is a subgraph S of G
consisting of arc-disjoint paths sharing the initial vertex s and ending into pairwise distinct
vertices. The vertex s is called the center of the spider. The endpoints of the paths composing
the spider S—other than the center s—are called the terminals of the spider. In other words, a
spider is a subdivision ofK1,m, wherem is the number of terminals. Given a spider S, we say
that S reaches a vertex x ∈ V if x is a terminal of S; we say that the spider S covers a subset
of vertices D ⊆ V if S reaches at least a vertex in D.
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In this paper we consider the approximability of the following problems.

Maximum Spider Problem (MSP)

We are given a digraph G = (V, E), a distinguished node s, and a family D ⊆ 2V \{s} of subsets
of vertices. The objective is to find a spider S centered at s such that the number of subsets
D ∈ D covered by S is maximum among all possible spiders centered at s.

We also consider the related minimization problem, where one wants to cover all the
elements of D.

Spider Cover Problem (SCP)

As before, we are given a digraph G = (V, E), a distinguished vertex s ∈ V , and a family D ∈
2V \{s} of subsets of vertices. The goal is to find a minimum cardinality collection of spiders
centered at s such that each subset D ∈ D is covered by at least a spider in the collection.

1.1. Motivations

The Maximum Spider and the Spider Cover Problems are far reaching generalizations and
unifications of several Maximum Coverage and Set Cover Problems which, in turn, are
fundamental algorithmic and combinatorial problems that arise frequently in a variety of
settings [3]. To start, recall that in the basic formulation of the Maximum Coverage Problem
[3], one is given a ground set X, a collection of sets S = {S1, S2, . . . , Sm}, where each Sj ⊆ X,
for j = 1, . . . , m, and an integer k. The goal is to find � ≤ k sets Si1 , . . . , Si� such that the
cardinality |∪�j=1Sij | of their union ismaximum. To see that theMaximumCoverage Problem is
a very particular case of the Maximum Spider Problem, let us consider the digraphG = (V, E)
of Figure 1, with node set V = {s, x1, . . . , xk, S1, . . . , Sm}. The vertex s is connected to each of
the nodes x1, . . . , xk, and each xi is connected to every Sj , for i = 1, . . . , k and j = 1, . . . , m.
The family D ⊆ 2V−{s} is defined as D = {Du : u ∈ X}, where Du = {Si : u ∈ Si}. One can
see that the Maximum Spider Problem inG is equivalent to the Maximum Coverage Problem
on the original instance X, S, and k. To that purpose, let us proceed as follows. Let S be a
spider in G that covers a maximum number μ of subsets D ∈ D. Let Du1 , . . . , Duμ be these
subsets. By our definition of spider cover, the (at most k) terminals of S in G correspond to
some Si1 , . . . , Si� , � ≤ k, such that for any Dut ∈ {Du1 , . . . , Duμ} there exists Sij ∈ {Si1 , . . . , Si�}
for which Sij ∈ Dut . This implies that for any ut ∈ {u1, . . . , uμ} there exists Sij such that
ut ∈ Sij , consequently ∪�j=1Sij ⊇ {u1, . . . , uμ} and |∪�j=1Sij | ≥ μ. Conversely, let Si1 , . . . , Si� , � ≤ k,
be a solution to the Maximum Coverage Problem on the original instance X, S, and k. Let
∪�j=1Sij = {u1, . . . , uμ}. Consider now the spider s in G starting at s and having terminal nodes
equal to Si1 , . . . , Si� . By definition, spider S covers at least the μ subsets Du1 , . . . , Duμ .

Thus, the Maximum Coverage Problem corresponds to the Maximum Spider Problem
in a very simple digraphG. By allowingmore flexibility in the structure ofG, one can describe
many more combinatorial optimization problems in this framework. For instance, Chekuri
and Kumar in [4] considered the following generalization of Maximum Coverage.

Maximum Coverage with Group Budget Constraints (MCG) (see [4])

We are given a ground set X and a collection S = {S1, . . . , Sm} of subsets of X. We are also
given sets G1, . . . ,G� , each Gi ⊆ S = {S1, . . . , Sm}, with Gi∩Gj = ∅ for i /= j, and integer bounds
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Figure 1: Maximum Coverage as a Maximum Spider Problem.

k, k1, . . . , k� . A solution is a subsetH ⊆ {S1, . . . , Sm}, such that |H| ≤ k and |H ∩ Gi| ≤ ki, for
i = 1, . . . , �. The goal is to find a solutionH such that |⋃H∈HH| is maximized.

Before showing how MGC easily fits into our scenario, let us mention that the MGC
problem itself was introduced and studied in [4] since it represents a useful generalization of
several combinatorial optimization problems, like the multiple depot k-traveling repairmen
problem with covering constraints [5] and the orienteering problem with time windows [6–
8].

Given an instance 〈X,G1, . . . ,G�, {S1, . . . , Sm}, k, k1, . . . , k�〉 of MCG, consider the
digraph G = (V, E)with vertex set

V =
{
s, x1, . . . , xk, y

1
1 , . . . y

k1
1 , . . . , y1

�, . . . , y
k�
�
, S1, . . . , Sm

}
. (1.1)

There is an edge from s to each xi, i = 1, . . . , k. Moreover, there is a complete bipartite graph
between {x1, . . . , xk} and {y1

1 , . . . y
k1
1 , . . . , y1

�
, . . . , yk�

�
} (with orientation of the edges going from

the x’s to the y’s). Finally, there is a complete bipartite graph between the setYi = {y1
i , . . . , y

ki
i }

and the set Gi ⊆ {S1, . . . , Sm}, for i = 1, . . . , � and, in case
∑�

i=1 ki < k, there is a complete
bipartite graph between {x1, . . . , xk} and S \

⋃�
i=1 Gi. As before, the family D is defined as

consisting of subsets of vertices Du = {Si : u ∈ Si}, for each u ∈ X. Figure 2 below depicts the
situation.

Again, it is not hard to see that MGC is equivalent to the Maximum Spider Problem
in the graph G. At this point it should be clear that by variating the structure of the graph
between the vertex s and the family of subsets {S1, . . . , Sm}, one can describe many more
covering problems.

Just as the Maximum Spider Problem encompasses a variety of coverage problems
formulated in term of maximization of the objective function, the related Spider Cover
minimization problem includes particular cases variants and extensions of the well-known
Set Cover Problem. One of such an extension was considered in [4, 9, 10].
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Figure 2: MGC as a Maximum Spider Problem.

Set Cover with Group Budget (SCG)

We are given a ground set X and a family S = {S1, . . . , Sm} of subsets of X. The family S is
partitioned into subfamilies G1, . . . ,G� . The goal is to find anH ⊆ S such that all elements of
X are covered by sets inH, and maxi=1,...,� |H ∩ Gi| is minimized.

Elkin and Kortsarz [9] studied the SCG problem as a preliminary tool for their
multicasting algorithm in synchronous directed networks. Gargano et al. [10] studied the
SCG problem in the context of multicasting in optical networks. Interestingly, Gargano et al.
[10] also noticed that SCG naturally arises in airline scheduling problems [11]. We trust that
the experienced reader can now appreciate the flexibility of our approach by checking that
the SCG is equivalent to the Spider Cover problem in the graph shown in Figure 3. The family
D to cover is D = {Du : u ∈ X}, where for each u ∈ X we have Du = {S ∈ S : u ∈ S}.

In general, we expect that the capability of our approach to easily describe and deal
with diverse requirements in covering problems to be quite useful. In any case, it seems to
provide a nice and unified view of many different questions.

1.2. Our Results in Comparison with Previous Work

To the best of our knowledge, the Maximum Spider and the Spider Cover Problems have
not been considered before, apart from the different special cases mentioned in the previous
section. Our results are the following.

(1) We show that the greedy approach yields a 2-approximation algorithm for
the Maximum Spider Problem. (In this paper approximation ratios for both
maximization problems and minimization problems will be greater than 1). It
is remarkable that we achieve the same approximation ratio obtained in [4] for
the Maximum Coverage with Group Budget Constraints, although our Maximum
Spider Problem ismuchmore general. Since theMaximum Spider Problem contains
the classical Maximum Coverage Problem as particular case, from results of [12] it
follows that it is hard to approximate within a factor of e/(e− 1)− o(1), unless NP⊂
DTIME(nloglogn). In the paper [4] it is additionally proved that the approximation
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Figure 3: SCG as a Spider Cover Problem.

factor 2 is tight for their problem in the oracle model. Obviously, this tightness of
analysis transfers also to our Maximum Spider Problem.

(2) We give a greedy algorithm for the Spider Cover Problemwith approximation ratio
log |D|+1. Again, we match the results of [4, 9, 10], who obtained the same result in
case the graphG is the simple tree of Figure 3. Since the Maximum Spider Problems
include the Set Cover problem as a particular case, from [12] one gets a (1−ε) ln |D|)
factor for the hardness of its approximation, for any ε > 0. We also observe that
our algorithm for the Spider Cover Problem provides a O(log |D|)-approximation
algorithm for the Multicasting-to-Groups Problems considered in [10], extending
the main result of the same paper from trees to general networks. The problem
considered therein was to find a set of paths from a source node to at least one
node in each subset of a set of groups D and assignments of wavelengths to paths
so that paths sharing a same physical link of the network are assigned different
wavelengths. The goal is to minimize the number of wavelengths. It can be seen
that the paths constituting the spiders covering the family D, and an assignment of
different wavelengths to paths in different spiders, give an admissible solution to
the Multicasting-to-Group problem in general optical networks.

2. A Greedy Algorithm for the Maximum Spider Problem

In this section we will present a 2-approximation greedy algorithm for the Maximum Spider
Problem (MSP).

Given an instance 〈G, s,D〉 of the MSP, where G = (V, E) is a digraph, s is a designated
vertex in V , and D is a family of subsets of V \ {s}, we say that the subsets of vertices X ⊆ V
are reachable if there exists a spider inG, with center in s, such that each node v ∈ X is reached
by such a spider. In other words,X is reachable if there is a spider inGwhose set of terminals
includes X. For any set X ⊆ V—not necessarily reachable—we define C(X) as the number of
elements in D covered by X, that is,

C(X) = |{D ∈ D : D ∩X/= ∅}|. (2.1)

In terms of the function C(·), our original objective is essentially that of finding a reachable
set X of maximum value C(X).
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For any X,Y ⊆ V , we define the covering improvement C(Y | X) of Y over X as

C(Y | X) = C(X ∪ Y ) − C(X) = |{D ∈ D : D ∩ Y /= ∅, D ∩X = ∅}|. (2.2)

Definition 2.1. Given a reachable set X we say that:

(1) a node x ∈ V improves on X if X ∪ {x} is reachable;

(2) a node x ∈ V maximally improves on X if C(X ∪ {x}) = maxyC(X ∪ {y}), where the
maximum is taken on all nodes y that improve on X;

(3) the set X is maximal if no node x ∈ V \X improves on X.

We can now describe the skeleton of our 2-approximation algorithm. (We point out
that the algorithm could also stop as soon as it finds a first node maximally improving on X
with the property that C({x} | X) = 0. However, we let MAX SP generate a maximal set X to
make the analysis cleaner).

In the rest of this section we will show how to efficiently implement step 2. Of the
above greedy algorithm and how to compute a spider centered at s and with set of terminals
X, and we will also show that the number of sets inD covered by the terminals inX is at least
half of the optimum number.

Let us first check that the algorithm is polynomial.

Lemma 2.2. The algorithm MAX SP(G, s,D) is polynomial.

Proof. In order to compute the node x ∈ V \ X that maximally improves on X we proceed
as follows. First, for each y ∈ V \ X we check whether X ∪ {y} is reachable, that is, whether
there is a spider centered at s and with set of terminals equal to X ∪ {y}. This can be done
by constructing a flow network (For undefined terminology about flows in networks, see for
example [13]) from G, assigning the source node at s, connecting all nodes in X ∪ {y} to a
sink node t, setting all flow capacities equal to 1, and by verifying whether or not in this flow
network there exists a flow of value |X| + 1. This entire procedure can be performed clearly
in polynomial time. Subsequently, among all y’s for which X ∪ {y} is reachable, we compute
the one that maximally improves on X by using the identity C(X ∪ {y}) = C(X) +C({y} | X).
Finally, the spider that reaches the set X,—output of the algorithm MAX SP—is computed
from the executions of the maximum flow algorithm, and it consists of all the flow paths
from s to X with assigned flow value equal to 1.

In order to show that Algorithm MAX SP(G, s,D) is a 2-approximation algorithm for
the Maximum Spider Problem, we first need the following technical result.

Lemma 2.3. Let 〈G = (V, E), s,D〉 be an instance of the Maximum Spider Problem, and let R =
{X | X ⊆ V,X is reachable} denote the family of reachable subsets of V . For any X,Y ∈ R with
|X| > |Y | there exists x ∈ X such that the set Y ∪ {x} ∈ R.

Proof. Consider two arbitrary sets X,Y ∈ R, such that |X| > |Y |. Let S(X) denote a spider
reaching X, and let S(Y ) be a spider reaching Y . We will show that there exists a new spider
S(W), with terminals W = Y ∪ {x}, where x ∈ X \ Y . Hence, we will get that W ∈ R.
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Starting from G, let us construct the flow network G′ = (V ′, E′)with

V ′ = V ∪ {t}, E′ = E ∪ {(v, t) | v ∈ X ∪ Y}, (2.3)

where s is the source of the flow network, t is the sink, and each arc has capacity 1.
The existence of the spider S(Y ) in G centered in s and reaching all nodes in Y implies

the existence of a flow f in G′ such that

f(u, v) =

{
1 if (u, v) is an arc ofS(Y ) oru ∈ Y, v = t,

0 otherwise.
(2.4)

The value of f is |Y |.
In the same way, the existence of spider S(X) in G implies the existence of a flow of

value |X| inG′. Since |X| > |Y |, we know that the maximum flow inG′ is at least |Y |+1. Hence,
the flow f given in (2.4) can be augmented. Consider then the residual graph Df obtained
starting from the initial flow f ;Df must contain an augmenting path P from s to t. Moreover,
the path P must use the arc (x, t) for some x ∈ X \Y (sinceDf only contains the arcs (t, y) for
any y ∈ Y ). Consider then the augmented flow g implied by f and P . Since it modifies the
values of f only on arcs on P , we get that g induces a set of arc disjoint paths in G from s to
the nodes in Y ∪ {x}. This gives the desired spider S(W) covering W = Y ∪ {x}.

We notice that the family R is hereditary, that is, any subset of a reachable set is
reachable. This fact and Lemma 2.3 tell us that

Lemma 2.4. The pair (V,R) forms a matroid.

However, the set system associated to our optimization problem is not (V,R), but it is
(D,G), where G = {D′ ⊆ D : all subsets in D′ are covered by a spider in G centered at s};
which is hereditary but not a matroid.

Nonetheless, the fact that (V,R) is a matroid represents a useful fact for us. Indeed our
coverage function is submodular, for example for any X,Y ⊆ V it holds

C(X ∪ Y ) + C(X ∪ Y ) ≤ C(X) + C(Y ). (2.5)

Hence the Maximum Spider Problem corresponds to the maximization of the submodular
function C(·) on the independent sets of the matroid (V,R). By a well-known result of
Nemhauser et al. [14] we have that the greedy algorithm MAX SP given in Algorithm 1
returns a set X such that

C(X∗) ≤ 2C(X), (2.6)

where X∗ represents an optimal solution to the problem. Hence, we have proved the desired
approximation result.

Theorem 2.5. The Algorithm MAX SP(G, s,D) is a 2-approximation algorithm for the Maximum
Spider Problem.
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Algorithm MAX SP(G, s,D)
(1) Set X ← ∅
(2) while X is not maximal
(3) Let x ∈ V \X be the node that maximally improves on X
(4) Set X ← X ∪ {x}.
(5) Output X, C(X), and the spider with set of terminals X.

Algorithm 1: The algorithm for the Maximum Spider Problem on G, s, and D.

3. The Spider Cover Problem

In this section we will build up on the results for the Maximum Spider Problem in order
to design a O(log |D|)-approximation algorithm for the Spider Cover Problem. Recall that in
this latter problem we are given digraph G, a vertex s, a family D ⊆ 2V \{s}, and the goal is
to cover all elements in D by using the minimum number of spiders centered at s. Our first
step will be to introduce a parametrized family of digraphs {Ht}t≥1 and reduce the problem
of determining the minimum number of spiders in G necessary to cover all elements of D to
the problem of determining the minimum value of t for which Ht contains a single spider
covering all vertices in a designated subset of vertices of Ht. Subsequently, using iteratively
the approximation algorithm MAX SP on certain Ht’s, plus some additional constructions,
will allow us to construct an approximation algorithm for the Spider Cover Problem.

3.1. Constructing the Digraph Ht

Let 〈G = (V, E), s,D〉 be an instance of the Spider Cover Problem, and let t ≥ 1 be an integer.
We first construct t graphs G1 = (V1, E1), . . . , Gt = (Vt, Et) as follows: for any v ∈ V the vertex
set Vi of the ith digraph Gi contains a corresponding vertex vi, for i = 1, . . . , t. Vertex vi will
be called the ith copy of v in the final digraph Ht. If the designated vertex s is connected to
k vertices v1, . . . , vk in G, then each Vi contains k copies of s, let s1i , . . . , s

k
i be such copies, for

i = 1, . . . , t.
Now for the arcs in the Gi’s. For each arc (u, v) ∈ E, u /= s /= v, we insert a

corresponding arc (ui, vi) in Ei. We also insert in Ei the arcs (s1i , v
1
i ), . . . , (s

k
i , v

k
i ), where, we

recall, (s, v1), . . . , (s, vk) ∈ E.
For the final construction of Ht we introduce new nodes nt(v), for each v ∈ ∪D∈DD,

and a special node z. There are arcs between z and each s
j

i , and for each v ∈ ∪D∈DD there is
an arc (vi, nt(v)) from vi to nt(v), for each i = 1, . . . , t.

Formally, Ht = (Ut,At) is a directed graph where

Ut =

(
t⋃

i=1

Vi

)

∪ {z} ∪
{
s
j

i : i = 1, . . . , t, j = 1, . . . , k
}
∪
{

nt(v) : v ∈
⋃

D∈D
D

}

,

At =
{(

z, s
j

i

)
: i = 1, . . . , t, j = 1, . . . , k

}
∪
(

t⋃

i=1

Ei

)

∪
{

(vi, nt(v)) : v ∈
⋃

D∈D
D, i = 1, . . . , t

}

.

(3.1)
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Figure 4: (a) A digraph G; (b) its corresponding graph H2 when D consists of D1 = {a, c} and D2 = {b, c},
and the designated node is s.

An example of digraph G and associated graph H2 is presented in Figure 4. The
relevance of digraph Ht to our questions is explained by the following two evident results.

Lemma 3.1. Let 〈G, s,D〉 be an instance of the Spider Cover Problem. There are t spiders centered at
s in G that altogether reach a set of nodes X ⊆ ∪D∈DD if and only if there exists a spider centered at z
in the digraph Ht reaching the corresponding set of nodes {nt(x) : x ∈ X}.

Notice that the t spiders in G can also be easily constructed from the “big” spider in
Ht and vice versa.

Given an instance 〈G, s,D〉 of the Spider Cover Problem, let nt(D) be the family of
subsets of nodes of digraph Ht consisting of all subsets nt(D) = {nt(v) : v ∈ D}, for any
D ∈ D.

Theorem 3.2. An instance 〈G, s,D〉 of the Spider Cover Problem admits an optimal solution with t∗

spiders if and only if t∗ is the minimum integer for which an optimal solution of the Maximum Spider
Problem on the instance 〈Ht∗ , z, nt∗(D)〉 consists in a spider covering all elements in the family of
subsets nt∗(D).

3.2. The Spider Cover Algorithm

Our spider cover algorithm SP COV(G, s,D) is presented in next box Algorithm 2. The
algorithm consists of successive iterations, based on the Algorithm MAX SP. At each iteration
a certain set of spiders is constructed in order to cover as many subsets in D as possible.
Namely, at each iteration, if Δ ⊆ D is the subfamily of subsets not covered yet, the algorithm
seeks for the minimum number w for which the algorithm MAX SP(Hw, z, nw(Δ)) returns a
spider centered in z that covers at least half of the subsets in nw(Δ). The minimum numberw
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Algorithm SP COV(G, s,D)
Set Δ = D [Family of groups that need to be covered]
Set S = ∅, w = 0
Repeat

(i) Compute the minimum integerw (with 1 ≤ w ≤ |Δ|) such that the algorithm
MAX SP (Hw, z, nw(Δ)) outputs a spider S in Hw reaching a set X for which
C(X) = |{D ∈ nw(Δ) : D ∩X /= ∅}| ≥ |nw(Δ)|/2 = |Δ|/2

(ii) From the spider S inHw obtain (via Lemma 4) w new spiders in G that cover
at least |Δ|/2 elements of Δ

(iii) Let Δ be the new family of uncovered subsets, put in S the new w spiders,
set w = w +w.

Until Δ = ∅.
Output: S and w.

Algorithm 2: The algorithm for the Spider Cover Problem on G, s, and D.

can be obtained by applying the algorithm MAX SP(Hw, z, nw(Δ)) in a binary search fashion,
with w in the range [1, |Δ|]. Thereafter, via Lemma 3.1, one obtains w spiders in G from the
“big” spider inHw.

The total number of used spiders w will be the sum of the number of spiders used at
each iteration.

We show now that the number of spiders returned by the algorithm SP COV(G, s,D)
is at most log2|D| + 1 times the optimal number of spiders necessary for the given instance
〈G, s,D〉 of the Spider Cover Problem.

Theorem 3.3. The number of spiders returned by the algorithm SP COV(G, s,D) is w ≤
w∗(log2|D| + 1), where w∗ is the number of spiders in an optimal solution for the given instance
〈G, s,D〉 of the problem.

Proof. Consider any iteration of the cycle. The algorithm computes the minimum integer
w such that MAX SP(Hw, z, nw(Δ)) outputs a spider covering at least |Δ|/2 elements of
the family nw(Δ). This means that the current size of the family of yet uncovered groups
is decreased of at least 1/2 of its value during each iteration. Hence, the algorithm
SP COV(G, s,D) consists of at most log |D| + 1 iterations.

Moreover, at each iteration the minimum integer w computed by the algorithm is
upperbounded by w∗. In fact, it is certain that in Hw∗ there exists a spider reaching |Δ|
elements of nw∗(D), for any Δ ⊆ D, and the algorithm MAX SP(Hw∗ , z, nw∗(Δ)) is guaranteed
to find a spider that covers at least |Δ|/2 elements of nw∗(Δ).

We can then conclude that the total number of spiders w used by SP COV(G, s,D),
which is the sum of all the values obtained at the various iterations, is upperbounded by
w∗(log2|D| + 1).

4. Final Comments

We have provided a general framework for covering problems and shown that several
seemingly different problems naturally fit in our scenario. We have given approximation
algorithms with best possible approximation ratios, under widely believed computational
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complexity assumptions. We would like to point out that we can easily extend our results to
undirected graphs or to spiders defined as a collection of vertex disjoint paths sharing only a
common vertex, using standard tricks.

In case the graph G = (V, E) is undirected, we can consider the corresponding directed
symmetric graph G′ = (V, E′) where E′ contains the pair of arcs (x, y) and (y, x) if and only
if x and y are neighbors in G. One must only be careful in the case in which one could get a
spider containing both the opposite arcs, say (x, y) and (y, x), corresponding to one edge of
G. However, if two branches of a spider are of the form P1, x, y, P2 andQ1, y, x, Q2, one can
modify the spider so to contain P1, x, Q2 and Q1, y, P2. This implies that we can always get
spiders in Gwith edge disjoint branches. We can then apply the result of the present paper to
the directed graph G′ = (V, E′).

In case we are interested in spiders made of vertex disjoint paths sharing a single
vertex, we can obtain the same results as for arc-disjoint spiders by substituting in G each
node v with a pair of nodes v′ and v′′, connected by the arc (v′, v′′). Moreover, each arc
entering v in G now enters v′, and each arc leaving v in G now leaves v′′.
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