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A q-analogue of Rucinski-Voigt numbers is defined by means of a recurrence relation, and some
properties including the orthogonality and inverse relations with the q-analogue of the limit of the
differences of the generalized factorial are obtained.

1. Introduction

Rucinski and Voigt [1] defined the numbers Snk(a) satisfying the relation

xn =
n∑

k=0

Snk(a)p
a
k(x), (1.1)

where a is the sequence (a, a+r, a+2r, . . .) and pak(x) =
∏k−1

i=0 (x−(a+ir)) and proved that these
numbers are asymptotically normal. We call these numbers Rucinski-Voigt numbers. Note that
the classical Stirling numbers of the second kind S(n, k) in [2–4] and the r-Stirling numbers
of the second kind [̂ nk ]r of Broder [5] can be expressed in terms of Snk(a) as follows:

S(n, k) = Snk(d),

[̂
n + r
k + r

]

r

= Snk(e),
(1.2)

where d and e are the sequences (0, 1, 2, . . .) and (r, r + 1, r + 2, . . .), respectively. With these
observations, Snk(a) may be considered as certain generalization of the second kind Stirling-
type numbers.
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Several properties of Rucinski-Voigt numbers can easily be established parallel to those
in the classical Stirling numbers of the second kind. To mention a few, we have the triangular
recurrence relation

Sn+1k (a) = Snk−1(a) + (kr + a)Snk(a), (P1)

the exponential and rational generating function

∑

n≥0
Snk(a)

xn

n!
=

1
rkk!

eax(erx − 1)k, (P2)

∑

n≥0
Snk(a)x

n =
xk

∏k
j=0
(
1 − (rj + a)x)

, (P3)

and explicit formulas

Snk(a) =
1

rkk!

k∑

j=0
(−1)k−j

(
k
j

)(
rj + a

)n
, (P4)

Snk(a) =
∑

c0+c1+···+ck=n−k

k∏

j=0

(
rj + a

)cj . (P5)

The explicit formula in (P4) can be used to interpret rkk!Sn
k
(a) as the number of ways to

distribute n distinct balls into the k + 1 cells ( one ball at a time ), the first k of which has r
distinct compartments and the last cell with a distinct compartments, such that

(i) the capacity of each compartment is unlimited;

(ii) the first k cells are nonempty.

The other explicit formula (P5) can also be used to interpret Snk(a) as the number of ways of
assigning n people to k + 1 groups of tables where all groups are occupied such that the first
group contains a distinct tables and the rest of the group each contains r distinct tables.

The Rucinski-Voigt numbers are nothing else but the r-Whitney numbers of the second
kind, denoted by Wm,r(n, k), in Mező [6]. That is, Snk(a) = Wr,a(n, k). It is worth-mentioning
that the r-Whitney numbers of the second kind are generalization of Whitney numbers of the
second kind in Benoumhani’s papers [7–9].

On the other hand, the limit of the differences of the generalized factorial [10]

Fα,γ(n, k) = lim
β→ 0

[
Δk
t (βt + γ | α)n

]

t=0

k!βk
,

(
βt + γ | α)n =

n−1∏

j=0

(
βt + γ − jα) (1.3)
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was also known as a generalization of the Stirling numbers of the first kind. That is, all the first
kind Stirling-type numbers may also be expressed in terms of Fα,γ(n, k) by a special choice of
the values of α and γ . It was shown in [10] that

n∑

k=0

Fα,γ(n, k)tk = pbn(t), (1.4)

where b is the sequence (−γ,−γ + α,−γ + 2α, . . .). Recently, q-analogue and (p, q)-analogue of
Fα,γ(n, k), denoted by φα,γ[n, k]q and φα,γ[n, k]pq, respectively, were established by Corcino
and Hererra in [10] and obtained several properties including the horizontal generating
function for φα,γ[n, k]q

n∑

k=0

φα,γ[n, k]qt
k =
〈
t +
[
γ
]
q | [α]q

〉q
n
, (1.5)

where

〈
t +
[
γ
]
q | [α]q

〉q
n
=

n−1∏

j=0

(
t +
[
γ
]
q −
[
jα
]
q

)
,

〈
t +
[
γ
]
q | [α]q

〉q
0
= 1. (1.6)

The numbers Fα,−γ(n, k) are equivalent to the r-Whitney numbers of the first kind,
denoted by wm,r(n, k), in [6]. More precisely, Fα,−γ(n, k) = wα,γ(n, k). These numbers are
generalization of Whitney numbers of the first kind in Benoumhani’s papers [7–9].

In this paper, we establish a q-analogue of Sn
k
(a) and obtain some properties including

recurrence relations, explicit formulas, generating functions, and the orthogonality and
inverse relations.

2. Definition and Some Recurrence Relations

It is known that a given polynomial ak(q) is a q-analogue of an integer ak if

lim
q→ 1

ak
(
q
)
= ak. (2.1)

For example, the polynomials

[n]q =
qn − 1
q − 1

, [n]q! =
n∏

i=1

[i]q,
[
n
k

]

q

=
k∏

i=1

qn−i+1 − 1
qi − 1

(2.2)

are the q-analogues of the integers n, n!, and ( nk ), respectively, since

lim
q→ 1

[n]q = n, lim
q→ 1

[n]q! = n!, lim
q→ 1

[
n
k

]

q

=
(
n
k

)
. (2.3)
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The last two polynomials in (2.2) are called the q-factorial and q-binomial coefficients,
respectively. With these in mind, it is interesting also that, for a given property of an integer
ak, we can find an analogous property for the polynomial ak(q). For example, the binomial
coefficients ( nk ) satisfy the known inversion formula

fn =
n∑

k=0

(
n
k

)
gk ⇐⇒ gn =

n∑

k=0

(−1)n−k
(
n
k

)
fk (2.4)

and Vandermondes identity

(
m + n
k

)
=

k∑

r=0

(
m
r

)(
n

k − r
)
, (2.5)

while the q-binomial coefficients [ nk ]q satisfy the q-binomial inversion formula [3]

fn =
n∑

k=0

[
n
k

]

q

gk ⇐⇒ gn =
n∑

k=0

(−1)n−kq
(
n−k
2

)[
n
k

]

q

fk,

fn =
n∑

k=0

[
n
k

]

qβ
gk ⇐⇒ gn =

n∑

k=0

(−1)n−kqβ
(
n−k
2

)[
n
k

]

qβ
fk,

(2.6)

and q-Vandermondes identity [11]

[
m + n
k

]

q

=
k∑

r=0

qr(m−k+r)
[
m
r

]

q

[
n

k − r
]

q

. (2.7)

Carlitz [12] defined a q-Stirling number of the second kind in terms of a recurrence
relation

Sq[n, k] = Sq[n − 1, k − 1] + [k]qSq[n − 1, k] (2.8)

in connection with a problem in abelian groups, such that when q → 1, this gives the
triangular recurrence relation for the classical Stirling numbers of the second kind S(n, k)

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k). (2.9)

This motivates the authors to define a q-analogue of the Snk(a) as follows.

Definition 2.1. For nonnegative integers n and k and complex numbers β and r, a q-analogue
σ[n, k]β,rq of Sn

k
(c) is defined by

σ[n, k]β,rq = σ[n − 1, k − 1]β,rq +
([
kβ
]
q + [r]q

)
σ[n − 1, k]β,rq , (2.10)
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where c is the sequence (r, r + β, r + 2β, . . .), σ[0, 0]β,rq = 1, and σ[n, k]β,rq = 0 for n < k or
n, k < 0.

The numbers σ[n, k]β,rq may be considered as a q-analogue of Snk(c) since, when q → 1,

[
kβ
]
q + [r]q → kβ + r (2.11)

and, hence, the recurrence relation in (2.10) will give the recurrence relation in (P1) for
Snk(c) where c is the sequence (r, r + β, r + 2β, . . .). This fact will also be verified in Section 3
(Remark 3.4).

The above triangular recurrence relation for the q-Stirling numbers of the second kind
can easily be deduced from (2.10) by taking β = 1 and r = 0.

Clearly, using the initial conditions of σ[n, k]β,rq , we can have

σ[n, 0]β,rq = [r]nq , ∀n ≥ 0,

σ[n, n]β,rq = 1, ∀n ≥ 0.
(2.12)

By repeated application of (2.10), we obtain the following theorem.

Theorem 2.2. For nonnegative integers n and k and complex numbers β and r, the q-analogue
σ[n, k]β,rq satisfies the following vertical recurrence relation:

σ[n + 1, k + 1]β,rq =
n∑

j=k

([
(k + 1)β

]
q + [r]q

)n−j
σ
[
j, k
]β,r
q (2.13)

with initial conditions σ[0, 0]β,rq = 1 and σ[n, n]β,rq = 1, σ[n, 0]β,rq = [r]nq for all n ≥ 0.

Using the following notation

{
[r]q |

[
β
]
q

}

k
=

n−1∏

j=0

(
[r]q +

[
jβ
]
q

)
,

{
[r]q |

[
β
]
q

}

0
= 1, (2.14)

we can now state the horizontal recurrence relation for σ[n, k]β,rq .

Theorem 2.3. For nonnegative integers n and k and complex numbers β and r, the q-analogue
σ[n, k]β,rq satisfies the following horizontal recurrence relation:

σ[n, k]β,rq =
n−k∑

j=0

(−1)j
{
[r]q |

[
β
]
q

}

k+j+1{
[r]q |

[
β
]
q

}

k+1

σ
[
n + 1, k + j + 1

]β,r
q , (2.15)

with initial condition σ[0, 0]β,rq = 1 and σ[n, n]β,rq = 1, σ[n, 0]β,rq = [r]nq for all n ≥ 0.
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Proof. To prove (2.15), we simply evaluate its right-hand side using (2.10) and obtain
σ[n, k]β,rq .

It will be shown in Section 3 that

[
n
k

]

q

=
(
q − 1
)n−k

σ[n, k]
1,logq2
q . (2.16)

By taking β = 1 and r = logq2, (2.13) and (2.15) yield

[
n + 1
k + 1

]

q

=
n∑

j=k

(
qk+1
)n−j[j

k

]

q

,

[
n
k

]

q

=
n−k∑

j=0
(−1)jqjk+

(
j+1
2

)[
n + 1

k + j + 1

]

q

,

(2.17)

which are exactly the recurrence relations obtained in [13]. When q → 1, these further give
the Hockey Stick identities.

3. Explicit Formulas and Generating Functions

The next theorem is analogous to that relation in (1.1). This is necessary in obtaining one of
the explicit formulas for σ[n, k]β,rq and the orthogonality and inverse relations of φα,γ[n, k]q
and σ[n, k]β,rq .

Theorem 3.1. For nonnegative integers n and k and complex numbers β and r, the q-analogue
σ[n, k]β,rq satisfies the following relation:

n∑

k=0

σ[n, k]β,rq
〈
t | [β]q

〉q
k
=
(
t + [r]q

)n
. (3.1)

Proof. We proceed by induction on n. Clearly, (3.1) is true for n = 0. Assume that it is true for
n > 0. Then using Definition 2.1,

n+1∑

k=0

σ[n + 1, k]β,rq
〈
t | [β]q

〉q
k

=
n∑

k=0

σ[n, k]β,rq 〈t |
〈[
β
]
q

〉q
k+1

+
n∑

k=0

([
kβ
]
q + [r]q

)
σ[n, k]β,rq

〈
t | [β]q

〉q
k

=
(
t + [r]q

) n∑

k=0

σ[n, k]β,rq
〈
t | [β]q

〉q
k

=
(
t + [r]q

)(
t + [r]q

)n
=
(
t + [r]q

)n+1
.

(3.2)
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The new q-analogue of Newton’s Interpolation Formula in [14] states that, for

fq(x) = a0 + a1[x − x0]q + · · · + am[x − x0]q[x − x1]q[x − xm−1]q, (3.3)

we have

fq(x) = fq(x0) +
Δqh,hfq(x0)[x − x0]q

[1]qh ![h]q
+
Δ2
qh,h

fq(x0)[x − x0]q[x − x1]q
[2]qh ![h]

2
q

+ · · · +
Δm
qh,h

fq(x0)[x − x0]q[x − x1]q . . . [x − xm−1]q

[m]qh ![h]
m
q

,

(3.4)

where xk = x0 + kh, k = 1, 2, . . . such that when x0 = 0, this can be simplified as

fq(x) = fq(0) +
Δqh,hfq(0)[x]q

[1]qh ![h]q
+
Δ2
qh,h

fq(0)[x]q[x − h]q
[2]qh ![h]

2
q

+ · · · +
Δm
qh,h

fq(0)[x]q[x − h]q . . . [x − (m − 1)h]q

[m]qh ![h]
m
q

.

(3.5)

Using (3.1) with t = [x]q, we get

n∑

k=0

σ[n, k]β,rq
〈
[x]q |

[
β
]
q

〉q
k
=
(
[x]q + [r]q

)n
, (3.6)

which can be expressed further as

n∑

k=0

σ[n, k]β,rq q
β
(
k
2

)

[x]q
[
x − β]q · · ·

[
x − (k − 1)β

]
q =
(
[x]q + [r]q

)n
. (3.7)

Applying the above Newton’s Interpolation Formula and the identity in [14]

Δn
q,hf(x) =

n∑

k=0

(−1)kq
(
k
2

)[
n
k

]

q

f(x + (n − k)h), (3.8)

we get

σ[n, k]β,rq q
β
(
k
2

)

=
Δk
qβ,β

fq(0)

[k]qβ !
[
β
]k
q

=
1

[k]qβ !
[
β
]k
q

k∑

j=0
(−1)k−jqβ

(
k−j
2

)[
k
j

]

qβ

([
jβ
]
q + [r]q

)n
.

(3.9)
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With 〈[kβ]q | [β]q〉qk = qβ
(
k
2

)

[kβ]q[(k−1)β]q · · · [β]q = qβ
(
k
2

)

[k]qβ ![β]
k
q , we obtain the following

explicit formula.

Theorem 3.2. For nonnegative integers n and k and complex numbers β and r, the q-analogue
σ[n, k]β,rq is equal to

σ[n, k]β,rq =
1

〈[
kβ
]
q |
[
β
]
q

〉q
k

k∑

j=0
(−1)k−jqβ

(
k−j
2

)[
k
j

]

qβ

([
jβ
]
q + [r]q

)n
. (3.10)

Remark 3.3. We can also prove Theorem 3.2 using the q-binomial inversion formula in (2.6).
That is, by taking t = [kβ]q, (3.1) gives

([
kβ
]
q + [r]q

)n
=

n∑

j=0

σ
[
n, j
]β,r
q

〈[
kβ
]
q |
[
β
]
q

〉q
j

=
k∑

j=0

[
k
j

]

qβ

⎧
⎪⎨

⎪⎩

σ
[
n, j
]β,r
q

〈[
kβ
]
q |
[
β
]
q

〉q
j[

k
j

]

qβ

⎫
⎪⎬

⎪⎭
.

(3.11)

Applying (2.6), we obtain

σ
[
n, j
]β,r
q

〈[
kβ
]
q |
[
β
]
q

〉q
k[

k
k

]
qβ

=
k∑

j=0
(−1)k−jqβ

(
k−j
2

)[
k
j

]

qβ

([
jβ
]
q + [r]q

)n
. (3.12)

This is precisely the explicit formula in Theorem 3.2.

Remark 3.4. Note that 〈[kβ]q | [β]q〉qk → k!βk,
[
k
j

]

qβ
→
(
k
j

)
, and ([jβ]q + [r]q)

n → (jβ + r)n

as q → 1. Thus, using property (P4), σ[n, k]β,rq → Snk(c) as q → 1. This implies that σ[n, k]β,rq
is a proper q-analogue of Sn

k
(c).
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Now, using the explicit formula in Theorem 3.2, we obtain

∑

n≥0
σ
[
n, j
]β,r
q

tn

n!
=

1
〈[
kβ
]
q |
[
β
]
q

〉q
k

∑

n≥0

⎧
⎨

⎩

k∑

j=0
(−1)k−jqβ

(
k−j
2

)[
k
j

]

qβ

([
jβ
]
q + [r]q

)n
⎫
⎬

⎭
tn

n!

=

∑k
j=0 (−1)k−jqβ

(
k−j
2

)[
k
j

]

qβ

{∑
n≥0
([
jβ
]
q + [r]q

)n
tn/n!

}

〈
[kβ]q | [β]q

〉q
k

=

∑k
j=0 (−1)k−jqβ

(
k−j
2

)[
k
j

]

qβ

{∑
n≥0

(∑n
i=0

((
[r]qt
)i
/i!
)(([

jβ
]
qt
)n−i

/(n−i)!
))}

〈[
kβ
]
q |
[
β
]
q

〉q
k

.

(3.13)

Applying Cauchy’s formula for the product of two power series [3], we get

∑

n≥0
σ[n, k]β,rq

tn

n!
=

1
〈[
kβ
]
q |
[
β
]
q

〉q
k

k∑

j=0
(−1)k−jqβ

(
k−j
2

)[
k
j

]

qβ

⎧
⎪⎨

⎪⎩

∑

λ≥0

(
[r]qt
)λ

λ!

∑

μ≥0

([
jβ
]
qt
)μ

μ!

⎫
⎪⎬

⎪⎭
.

(3.14)

Thus,

∑

n≥0
σ[n, k]β,rq

tn

n!
=

1
〈[
kβ
]
q |
[
β
]
q

〉q
k

k∑

j=0
(−1)k−jqβ

(
k−j
2

)[
k
j

]

qβ
e([jβ]q+[r]q)t. (3.15)

Applying the above identity for Δn
q,hf to the function f defined by

f(x) =
e([xβ]q+[r]q)t
〈[
kβ
]
q |
[
β
]
q

〉q
k

, (3.16)

we can further express the above generating function in terms of a q-difference operator. More
precisely,

∑

n≥0
σ[n, k]β,rq

tn

n!
=

⎧
⎪⎨

⎪⎩
Δk
q

⎛
⎜⎝

e([xβ]q+[r]q)t
〈[
kβ
]
q |
[
β
]
q

〉q
k

⎞
⎟⎠

⎫
⎪⎬

⎪⎭
x=0

. (3.17)

This is a kind of exponential generating function for σ[n, k]β,rq which is included in the next

theorem. Together with this, a rational generating function for σ[n, k]β,rq is also stated in the
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theorem that will be used to derive another explicit formula for σ[n, k]β,rq in homogeneous
symmetric function form.

Theorem 3.5. For nonnegative integers n and k and complex numbers β and r, the q-analogue
σ[n, k]β,rq satisfies the exponential generating function

Φk(t) =
∑

n≥0
σ[n, k]β,rq

tn

n!
=

⎡
⎢⎣Δk

qβ

⎛
⎜⎝

e([xβ]q+[r]q)t
〈[
kβ
]
q |
[
β
]
q

〉q
k

⎞
⎟⎠

⎤
⎥⎦

x=0

, (3.18)

and the rational generating function

ψk(t) =
∑

n≥k
σ[n, k]β,rq tn =

tk

∏k
j=0

(
1 −
([
jβ
]
q + [r]q

)
t
) . (3.19)

Proof. We are done with the proof of the first generating function. We are left to prove the
second one and we are going to prove this by induction on k. For k = 0, we have

ψ0(t) =
∑

n≥0
σ[n, 0]β,rq tn =

∑

n≥0
[r]nqt

n =
1

(
1 − [r]qt

) . (3.20)

With k > 0 and using Definition 2.1, we obtain

ψk(t) =
∑

n≥k
σ[n, k]β,rq tn

= t
∑

n≥k
σ[n − 1, k − 1]β,rq tn−1 +

([
kβ
]
q + [r]q

)
t
∑

n≥k
σ[n − 1, k]β,rq tn−1

= tψk−1(t) +
([
kβ
]
q + [r]q

)
tψ(t).

(3.21)

Hence,

ψk(t) =
t

1 −
([
kβ
]
q + [r]q

)
t
ψk−1(t), (3.22)

which gives

ψk(t) =
tk

∏k
j=0

(
1 −
([
jβ
]
q + [r]q

)
t
) . (3.23)
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The rational generating function in Theorem 3.5 can then be expressed as

σ[n, k]β,rq =
∑

s1+s2+···+sk=n−k

k∏

j=0

([
jβ
]
q + [r]q

)sj
. (3.24)

This sum may be written further as follows.

Theorem 3.6. For nonnegative integers n and k and complex numbers β and r, the explicit formula
for σ[n, k]β,rq in homogeneous symmetric function form is given by

σ[n, k]β,rq =
∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏

i=1

([
jiβ
]
q + [r]q

)
. (3.25)

This explicit formula is necessary in giving combinatorial interpretation of σ[n, k]β,rq in
the context of 0-1 tableau. Note that when β = 1 and r = 0, Theorem 3.6 yields

σ[n, k]1,0q =
∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏

i=1

[
ji
]
q = Sq[n, k], (3.26)

the q-Stirling numbers of the second kind [12]. Moreover, taking β = 1 and r = logq2,
Theorem 3.6 reduces to

σ[n, k]
1,logq2
q =

∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏

i=1

([
ji
]
q +
[
logq2

]

q

)

=
(
q − 1
)k−n ∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏

i=1

qji .

(3.27)

Using the representation given in [15] for the q-binomial coefficients, we have

[
n
k

]

q

=
(
q − 1
)n−k

σ[n, k]
1,logq2

1q . (3.28)

This is the identity that we used in Section 2.

4. Combinatorial Interpretation of σ[n, k]β,rq

Definition 4.1 (see [15]). A 0-1 tableau is a pair ϕ = (λ, f), where

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) (4.1)
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0 0 0 1 1

0 0 1

1 0 0

0 1

0

Figure 1: The 0-1 tableau ϕ = (λ, f).

is a partition of an integer m and f = (fij)1≤j≤λi is a “filling” of the cells of corresponding
Ferrers diagram of the shape λ with 0’s and 1’s, such that there is exactly one “1” in each
column.

Using the partition λ = (5, 3, 3, 2, 1), we can construct 60 distinct 0-1 tableaux. Figure 1
below shows one of these tableaux with f14 = f15 = f23 = f31 = f42 = 1, fij = 0 elsewhere such
that 1 ≤ j ≤ λi.

Definition 4.2 (see [15]). AnA-tableau is a list φ of column c of a Ferrer’s diagram of a partition
λ (by decreasing order of length) such that the lengths |c| are part of the sequenceA = (ai)i≥0,
a strictly increasing sequence of nonnegative integers.

Let ω be a function from the set of nonnegative integers N to a ring K. Suppose Φ is
an A-tableau with r columns of lengths |c| ≤ h. Then, we set

ωA(Φ) =
∏

c∈Φ
ω(|c|). (4.2)

Note that Φ might contain a finite number of columns whose lengths are zero since 0 ∈ A =
{0, 1, 2, . . . , k} and if ω(0)/= 0.

From this point onward, whenever an A-tableau is mentioned, it is always associated
with the sequence A = {0, 1, 2, . . . , k}.

We are now ready to mention the following theorem.

Theorem 4.3. Let ω : N → K denote a function fromN to a ring K (column weights according to
length) which is defined by ω(|c|) = [|c|β]q + [r]q where β and γ are complex numbers, and |c| is the
length of column c of an A-tableau in TA(k, n − k). Then

σ[n, k]β,rq =
∑

φ∈TA(k,n−k)

∏

c∈φ
ω(|c|). (4.3)

Proof. This can easily be proved using Definition 4.2 and Theorem 3.6.

Now, we demonstrate simple combinatorics of 0-1 tableaux to obtain certain relation
for σ[n, k]β,rq . To start with, we have, from Theorem 4.3,

σ[n, k]β,rq =
∑

φ∈TA(k,n−k)
ωA(Φ), (4.4)
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where

ωA(Φ) =
∏

c∈φ

([|c|β]q + [r]q
)
, |c| ∈ {0, 1, 2, . . . , k}. (4.5)

Substituting ji = |c|, we obtain

ωA(Φ) =
n−k∏

i=1

([
jiβ
]
q + [r]q

)
, ji ∈ {0, 1, 2, . . . , k}. (4.6)

Let [r]q = c1 + c2 where c1 = [r]q − [r2]q and c2 = [r2]q for some numbers r1 and r2. Then, with
ω∗(j) = [jβ]q + c2, we have

ωA(Φ) =
n−k∑

l=0

cn−k−l1

∑

q1≤q2≤···≤ql,qi∈{j1,j2,...,jn−k}

l∏

i=1

ω∗(qi
)
. (4.7)

Now, we are going to count the number of tableaux with n − k columns such that n − k −
r columns are of weight c1 and r columns are of weight ω∗(qi), qi ∈ {0, 1, 2, . . . , k}. Note
that there are

(
n−k
r

)
tableaux with r columns whose lengths are taken from the lengths of

the columns of Φ. Since there is a one-to-one correspondence between weights ω(ji) and
A-tableaux, the number of A-tableaux Φ in TA(k, n − k) is equal to the number of possible
multisets {j1, j2, . . . , jn−k}with ji in {0, 1, 2, . . . , k}. That is,

∣∣∣TA(k, n − k)
∣∣∣ =
(
n
k

)
. (4.8)

Thus, for all Φ ∈ TA(k, n − k), we can generate ( nk )
(
n−k
r

)
tableaux with r columns whose

weights are ω∗(ji), ji ∈ {0, 1, 2, . . . , k}. However, there are only

∣∣∣TA(k, r)
∣∣∣ =
(
r + k
r

)
(4.9)

distinct tableaux with r columns whose lengths are in {0, 1, 2, . . . , k}. Hence, every distinct
tableau with n − k columns, r of which are of weight other than c1, appears

( nk )
(
n−k
r

)
(
r+k
r

) =
(

n
r + k

)
(4.10)

times in the collection. Thus,

∑

Φ∈TA(k,n−k)
ωA(Φ) =

n−k∑

r=0

(
n

r + k

)
cn−k−r1

∑

φ∈Br

∏

c∈φ
ω∗(|c|), (4.11)
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where Br denotes the set of all tableaux ψ having r columns of weights ω∗(ji) = [jiβ]q + c2.
Reindexing the double sum, we get

∑

Φ∈TA(k,n−k)
ωA(Φ) =

n∑

j=k

(
n
j

)
c
n−j
1

∑

φ∈Bj−k

∏

c∈φ
ω∗(|c|), (4.12)

where Bj−k is the set of all tableaux with j − k columns of weights ω∗(ji) = [jiβ]q + c2 for each

i = 1, 2, . . . , j − k. Clearly, Bj−k = TA(k, j − k). Therefore,

∑

Φ∈TA(k,n−k)
ωA(Φ) =

n∑

j=k

(
n
j

)
c
n−j
1

∑

φ∈TA(k,j−k)
ωA

(
φ
)
. (4.13)

Applying Theorem 4.3 completes the proof of the following theorem.

Theorem 4.4. For nonnegative integers n and k and complex numbers β and r, the q-analogue
σ[n, k]β,rq satisfies the following identity:

σ[n, k]β,rq =
n∑

j=k

(
n
j

)
q(n−j)r2[r1]

n−j
q σ
[
j, k
]β,r2
q , (4.14)

where r = r1 + r2.

Taking β = 1, r2 = 0, and r = r1 = logq2, Theorem 4.4 gives

(
q − 1
)n−k

σ[n, k]
1,logq2
q =

n∑

j=k

(
n
j

)(
q − 1
)j−k

σ
[
j, k
]1,0
q . (4.15)

Using (2.16) and (3.26), we obtain

[
n
k

]

q

=
n∑

j=k

(
n
j

)(
q − 1
)j−k

Sq
[
j, k
]

(4.16)

the Carlitz identity in [12]. Hence, we can consider the identity in Theorem 4.4 as a
generalization of the above Carlitz identity.

5. Orthogonality and Inverse Relations

We notice that (1.4) can be written as

m∑

k=0

Fr,−a(m, k)tk = pam(t). (5.1)
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Using (1.1), it can easily be shown that

m∑

k=n

Fr,−a(m, k)Skn(a) =
m∑

k=n

Smk (a)Fr,−a(k, n) = δmn, (5.2)

where δmn is the Kronecker delta defined by δmn = 1 ifm = n, and δmn = 0 ifm/=n. Moreover,
the following inverse relations hold:

fn =
n∑

k=0

Snk(a)gk ⇐⇒ gn =
n∑

k=0

Fr,−a(n, k)fk, (5.3)

fk =
∑

n≥k
Snk(a)gn ⇐⇒ gk =

∑

n≥k
Fr,−a(n, k)fn. (5.4)

Relation (5.2) is exactly the orthogonality relation for r-Whitney numbers that appeared in
[6]. Consequently, the generating functions in (P2) and (P3) can be transformed, respectively,
using (5.4) into the following identities:

∑

n≥k
Fr,−a(n, k)

k!
xk

1
rnn!

eax(erx − 1)n = 1,

∑

n≥k
Fr,−a(n, k)

xn−k
∏n

j=0
(
1 − (rj + a)x) = 1,

(5.5)

which will reduce to the following interesting identities for Fα,γ(n, k)when x = 1:

∑

n≥k

Fα,γ(n, k)k!(eα − 1)n

αnn!eγ
= 1,

∑

n≥k

Fα,γ(n, k)(
1 + γ | α)n+1

= 1.

(5.6)

Note that the number Fα,γ(n, k) can be expressed in terms of the unified generalization of
Stirling numbers by Hsu and Shiue [16] as Fα,γ(n, k) = S(n, k;α, 0, γ). Hence, the identity in
(5.6) coincides with the identity in [17, Theorem 9] by taking x = 1 + γ .

Parallel to (5.2), (5.3), and (5.4), we will establish in this section the orthogonality and
inverse relations of φα,γ[n, k]q and σ[n, k]

β,r
q .

To derive the orthogonality relation for φα,γ[n, k]q and σ[n, k]β,rq , we need to rewrite
first (1.5) and (3.1). By taking γ = logq(2 − qr), (1.5) gives

n∑

k=0

φα,logq(2−qr)[n, k]qt
k =
〈
t − [r]q | [α]

〉q
n
, (5.7)
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and, by replacing t with t − [r]q, (3.1) yields

n∑

k=0

σ[n, k]β,rq
〈
t − [r]q |

[
β
]〉q

k
= tn. (5.8)

Using (5.8), (5.7) can be expressed as

〈
t − [r]q |

[
β
]〉q

m
=

m∑

k=0

φβ,logq(2−qr)[m, k]q

{
k∑

n=0

σ[k, n]β,rq
〈
t − [r]q |

[
β
]
q

〉q
n

}

=
m∑

n=0

{
m∑

k=n

φβ,logq(2−qr)[m, k]qσ[k, n]
β,r
q

}〈
t − [r]q |

[
β
]
q

〉q
n
.

(5.9)

Thus

m∑

k=n

φβ,logq(2−qr)[m, k]qσ[k, n]
β,r
q = δmn (m ≥ n). (5.10)

Theorem 5.1. For nonnegative integers m, n, and k and complex numbers β and r, the following
orthogonality relation holds:

m∑

k=n

φβ,r[m, k]qσ[k, n]
β,r
q =

m∑

k=n

σ[m, k]β,rq φβ,r[k, n]q = δmn (m ≥ n), (5.11)

where r = logq(2 − qr).

Remark 5.2. It can easily be shown that r = logq(2 − qr) → −r as q → 1. This implies that

φβ,r[m, k]q → Fβ,−r(m, k) as q → 1. Since σ[k, n]β,rq → Skn(c) as q → 1, (5.11) yields (5.2)
easily.

Remark 5.3. Let M1 and M2 be two n × n matrices whose entries are φβ,r[i, j]q and

σ[i, j]β,rq , respectively. That is, M1 = (φβ,r[i, j]q)0≤i,j≤n and M2 = (σ[i, j]β,rq )0≤i,j≤n. Then using
Theorem 5.1,M1M2 = M2M1 = In, the identity matrix of order n. This implies thatM1 and
M2 are orthogonal matrices.

Using the orthogonality relation in Theorem 5.1, we can easily prove the following
inverse relation.

Theorem 5.4. For nonnegative integers m, n, and k, and complex numbers β and r, the following
inverse relation holds:

fn =
n∑

k=0

σ[n, k]β,rq gk ⇐⇒ gn =
n∑

k=0

φβ,r[n, k]qfk, (5.12)

where r = logq(2 − qr).
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Proof. Given fn =
∑n

k=0 σ[n, k]
β,r
q gk, we have

n∑

k=0

φβ,r[n, k]qfk =
n∑

k=0

φβ,r[n, k]q

⎧
⎨

⎩

k∑

j=0

σ
[
k, j
]β,r
q gj

⎫
⎬

⎭

=
k∑

j=0

⎧
⎨

⎩

n∑

k=j

φβ,r[n, k]qσ
[
k, j
]β,r
q

⎫
⎬

⎭gj

=
k∑

j=0

δnjgj = gn.

(5.13)

The converse can be shown similarly.
One can easily prove the following inverse relation.

Theorem 5.5. For nonnegative integers m, n, and k and complex numbers β and r, the following
inverse relation holds:

fk =
∞∑

n=0

σ[n, k]β,rq gn ⇐⇒ gk =
∞∑

n=0

φβ,r[n, k]qfn, (5.14)

where r = logq(2 − qr).

Remark 5.6. The exponential and rational generating functions in Theorem 3.5 can be
transformed into the following identities for the q-analogue of Fα,γ(n, k):

∑

n≥0
φβ,r[n, k]q

k!
tk
Δn
q

⎛
⎜⎝

e([xβ]q+[r]q)t
〈[
nβ
]
q |
[
β
]〉q

n

⎞
⎟⎠

x=0

= 1,

∑

n≥0
φβ,r[n, k]q

tn−k
∏n

j=0

(
1 −
([
jβ
]
q + [r]q

)
t
) = 1,

(5.15)

when q → 1, (5.15)will exactly give (5.5), respectively.
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[1] A. Ruciński and B. Voigt, “A local limit theorem for generalized Stirling numbers,” Revue Roumaine
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