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The r-Bell numbers are generalized using the concept of the Hankel contour. Some properties parallel to those of the ordinary Bell
numbers are established. Moreover, an asymptotic approximation for 𝑟-Bell numbers with real arguments is obtained.

1. Introduction

The 𝑟-Stirling numbers of the second kind, denoted by { 𝑛
𝑘
}
𝑟
,

are defined by Broder in [1], combinatorially, to be the
number of partitions of the set {1, 2, . . . , 𝑛} into 𝑘 nonempty
subsets, such that the numbers 1, 2, . . . , 𝑟 are in distinct
subsets. Several properties of these numbers are established in
[1–3]. Further generalization was established in [4] which is
called (𝑟, 𝛽)-Stirling numbers. These numbers are equivalent
to the 𝑟-Whitney numbers of the second kind [5] and the
Rucinski-Voigt numbers [6].

The sumof 𝑟-Stirling numbers of the second kind for inte-
gral arguments was first considered by Corcino in [7] andwas
called the 𝑟-Bell numbers. Corcino obtained an asymptotic
approximation of 𝑟-Bell numbers using the method of Moser
and Wyman. Here, we use 𝐵

𝑛,𝑟
to denote the 𝑟-Bell numbers;

that is,

𝐵
𝑛, 𝑟
=

𝑛

∑

𝑘=0

{

𝑛 + 𝑟

𝑘 + 𝑟
}

𝑟

. (1)

In a followup study of Mező [8], the 𝑟-Bell numbers 𝐵
𝑛, 𝑟

were given more properties. One of these is the following
exponential generating function:

∑

𝑛≥0

𝐵
𝑛, 𝑟

𝑡
𝑛

𝑛!

= exp (𝑟𝑡 + (𝑒𝑡 − 1)) . (2)

A more general form of Bell numbers, denoted by 𝐺
𝑥,𝑟,𝛽

,
was defined in [9] as

𝐺
𝑥,𝑟,𝛽
=

𝑥!

2𝜋𝑖

∫

H

𝑒
𝑟𝑧+(𝑒

𝛽𝑧
−1)/𝛽

𝑑𝑧

𝑧
𝑥+1
, (3)

where the parameters 𝑥, 𝑟, and 𝛽 are complex numbers with
ℜ𝑟 > 0, ℜ𝛽 > 0, and 𝑥! = Γ(𝑥 + 1). In this paper, we define
the 𝑟-Bell numbers with complex argument using the concept
of Hankel contour and establish some properties parallel
to those obtained by Mező in [8]. Moreover, an asymptotic
formula of these numbers for real arguments will be derived
using the method of Moser and Wyman [10].

2. 𝑟-Stirling Numbers of the Second Kind

Graham et al. [11] proposed another way of generalizing the
Stirling numbers by extending the range of values of the
parameters 𝑛 and 𝑘 to complex numbers. This problem was
first considered by Flajolet and Prodinger [12] by defining
the classical Stirling numbers with complex arguments using
the concept of Hankel contour. Recently, the (𝑟, 𝛽)-Stirling
numbers with complex arguments, denoted by { 𝑥𝑦 }

𝛽,𝑟
, were

defined in [9] by means of the following integral representa-
tion over a Hankel contourH:

{

𝑥

𝑦
}

𝛽, 𝑟

=

𝑥!

𝑦!𝛽
𝑦
2𝜋𝑖

∫

H

𝑒
𝑟𝑧

(𝑒
𝛽𝑧

− 1)

𝑦 𝑑𝑧

𝑧
𝑥+1
, (4)

where 𝑟 and𝛽 are complex numberswithℜ𝑟 > 0,ℜ𝛽 > 0, and
𝑥! = Γ(𝑥 + 1). We know that, for integral case, the 𝑟-Stirling
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numbers of the second kind may be obtained by taking 𝛽 =
1. Hence, using (4), we can define the second-kind 𝑟-Stirling
numbers with complex arguments as follows.

Definition 1. The 𝑟-Stirling numbers of the second kind
{
𝑥+𝑟

𝑦+𝑟 }
𝑟
of complex arguments 𝑥 and 𝑦 are defined by

{

𝑥 + 𝑟

𝑦 + 𝑟
}

𝑟

:=

𝑥!

𝑦!2𝜋𝑖

∫

H

𝑒
𝑟𝑧

(𝑒
𝑧

− 1)
𝑦 𝑑𝑧

𝑧
𝑥+1
, (5)

where 𝑟 is complex number with ℜ𝑟 > 0 and 𝑥! = Γ(𝑥 + 1),
and the logarithm involved in the functions (𝑒𝑧 − 1)𝑦 and 𝑧𝑥+1
is taken to be the principal branch. The Hankel contour H
starts from −∞ below the negative axis, surrounds the origin
counterclockwise, and returns to−∞ in the half planeℑ𝑧 > 0,
such that it has a distance 𝜖 ≤ 1 from the nonpositive real axis.

Remark 2. Since ℜ𝑟 > 0 and ℜ𝑧 → −∞, the integral in (5)
converges for all values of 𝑥 and 𝑦. Also, { 𝑥+𝑟𝑦+𝑟 }

𝑟
is a mero-

morphic function of 𝑥 (for any fixed 𝑦) with poles at the
nonpositive integers, and it is entire as a function of 𝑦 (for
any fixed 𝑥 not a negative integer).

Remark 3. By the change of variable on the integral in (4), say
𝑤 = 𝛽𝑧, we can express { 𝑥𝑦 }

𝛽,𝑟
in terms of { 𝑥+𝑟𝑦+𝑟 }

𝑟
as follows:

{

𝑥

𝑦
}

𝛽,𝑟

= 𝛽
𝑥−𝑦

{
{
{

{
{
{

{

𝑥 +

𝑟

𝛽

𝑦 +

𝑟

𝛽

}
}
}

}
}
}

}𝑟/𝛽

. (6)

Because of relation (6), every property of (𝑟, 𝛽)-Stirling
numbers with complex arguments will have a corresponding
property for 𝑟-Stirling numbers with complex arguments and
vice versa. For instance, the (𝑟, 𝛽)-Stirling numbers in [9]
satisfy the following relation:

{

𝑥

𝑦
}

𝛽, 𝑟

= {

𝑥 − 1

𝑦 − 1
}

𝛽,𝑟

+ (𝛽𝑦 + 𝑟) {

𝑥 − 1

𝑦
}

𝛽,𝑟

. (7)

Replacing 𝑟 with 𝛽𝑟, we get

{

𝑥

𝑦
}

𝛽, 𝛽𝑟

= {

𝑥 − 1

𝑦 − 1
}

𝛽,𝛽𝑟

+ (𝛽𝑦 + 𝛽𝑟) {

𝑥 − 1

𝑦
}

𝛽,𝛽𝑟

. (8)

Using (6), we obtain

𝛽
𝑥−𝑦

{
{
{
{

{
{
{
{

{

𝑥 +

𝛽𝑟

𝛽

𝑦 +

𝛽𝑟

𝛽

}
}
}
}

}
}
}
}

}𝛽𝑟/𝛽

= 𝛽
𝑥−𝑦

{
{
{
{

{
{
{
{

{

𝑥 + (

𝛽𝑟

𝛽

) − 1

𝑦 + (

𝛽𝑟

𝛽

) − 1

}
}
}
}

}
}
}
}

}𝛽𝑟/𝛽

+ 𝛽
𝑥−1−𝑦

(𝛽𝑦 + 𝛽𝑟)

{

{

{

𝑥 + (

𝛽𝑟

𝛽

) − 1

𝑦 + 𝛽𝑟

}

}

}𝛽𝑟/𝛽

.

(9)

Thus, we have

{

𝑥 + 𝑟

𝑦 + 𝑟
}

𝑟

= {

𝑥 + 𝑟 − 1

𝑦 + 𝑟 − 1
}

𝑟

+ (𝑦 + 𝑟) {

𝑥 + 𝑟 − 1

𝑦 + 𝑟
}

𝑟

. (10)

On the other hand, the (𝑟, 𝛽)-Stirling numbers in [9]
satisfy the relation

{

𝑥

𝑦
}

𝛽, 𝑟

=

1

𝛽
𝑦
𝑦!

∞

∑

𝑗=0

(−1)
𝑦−𝑗

(

𝑦

𝑗
) (𝛽𝑗 + 𝑟)

𝑥

. (11)

Again, replacing 𝑟 with 𝛽𝑟, we obtain

{

𝑥

𝑦
}

𝛽,𝛽𝑟

=

1

𝛽
𝑦
𝑦!

∞

∑

𝑗=0

(−1)
𝑦−𝑗

(

𝑦

𝑗
) (𝛽𝑗 + 𝛽𝑟)

𝑥

. (12)

By (6), we get

𝛽
𝑥−𝑦

{
{
{
{

{
{
{
{

{

𝑥 +

𝛽𝑟

𝛽

𝑦 +

𝛽𝑟

𝛽

}
}
}
}

}
}
}
}

}𝛽𝑟/𝛽

=

1

𝛽
𝑦
𝑦!

∞

∑

𝑗=0

(−1)
𝑦−𝑗

(

𝑦

𝑗
) (𝛽𝑗 + 𝛽𝑟)

𝑥

.

(13)

Thus, we have

{

𝑥 + 𝑟

𝑦 + 𝑟
}

𝑟

=

1

𝑦!

∞

∑

𝑗=0

(−1)
𝑦−𝑗

(

𝑦

𝑗
) (𝑗 + 𝑟)

𝑥

. (14)

Let’s state these relations formally in the following theo-
rem.

Theorem 4. The 𝑟-Stirling numbers of the second kind with
complex arguments satisfy the following relations:

{

𝑥 + 𝑟

𝑦 + 𝑟
}

𝑟

= {

𝑥 + 𝑟 − 1

𝑦 + 𝑟 − 1
}

𝑟

+ (𝑦 + 𝑟) {

𝑥 + 𝑟 − 1

𝑦 + 𝑟
}

𝑟

, (15)

{

𝑥 + 𝑟

𝑦 + 𝑟
}

𝑟

=

1

𝑦!

∞

∑

𝑗=0

(−1)
𝑦−𝑗

(

𝑦

𝑗
) (𝑗 + 𝑟)

𝑥

. (16)

Remark 5. We can give an alternative proof of this theorem.
That is, by applying integration by parts on (5) and using the
fact that 𝑒𝛽𝑧(𝑒𝑧 − 1)𝑦−1 = (𝑒𝑧 − 1)𝑦 + (𝑒𝑧 − 1)𝑦−1, we obtain

{

𝑥 + 𝑟

𝑦 + 𝑟
}

𝑟

=

(𝑥 − 1)!

(𝑦 − 1)!2𝜋𝑖

∫

H

𝑒
𝑟𝑧

(𝑒
𝑧

− 1)
𝑦−1 𝑑𝑧

𝑧
𝑥

+

(𝑦 + 𝑟) (𝑥 − 1)!

𝑦!2𝜋𝑖

∫

H

𝑒
𝑟𝑧

(𝑒
𝑧

− 1)
𝑦 𝑑𝑧

𝑧
𝑥
.

(17)
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This implies (15) immediately. On the other hand, using
Newton’s Binomial Theorem, (5) can be expressed as

{

𝑥 + 𝑟

𝑦 + 𝑟
}

𝑟

=

𝑥!

𝑦!

1

2𝜋𝑖

∫

H

𝑒
𝑟𝑧

∞

∑

𝑗=0

(−1)
𝑦−𝑗

(

𝑦

𝑗
) 𝑒
𝛽𝑧𝑗
𝑑𝑧

𝑧
𝑥+1

=

1

𝑦!

∞

∑

𝑗=0

(−1)
𝑦−𝑗

(

𝑦

𝑗
)

𝑥!

2𝜋𝑖

∫

H

𝑒
(𝑗+𝑟)𝑧

𝑑𝑧

𝑧
𝑥+1
.

(18)

We know that Hankel’s contour integral is a unit for gamma
function over the set of complex numbers; that is,

(

𝑖

2𝜋

∫

H

(−𝑧)
−𝑥

𝑒
−𝑧

𝑑𝑧) Γ (𝑥) = 1, |𝑧| < ∞. (19)

This implies that

𝑥!

2𝜋𝑖

∫

H

𝑒
(𝑗+𝑟)𝑧

𝑑𝑧

𝑧
𝑥+1
= (𝑗 + 𝑟)

𝑥

. (20)

This completes the proof of (16).

The next theorem contains a property for { 𝑥+𝑟𝑦+𝑟 }
𝑟
which

is analogous to the identity that usually defines Stirling-type
numbers.

Theorem 6. The 𝑟-Stirling numbers of the second kind with
complex arguments satisfy the following relation:

(𝑡 + 𝑟)
𝑥

=

∞

∑

𝑘=0

{

𝑥 + 𝑟

𝑘 + 𝑟
}

𝑟

(𝑡)
𝑘
, (21)

where (𝑡)
𝑘
= 𝑡(𝑡 − 1) ⋅ ⋅ ⋅ (𝑡 − 𝑘 + 1).

Proof. Using (5) with 𝑦 = 𝑘, a nonnegative integer, we obtain

∞

∑

𝑘=0

{

𝑥 + 𝑟

𝑘 + 𝑟
}

𝑟

(𝑡)
𝑘
=

∞

∑

𝑘=0

{

𝑥!

𝑘!2𝜋𝑖

∫

H

𝑒
𝑟𝑧

(𝑒
𝑧

− 1)
𝑘 𝑑𝑧

𝑧
𝑥+1
} (𝑡)
𝑘

=

𝑥!

2𝜋𝑖

∫

H

𝑒
𝑟𝑧

{

∞

∑

𝑘=0

(

𝑡

𝑘
) (𝑒
𝑧

− 1)
𝑘

}

𝑑𝑧

𝑧
𝑥+1

=

𝑥!

2𝜋𝑖

∫

H

𝑒
𝑟𝑧

(𝑒
𝑧

− 1 + 1)
𝑡 𝑑𝑧

𝑧
𝑥+1

=

𝑥!

2𝜋𝑖

∫

H

𝑒
𝑟𝑧

𝑒
𝑡𝑧
𝑑𝑧

𝑧
𝑥+1
.

(22)

Thus, by (20), we prove the theorem.

Remark 7. It is worth mentioning that this type of property
was not established for (𝑟, 𝛽)-Stirling numbers with complex

arguments. However, replacing 𝑡 with 𝛽−1𝑡 and 𝑟 with 𝑟/𝛽 in
(21), we obtain

(𝛽
−1

𝑡 +

𝑟

𝛽

)

𝑥

=

∞

∑

𝑘=0

{
{
{

{
{
{

{

𝑥 +

𝑟

𝛽

𝑘 +

𝑟

𝛽

}
}
}

}
}
}

}
𝑟/𝛽

(𝛽
−1

𝑡)
𝑘

,

(𝑡 + 𝑟)
𝑥

=

∞

∑

𝑘=0

𝛽
𝑥−𝑘

{
{
{

{
{
{

{

𝑥 +

𝑟

𝛽

𝑘 +

𝑟

𝛽

}
}
}

}
}
}

}
𝑟/𝛽

(𝑡 | 𝛽)
𝑘
.

(23)

Using relation (6), we get

(𝑡 + 𝑟)
𝑥

=

∞

∑

𝑘=0

{

𝑥

𝑘
}

𝛽,𝑟

(𝑡 | 𝛽)
𝑘
. (24)

This is the corresponding property for (𝑟, 𝛽)-Stirling numbers
with complex arguments.

Remark 8. In a separate paper of the present authors, an
asymptotic formula for 𝑟-Stirling numbers of the second kind
with real arguments was established using the method of
Chelluri et al. [13].

3. 𝑟-Bell Numbers

Using Cauchy’s integral formula, (2) can be transformed into
the following integral representation of 𝐵

𝑛,𝑟
:

𝐵
𝑛,𝑟
=

𝑛!

2𝜋𝑖

∫

𝛾

𝑒
𝑟𝑧+(𝑒

𝑧
−1)
𝑑𝑧

𝑧
𝑛+1
, (25)

where the integral contour 𝛾 is a small contour encircling the
origin. Since 𝑛 is nonnegative in (25), the contour 𝛾 can be
deformed into a Hankel contour H that starts from −∞
below the negative axis, surrounds the origin counterclock-
wise, and returns to −∞ in the half plane ℑ𝑧 > 0. We
assume that it is at distance ≤1 from the real axis. Now, let
us consider the following definition for the generalization of
𝑟-Bell numbers 𝐵

𝑛,𝑟
where 𝑛 is a complex number.

Definition 9. The 𝑟-Bell numbers 𝐵
𝑥,𝑟

of complex argument 𝑥
are defined by

𝐵
𝑥,𝑟
=

𝑥!

2𝜋𝑖

∫

H

𝑒
𝑟𝑧+(𝑒

𝑧
−1)
𝑑𝑧

𝑧
𝑥+1
, (26)

where 𝑟 is complex numbers with ℜ𝑟 > 0 and 𝑥! = Γ(𝑥 + 1).

Sinceℜ𝑟 > 0 andℜ𝑧 → −∞, clearly, the integral in (26)
converges for all values of 𝑥. Moreover, 𝐵

𝑥,𝑟
is a meromorphic

function of 𝑥 with poles at the nonpositive integers.
It can easily be shown that

𝐵
𝑥,𝑟
=

∞

∑

𝑘=0

{

{

{

1

𝑘!

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(

𝑘

𝑗
)

𝑥!

2𝜋𝑖

∫

H

𝑒
(𝑗+𝑟)𝑧

𝑧
−(𝑥+1)

𝑑𝑧

}

}

}

.

(27)
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By (16) and (20), we obtain

𝐵
𝑥,𝑟
=

∞

∑

𝑘=0

{

{

{

1

𝑘!

𝑘

∑

𝑗=0

(−1)
𝑘−𝑗

(

𝑘

𝑗
) (𝑗 + 𝑟)

𝑥
}

}

}

=

∞

∑

𝑘=0

{

𝑥 + 𝑟

𝑘 + 𝑟
}

𝑟

.

(28)

Hence, we have the following theorem.

Theorem 10. The 𝑟-Bell numbers are equal to

𝐵
𝑥, 𝑟
=

∞

∑

𝑘=0

{

𝑥 + 𝑟

𝑘 + 𝑟
}

𝑟

, (29)

where 𝑥 and 𝑟 are complex numbers.

By Theorem 10, we have verified that identity in (1) also
holds for 𝐵

𝑥,𝑟
with complex argument 𝑥. This means that

the numbers 𝐵
𝑥,𝑟

in Definition 9 belong to the family of Bell
numbers.

The next theorem asserts that 𝐵
𝑥,𝑟

also possess a kind
of Dobiński’s formula which can easily be shown using
Definiton 9 and the expansion of 𝑒(𝑟𝑧+𝑒

𝑧
−1).

Theorem 11. The 𝑟-Bell numbers are equal to

𝐵
𝑥, 𝑟
=

1

𝑒

∞

∑

𝑘=0

(𝑘 + 𝑟)
𝑥

𝑘!

, (30)

where 𝑥 and 𝑟 are complex numbers.

Using (26) and (30), we obtain the following corollary
which is a kind of extension of the integral formula obtained
by Mező in [8].

Corollary 12. The following integral identity holds:

∞

∑

𝑘=0

(𝑘 + 𝑟)
𝑥

𝑘!

=

𝑥!𝑒

2𝜋𝑖

∫

H

𝑒
𝑟𝑧+(𝑒

𝑧
−1)
𝑑𝑧

𝑧
𝑥+1
. (31)

The 𝑟-Bell polynomials of Mező [8] satisfy the recurrence
relation

𝐵
𝑥, 𝑟
(𝑤) = 𝑟𝐵

𝑥−1, 𝑟
(𝑤) + 𝑤𝐵

𝑥−1, 𝑟+1
(𝑤) , (32)

where 𝑥 and 𝑟 are nonnegative integers. This will reduce to

𝐵
𝑥, 𝑟
= 𝑟𝐵
𝑥−1, 𝑟

+ 𝐵
𝑥−1, 𝑟+1

(33)

when𝑤 = 1. Analogous to this relation, we have the following
relation which can easily be shown using (28), (15), and (16).

Theorem 13. The 𝑟-Bell numbers satisfy the following relation:

𝐵
𝑥, 𝑟
= 𝑟𝐵
𝑥−1, 𝑟

+ 𝐵
𝑥−1, 𝑟+1

+ {

𝑥 + 𝑟 − 1

𝑟 − 1
}

𝑟+1

, (34)

where 𝑥 and 𝑟 are complex numbers.

Proof. Summing up both sides of (15) gives

𝐵
𝑥, 𝑟
= (𝑟 + 1) 𝐵

𝑥−1, 𝑟
+ {

𝑥 + 𝑟 − 1

𝑟 − 1
}

𝑟

+

∞

∑

𝑘=0

𝑘{

𝑥 + 𝑟 − 1

𝑘 + 𝑟
}

𝑟

.

(35)

By applying (16), we get
∞

∑

𝑘=0

𝑘{

𝑥 + 𝑟 − 1

𝑘 + 𝑟
}

𝑟

= −

∞

∑

𝑘=0

[

[

1

(𝑘 − 1)!

𝑘

∑

𝑗=0

(−1)
𝑘−1−𝑗

(

𝑘 − 1

𝑗
) (𝛽𝑗 + 𝑟)

𝑥−1
]

]

−

∞

∑

𝑘=0

[

[

−1

(𝑘−1)!

𝑘

∑

𝑗=0

(−1)
𝑘−1−(𝑗−1)

(

𝑘−1

𝑗−1
) ((𝑗−1)+1+𝑟)

𝑥−1
]

]

.

(36)

Hence, we have
∞

∑

𝑘=0

𝑘{

𝑥 + 𝑟 − 1

𝑘 + 𝑟
}

𝑟

= −{

𝑥 + 𝑟 − 1

𝑟 − 1
}

𝑟

− 𝐵
𝑥−1, 𝑟

+ 𝐵
𝑥−1, 1+𝑟

+ {

𝑥 + 𝑟 − 1

𝑟 − 1
}

𝑟+1

.

(37)

Substituting this to (35) completes the proof of the theorem.

Note that, when the parameters 𝑥, 𝑦, and 𝑟 are nonneg-
ative integers, Definition 1 is just equivalent to the integral
representation of the 𝑟-Stirling numbers of the second kind
in [1]. Hence, the value of { 𝑥+𝑟−1

𝑟−1
}
𝑟+1

is equal to 0.

4. Asymptotic Formula

An asymptotic formula for 𝑟-Bell numbers 𝐵
𝑥,𝑟

was first
established by Corcino in [7]. But the formula holds only
when 𝑥 is a nonnegative integer. Here, we aim to obtain an
asymptotic formula for 𝐵

𝑥,𝑟
when 𝑥 is a real number.

Using Definition 9,

𝐵
𝑥,𝑟
=

𝑥!

2𝜋𝑖

∫

H

𝑒
𝑟𝑧+(𝑒

𝑧
−1)

𝑧
𝑥+1

𝑑𝑧. (38)

To obtain an asymptotic formula, we deform the pathH into
the following contour: 𝐶

1
∪ 𝐶
2
∪ 𝐶
3
∪ 𝐶
4
∪ 𝐶
5
, where

(i) 𝐶
1
is the line ℑ𝑧 = −2𝜋 + 𝛿, 𝛿 > 0, and ℜ𝑧 ≤ 𝜆, 𝜆 is a

small positive number;
(ii) 𝐶
2
is the line segmentℜ𝑧 = 𝜖, going from 𝜆+𝑖(𝛿−2𝜋)

to the circle |𝑧| = 𝑅;
(iii) 𝐶

5
and𝐶

4
are the reflections in the real axis of 𝐶

1
and

𝐶
2
, respectively;

(iv) 𝐶
3
is the portion of the circle |𝑧| = 𝑅, meeting 𝐶

2
and

𝐶
4
.
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The new contour is 𝐶
1
∪ 𝐶
2
∪ 𝐶
3
∪ 𝐶
4
∪ 𝐶
5
in the counter-

clockwise sense.This idea of deforming the contourH is also
done in [13]. The integrals along 𝐶

1
, 𝐶
2
, 𝐶
4
, and 𝐶

5
are seen

to be

𝑂(

(2 + 𝜆)
𝑦

(2𝜋 − 𝛿)
𝑥
) . (39)

It will also be shown that these integrals go to 0 as 𝑥 → ∞

provided that 𝑥−𝑦 ≥ 𝑥1/3. To see this, we consider𝐶
1
. For the

other contours, the estimate can be seen similarly. We look at
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝐶1

𝑒
𝑟𝑧+(𝑒

𝑧
−1)

𝑧
𝑥+1

𝑑𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝐶1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑟𝑧+(𝑒

𝑧
−1)

𝑧
𝑥+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

|𝑑𝑧| . (40)

Note that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑟𝑧+(𝑒

𝑧
−1)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑒
𝑟𝑧󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
(𝑒
𝑧
−1)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝑒
𝑟ℜ𝑧

𝑒
ℜ(𝑒
𝑧
−1)

.

(41)

Turning to 𝑒𝑧 − 1,

𝑒
𝑧

− 1 = 𝑒
ℜ𝑧

𝑒
𝑖ℑ𝑧

− 1

= [𝑒
ℜ𝑧 cosℑ𝑧 − 1] + 𝑖𝑒ℜ𝑧 sinℑ𝑧.

(42)

Thus,
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑟𝑧+(𝑒

𝑧
−1)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝑒
𝑟ℜ𝑧

𝑒
𝑒
ℜ𝑧 cosℑ𝑧

𝑒
−1

< 𝑒
𝑟ℜ𝑧

𝑒
𝑒
ℜ𝑧

𝑒
−1

.

(43)

Consider

𝑟ℜ𝑧 + 𝑒
ℜ𝑧

− 1 < 𝑟𝜆 + 𝑒
𝜆

− 1

= 𝑟𝜆 + 𝜆(1 +

𝜆

2!

+

𝜆
2

3!

+

𝜆
3

4!

+ ⋅ ⋅ ⋅)

< 𝑟𝜆 + 𝜆(1 +

𝜆

2

+

𝜆
2

2
2
+

𝜆
3

2
3
+ ⋅ ⋅ ⋅)

= 𝑟𝜆 + 𝜆 (

2

2 − 𝜆

) .

(44)

Choose 𝜆 < 1, so that 2 − 𝜆 > 1. Then

𝑟ℜ𝑧 + 𝑒
ℜ𝑧

− 1 < 𝜆 (2 + 𝑟) . (45)

This implies that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑟𝑧+(𝑒

𝑧
−1)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝑒
𝜆(2+𝑟)

. (46)

Consequently, we obtain
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝐶1

𝑒
𝑟𝑧+(𝑒

𝑧
−1)

𝑧
𝑥+1

𝑑𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝑒
𝜆(2+𝑟)

1

(2𝜋 − 𝛿)
𝑥+1
𝑙 (𝐶
1
) , (47)

where

𝑙 (𝐶
1
) = lim
𝑡→−∞

𝜆 − 𝑡. (48)

Since 𝑙(𝐶
1
)/(2𝜋−𝛿)

𝑥+1

→ 0 as 𝑥 → ∞, we have the integral
along𝐶

1
goes to 0 as 𝑥 → ∞. So what remains is the integral

along 𝐶
3
. That is,

𝐵
𝑥,𝑟
∼

𝑥!

2𝜋𝑖

∫

𝐶3

𝑒
𝑟𝑧+(𝑒

𝑧
−1)

𝑧
𝑥+1

𝑑𝑧, (49)

where 𝐶
3
is a semicircle 𝑧 = 𝑅𝑒𝑖𝜃, −𝛼 ≤ 𝜃 ≤ 𝛼. Hence, by

Laplace method or following the analysis in [7],

𝐵
𝑥,𝑟
∼

𝑥!

2𝜋𝑖𝑅
𝑛
∫

𝛼

−𝛼

exp (𝑒𝑅𝑒
𝑖𝜃

+ 𝑟𝑅𝑒
𝑖𝜃

− 𝑖𝑛𝜃) 𝑑𝜃

∼

𝑥!

2𝜋𝑖𝑅
𝑛
∫

𝜖

−𝜖

exp (𝑒𝑅𝑒
𝑖𝜃

+ 𝑟𝑅𝑒
𝑖𝜃

− 𝑖𝑛𝜃) 𝑑𝜃.

(50)

In [7], the integration is along a circle about zero with radius
𝑅. This number 𝑅 is shown to be the unique solution to

𝜇

𝑥 − 𝑟𝜇

= 𝑒
−𝜇 (51)

as a function of 𝜇 (see Lemma 3 [7]). We see that the asymp-
totic formula for the 𝑟-Bell numbers obtained in [7] holds
for real argument 𝑥. Thus, we have the following asymptotic
formula.

Theorem 14. The 𝑟-Bell numbers 𝐵
𝑥,𝑟

with real arguments 𝑥
and 𝑟 have the following asymptotic formula:

𝐵
𝑥,𝑟
∼ 𝐶√𝜋[1 +

𝐷 − (2𝑅
4

+ 9𝑅
3

+ 16𝑅
2

+ 6𝑅 + 2)

24𝑒
𝑅
𝑅(𝑅 + 1 + 𝑟𝑒

−𝑅
)
3

] ,

(52)

where

𝐶 =

𝑥! exp (𝑟𝑅 + 𝑒𝑅 − 1)

𝜋𝑅
𝑥
[2 (𝑟
2
𝑒
𝑅
+ 𝑅𝑒
𝑅
+ 𝑟𝑅)]

1/2

,

𝐷 = (3𝑅
3

+ 8𝑅
2

− 6𝑅 − 4 − 2𝑟𝑒
−𝑅

) 𝑟𝑒
−𝑅

,

(53)

and 𝑅 is the unique positive solution to

𝜇𝑒
𝜇

+ 𝑟𝜇 − 𝑥 = 0 (54)

as a function of 𝜇.

An asymptotic formula for (𝑟, 𝛽)-Bell numbers 𝐺
𝑥,𝑟,𝛽

has
already been established in [14]. However, the formula holds
only when 𝑥 is a nonnegative integer. Here, using the same
method as employed above, we can show that this asymptotic
formula will also work for the case in which the parameters
𝑥, 𝑟, and 𝛽 are real numbers.

Now, for real parameters 𝑥, 𝑟, and 𝛽, we have

𝐺
𝑥,𝑟,𝛽
=

𝑥!

2𝜋𝑖

∫

H

𝑒
𝑟𝑧+(𝑒

𝛽𝑧
−1)/𝛽

𝑑𝑧

𝑧
𝑥+1
, (55)

where the path H can also be deformed into the following
contour: 𝐶

1
∪ 𝐶
2
∪ 𝐶
3
∪ 𝐶
4
∪ 𝐶
5
, such that

(i) 𝐶
1
is the line ℑ𝑧 = −2𝜋 + 𝛿, 𝛿 > 0, and ℜ𝑧 ≤ 𝜆, 𝜆 is a

small positive number;



6 ISRN Discrete Mathematics

(ii) 𝐶
2
is the line segmentℜ𝑧 = 𝜆, going from 𝜆 + 𝑖(𝛿 −

2𝜋) to the circle |𝑧| = 𝑅;
(iii) 𝐶

5
and𝐶

4
are the reflections in the real axis of 𝐶

1
and

𝐶
2
, respectively;

(iv) 𝐶
3
is the portion of the circle |𝑧| = 𝑅, meeting 𝐶

2
and

𝐶
4
.

Also, the new contour is 𝐶
1
∪ 𝐶
2
∪ 𝐶
3
∪ 𝐶
4
∪ 𝐶
5
in the

counterclockwise sense. It can easily be shown that, along the
path 𝐶

1
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑟𝑧+(𝑒

𝛽𝑧
−1)/𝛽
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝑒
𝜆((2/𝛽)+𝑟)

. (56)

Hence, as 𝑥 goes to∞,
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝐶1

𝑒
𝑟𝑧+(𝑒

𝛽𝑧
−1)/𝛽

𝑑𝑧

𝑧
𝑥+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󳨀→ 0. (57)

This can be done similarly along𝐶
2
, 𝐶
4
, and𝐶

5
.Thus, we have

𝐺
𝑥,𝑟,𝛽
∼

𝑥!

2𝜋𝑖

∫

𝐶3

𝑒
𝑟𝑧+(𝑒

𝛽𝑧
−1)/𝛽

𝑧
𝑥+1

𝑑𝑧, (58)

where 𝐶
3
is a semicircle 𝑧 = 𝑅𝑒𝑖𝜃, −𝛼 ≤ 𝜃 ≤ 𝛼. Then

𝐺
𝑥,𝑟,𝛽
∼

𝑥!

2𝜋𝑖𝑅

𝑛
∫

𝛼

−𝛼

exp (𝛽−1𝑒𝛽𝑅𝑒
𝑖𝜃

+ 𝑟𝑅𝑒
𝑖𝜃

− 𝑖𝑥𝜃 − 𝛽
−1

) 𝑑𝜃

∼

𝑥!

2𝜋𝑖𝑅

𝑛
∫

𝜖

−𝜖

exp (𝛽−1𝑒𝛽𝑅𝑒
𝑖𝜃

+ 𝑟𝑅𝑒
𝑖𝜃

− 𝑖𝑥𝜃 − 𝛽
−1

) 𝑑𝜃.

(59)

This implies that the asymptotic formula for the (𝑟, 𝛽)-Bell
numbers obtained in [14] holds for real argument.Thus, from
[14], we have the following asymptotic formula for (𝑟, 𝛽)-Bell
numbers 𝐺

𝑥,𝑟,𝛽
with real arguments 𝑥, 𝑟, and 𝛽:

𝐺
𝑥,𝑟,𝛽

∼

𝑥
1/2

(1 + 1/12𝑥) exp (𝑟𝑅 + 𝛽−1𝑒𝛽𝑅 − 𝛽 − 𝑥) (𝛽𝛽𝑅 + 𝑟)
𝑥

[(𝑥 − 𝑟𝑅) 𝛽
−1
]

1/2

(𝛽𝑅 + 1 + 𝑟𝑒
−𝛽𝑅
)

1/2

× (1 +

𝐷 + 𝐸

𝐹

) ,

(60)

where

𝐷 = (3𝛽
2

𝑅

3

+ 8𝛽𝑅

3

+ 3𝛽𝑅 + 3 − 10𝛽
−1

− 2𝑟𝑒
−𝛽𝑅

) 𝑟𝑒
−𝛽𝑅

,

𝐸 = (3𝛽
3

− 5𝛽
2

) 𝑅

4

+ (21𝛽
2

− 30𝛽)𝑅

3

+ (39𝛽 − 55) 𝑅

2

+ (24 − 30𝛽
−1

) 𝑅 + (3𝛽
−1

− 5𝛽
−2

) ,

𝐹 = 24𝑅𝑒
𝛽𝑅

(𝛽𝑅 + 1 + 𝑟𝑒
−𝛽𝑅

)

3

,

(61)

and 𝑅 is the unique positive solution to

𝜇𝑒
𝛽𝜇

+ 𝑟𝜇 − 𝑥 = 0 (62)
as a function of 𝜇.

5. Summary and Recommendation

In this paper, we have defined 𝑟-Stirling numbers of the
second kind and 𝑟-Bell numbers with complex arguments
using the concept of Hankel contour and established some
properties parallel to those of the classical Stirling and Bell
numbers. Moreover, we have derived an asymptotic formula
for 𝑟-Bell numbers as well as for (𝑟, 𝛽)-Bell numbers for real
arguments using the method of Chelluri and that of Moser
and Wyman.

We observe that, by employing those methods, one can
possibly establish an asymptotic formula for 𝑟-Stirling num-
bers of the second kind with real arguments and, conse-
quently, using relation (6), an asymptotic formula for (𝑟, 𝛽)-
Stirling numbers with real arguments.
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