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For two given integers k,m,we introduce the k-step sumandm-step gap Fibonacci sequence by presenting a recurrence formula that
generates the nth term as the sum of k successive previous terms starting the sum at themth previous term. Known sequences, like
Fibonacci, tribonacci, tetranacci, and Padovan sequences, are derived for specific values of k, m. Two limiting properties concerning
the terms of the sequence are presented. The limits are related to the spectral radius of the associated {0, 1}-matrix.

1. Introduction

It is well-known that the Fibonacci sequence, the Lucas
sequence, the Padovan sequence, the Perrin sequence, the
tribonacci sequence, and the tetranacci sequence are very
prominent examples of recursive sequences, which are
defined as follows.

The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, . . . are derived
by the recurrence relation 𝑓

𝑛
= 𝑓
𝑛−1

+ 𝑓
𝑛−2

, 𝑛 ≥ 3, with
𝑓
1
= 𝑓
2
= 1, [1], [2, A000045].

The Lucas numbers 2, 1, 3, 4, 7, 11, 18, 29, . . . are derived by
the recurrence relation ℓ

𝑛
= ℓ
𝑛−1
+ ℓ
𝑛−2

, 𝑛 ≥ 3, with ℓ
1
= 2,

and ℓ
2
= 1, [1], [2, A000032].

The Padovan numbers 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9,
12,. . . are derived by the recurrence relation 𝑎

𝑛
= 𝑎
𝑛−2
+ 𝑎
𝑛−3

,
𝑛 ≥ 4, with 𝑎

1
= 1, 𝑎

2
= 𝑎
3
= 0, [2, A000931].

The Perrin numbers 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, . . . are
derived by the recurrence relation 𝑝

𝑛
= 𝑝
𝑛−2

+ 𝑝
𝑛−3

, 𝑛 ≥ 4,
with 𝑝

1
= 3, 𝑝

2
= 0, and 𝑝

3
= 2, [2, A001608].

Both Fibonacci and Lucas numbers as well as both
Padovan and Perrin numbers satisfy the same recurrence
relation with different initial conditions.

Extending the above definitions, the 𝑘-step Fibonacci
sequences are derived [3]. For 𝑘 = 3, the tribonacci numbers
1,1,2,4,7,13,24,44,. . . are derived by the recurrence relation

𝑓
𝑛
= 𝑓
𝑛−1
+ 𝑓
𝑛−2
+ 𝑓
𝑛−3

, 𝑛 ≥ 4, with 𝑓
1
= 𝑓
2
= 1, and 𝑓

3
= 2,

[3–5], [2, A000073].
For k = 4, the tetranacci numbers 1, 1, 2, 4, 8, 15, 29, 56, . . .

are derived by the recurrence relation𝑓
𝑛
= 𝑓
𝑛−1
+𝑓
𝑛−2
+𝑓
𝑛−3
+

𝑓
𝑛−4

, 𝑛 ≥ 5, with 𝑓
1
= 𝑓
2
= 1, and 𝑓

3
= 2, 𝑓

4
= 4, [3], [2,

A000078].
In this paper, we introduce 𝑘-step sum and 𝑚-step gap

Fibonacci sequence, where the 𝑛th term of the sequence is
the sum of the 𝑘 successive previous terms starting at the
𝑚th previous term, using 1’s as initial conditions. Further the
closed formula of the 𝑛th term of the sequence is given and
the ratio of two successive terms tends to the spectral radius
of the associated {0, 1}-matrix.

2. Definition of 𝑘-Step Sum and 𝑚-Step Gap
Fibonacci Sequence

For the integers 𝑘 = 1, 2, . . .,𝑚 = 0, 1, . . ., we define the 𝑘-step
sum and 𝑚-step gap Fibonacci sequence (𝑓(𝑘,𝑚)

𝑛
)
𝑛=1,2,...

, whose
𝑛th term is given by the following recurrence relation:

𝑓
𝑛
= 𝑓
𝑛−𝑚−1

+ 𝑓
𝑛−𝑚−2

+ ⋅ ⋅ ⋅ + 𝑓
𝑛−𝑚−(𝑘−1)

+ 𝑓
𝑛−𝑚−𝑘

=

𝑘+𝑚

∑
𝑖=𝑚+1

𝑓
𝑛−𝑖
, for every 𝑛 ≥ 𝑘 + 𝑚 + 1,

(1)
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with
𝑓
1
= ⋅ ⋅ ⋅ = 𝑓

𝑘+𝑚
= 1. (2)

Combining (1) and (2) notice that all the terms 𝑓
𝑛
of the

sequence (𝑓(𝑘,𝑚)
𝑛

)
𝑛=1,2,...

are positive integers and𝑓
𝑛
is the sum

of 𝑘 terms starting the sum at the𝑚th previous term from 𝑓
𝑛
;

thus, (1) can be written equivalently as

𝑓
𝑛
= 𝑓
𝑛−𝑚−1

+ 𝑓
𝑛−𝑚−2

+ ⋅ ⋅ ⋅ + 𝑓
𝑛−𝑚−(𝑘−1)

+ 𝑓
𝑛−𝑚−𝑘

=

𝑘

∑
𝑗=1

𝑓
𝑛−𝑚−𝑗

, for every 𝑛 ≥ 𝑘 + 𝑚 + 1.
(3)

Remark 1. (i) From (2)-(3) it is evident that for 𝑘 = 1 and
𝑚 = 0, 1, . . . all the terms of the sequence (𝑓(𝑘,𝑚)

𝑛
)
𝑛=1,2,...

are
equal to one. Hereafter consider 𝑘 ≥ 2, since the case 𝑘 = 1 is
trivial.

(ii) For 𝑚 = 0, (3) and (2) give the 𝑛th term 𝑓
𝑛
of the

sequence (𝑓(𝑘,0)
𝑛

)
𝑛=1,2,...

, which is formulated as

𝑓
𝑛
= 𝑓
𝑛−1
+ 𝑓
𝑛−2
+ ⋅ ⋅ ⋅ + 𝑓

𝑛−(𝑘−1)
+ 𝑓
𝑛−𝑘

=

𝑘

∑
𝑖=1

𝑓
𝑛−𝑖
, for every 𝑛 ≥ 𝑘 + 1,

(4)

with initial values
𝑓
1
= ⋅ ⋅ ⋅ = 𝑓

𝑘
= 1. (5)

Remark 2. The sequence (𝑓
(𝑘,𝑚)

𝑛
)
𝑛=1,2,...

gives known
sequences for various values of the steps 𝑘,𝑚:

(i) for 𝑘 = 2, 𝑚 = 0, (4)-(5) give the well-known
Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, . . .;

(ii) for 𝑘 = 3,𝑚 = 0, (4)-(5) give the tribonacci sequence,
1, 1, 1, 3, 5, 9, 17, 31, . . ., [2, A000213];

(iii) for 𝑘 = 4,𝑚 = 0, (4)-(5) give the tetranacci sequence,
1, 1, 1, 1, 4, 7, 13, 25, . . ., [2, A000288];

(iv) for 𝑘 = 2, 𝑚 = 1, (2)-(3) give the Padovan sequence,
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, . . ., [2, A 000931].

In the following, the Dirac delta function (or 𝛿 function)
is denoted by 𝛿

𝑛−𝑗
= {
0, 𝑛 ̸= 𝑗

1, 𝑛=𝑗
and the Heaviside step

function (or the unit step function) 𝑢
𝑛−𝑗
= {
0, 𝑛<𝑗

1, 𝑛≥𝑗
.

Moreover, the 𝑛th number of the sequence (𝑓(𝑘,𝑚)
𝑛

)
𝑛=1,2,...

follows immediately from (2) and (3) using the above defi-
nition of the 𝛿 function and considering that the first 𝑘 + 𝑚
negative indexed terms are equal to zero:

𝑓
−(𝑘+𝑚−1)

= ⋅ ⋅ ⋅ = 𝑓
−1
= 𝑓
0
= 0, (6)

which is formulated in the following proposition.

Proposition 3. For the given integers 𝑘 ≥ 2, 𝑚 ≥ 0, for all
𝑛 ≥ 1, the 𝑛th number, 𝑓

𝑛
, of the sequence (𝑓(𝑘,𝑚)

𝑛
)
𝑛=1,2,...

is
given by the following recurrence relation:

𝑓
𝑛
=

𝑘

∑
𝑖=1

𝑓
𝑛−𝑚−𝑖

+

𝑘+𝑚

∑
𝑗=1

𝛿
𝑛−𝑗
−

𝑘−1

∑
𝑗=1

𝑘−𝑗

∑
𝑖=1

𝛿
𝑛−𝑚−𝑗−𝑖

, (7)

with initial values as in (6).

In the following, we are going to demonstrate a close link
between matrices and Fibonacci numbers in (3) with initial
values in (2).

To this end, consider 𝑘 ≥ 2, 𝑚 ≥ 1. One can write
the following linear system, where (3) constitutes its first
equation:

𝑓
𝑛
= 𝑓
𝑛−𝑚−1

+ 𝑓
𝑛−𝑚−2

+ ⋅ ⋅ ⋅ + 𝑓
𝑛−𝑚−𝑘+1

+ 𝑓
𝑛−𝑚−𝑘

𝑓
𝑛−1

= 𝑓
𝑛−1

...

𝑓
𝑛−𝑚

= 𝑓
𝑛−𝑚

𝑓
𝑛−𝑚−1

= 𝑓
𝑛−𝑚−1

...

𝑓
𝑛−𝑚−(𝑘−1)

= 𝑓
𝑛−𝑚−(𝑘−1)

.

(8)

Hence, using a (𝑘 +𝑚) × 1 vector, the linear system in (8) can
be formed as

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑓
𝑛

𝑓
𝑛−1

...
𝑓
𝑛−𝑚

𝑓
𝑛−𝑚−1

...
𝑓
𝑛−𝑚−(𝑘−2)

𝑓
𝑛−𝑚−(𝑘−1)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0 1 . . . 1 1

1 0 . . . 0 0 . . . 0 0

0 1 0 . . . 0 . . . 0 0

0 0 1 0 . . . 0

0 0 0 1 0 . . .
...

... d
...

... d 0

0 0 . . . . . . 0 1 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑓
𝑛−1

𝑓
𝑛−2

...
𝑓
𝑛−𝑚

𝑓
𝑛−𝑚−1

...
𝑓
𝑛−𝑚−(𝑘−1)

𝑓
𝑛−𝑚−𝑘

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(9)

whereby it is obvious that the sequence (𝑓(𝑘,𝑚)
𝑛

)
𝑛=1,2,...

can be
represented by a (𝑘 + 𝑚) × (𝑘 + 𝑚) matrix, 𝐹

𝑘,𝑚
, which is a

block matrix such that

𝐹
𝑘,𝑚
= [
𝐹
1
𝐹
2

𝐹
3
𝐹
4

] =

[
[
[
[
[
[
[
[

[

0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1

1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1 0 . . . 0
... 1 0

...
d

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 0

]
]
]
]
]
]
]
]

]

, (10)

where the first row consists of the vector-matrices 𝐹
1
, 𝐹
2
; the

𝑚 entries of the 1×𝑚 vector𝐹
1
are equal to zero and the rest 𝑘

entries of the 1×𝑘 vector 𝐹
2
are equal to one; the (𝑘+𝑚−1)×

(𝑘 +𝑚 − 1)matrix 𝐹
3
is the identity matrix and the 𝑘 +𝑚 − 1

entries of the (𝑘 + 𝑚 − 1) × 1 vector 𝐹
4
are equal to zero.
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Working as in the above, for 𝑘 ≥ 2, 𝑚 = 0, and using
(4) with initial values in (5), we can write the following linear
system:

𝑓
𝑛
= 𝑓
𝑛−1
+ 𝑓
𝑛−2
+ ⋅ ⋅ ⋅ + 𝑓

𝑛−𝑘+1
+ 𝑓
𝑛−𝑘

𝑓
𝑛−1

= 𝑓
𝑛−1

...

𝑓
𝑛−(𝑘−2)

= 𝑓
𝑛−(𝑘−2)

𝑓
𝑛−(𝑘−1)

= 𝑓
𝑛−(𝑘−1)

⇐⇒

[
[
[
[
[
[

[

𝑓
𝑛

𝑓
𝑛−1

...
𝑓
𝑛−(𝑘−2)

𝑓
𝑛−(𝑘−1)

]
]
]
]
]
]

]

=

[
[
[
[
[
[
[

[

1 1 ⋅ ⋅ ⋅ 1

1 0 ⋅ ⋅ ⋅ 0

0 1
...

... d
0 ⋅ ⋅ ⋅ 1 0

]
]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝑓
𝑛−1

𝑓
𝑛−2

...
𝑓
𝑛−(𝑘−1)

𝑓
𝑛−𝑘

]
]
]
]
]
]

]

.

(11)

The 𝑘 × 𝑘matrix, 𝐹
𝑘,0
, of the coefficients of the above system,

is defined as

𝐹
𝑘,0
= [

𝐹
1

1

𝐼
𝑘−1

𝐹
4

] =

[
[
[
[
[
[
[

[

1 1 1 ⋅ ⋅ ⋅ 1

1 0 0 ⋅ ⋅ ⋅ 0

0 1 0
...

... d
0 ⋅ ⋅ ⋅ 1 0

]
]
]
]
]
]
]

]

, (12)

where the 𝑘− 1 entries of the 1× (𝑘− 1) vector 𝐹
1
are equal to

one, 𝐼
𝑘−1

is the (𝑘 − 1) × (𝑘 − 1) identity matrix, and the 𝑘 − 1
entries of the (𝑘 − 1) × 1 vector 𝐹

4
are equal to zero.

Remark 4. (i) The well-known sequences, which are pre-
sented in Remark 2, correspond to 𝐹

𝑘,0
in (12) for suitable

integer value of 𝑘 ≥ 2 and = 0;

(a) for 𝑘 = 2, the Fibonacci sequence corresponds to
𝐹
2,0
= [ 1 1
1 0
];

(b) for 𝑘 = 3, the tribonacci sequence corresponds to
𝐹
3,0
= [
1 1 1

1 0 0

0 1 0

];

(c) for 𝑘 = 4, the tetranacci sequence corresponds to

𝐹
4,0
= [
1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

].

(ii) The Padovan sequence corresponds to the matrix
𝐹
2,1
= [
0 1 1

1 0 0

0 1 0

] by (10) with 𝑘 = 2,𝑚 = 1.
(iii) The matrix 𝐹

𝑘,0
in (12) has been defined and the

determinant of 𝐹
𝑘,0

has been investigated in [6] and some
results onmatrices relatedwith Fibonacci numbers and Lucas
numbers have been investigated in [7] and the transpose
matrix of the general 𝑄-matrix in [8].

Proposition 5. The (𝑘+𝑚)th degree characteristic polynomial
𝑥(𝜆) of 𝐹

𝑘,𝑚
in (10) is given by

𝑥 (𝜆) = 𝜆
𝑘+𝑚

−

𝑘−1

∑
𝑖=0

𝜆
𝑖

= 𝜆
𝑘+𝑚

−

𝑘

∑
𝑖=1

𝜆
𝑖−1

= 𝜆
𝑘+𝑚

−

𝑘

∑
𝑖=1

𝜆
𝑘−𝑖

.

(13)

Proof. The proof of (13) is based on the induction method.
For 𝑘 = 2, 𝑚 = 1, the characteristic polynomial of 𝐹

2,1
=

[
0 1 1

1 0 0

0 1 0

] is 𝑥(𝜆) = 𝜆3 − 𝜆 − 1, which satisfies (13). Let 𝑚 be a
fixed integer and assume that the formula in (13) is true for 𝑘;
that is,

𝑥 (𝜆) = det (𝜆𝐼
𝑘+𝑚

− 𝐹
𝑘,𝑚
) = 𝜆
𝑘+𝑚

−

𝑘

∑
𝑖=1

𝜆
𝑘−𝑖

. (14)

Then, det(𝜆𝐼
𝑘+𝑚+1

− 𝐹
𝑘+1,𝑚

) of the (𝑘 + 𝑚 + 1) × (𝑘 + 𝑚 + 1)
matrix 𝜆𝐼

𝑘+𝑚+1
−𝐹
𝑘+1,𝑚

can be computed by using the Laplace
expansion along the (𝑘+𝑚+1)th column and the assumption
of induction. Thus, we have

𝑥 (𝜆) = det (𝜆𝐼
𝑘+𝑚+1

− 𝐹
𝑘+1,𝑚

)

= (−1)
𝑘+𝑚+2

(−1) det

[
[
[
[
[
[
[

[

−1 𝜆 0 ⋅ ⋅ ⋅ 0

0 −1 𝜆 0

0 0 −1 d
...

... d 𝜆

0 0 ⋅ ⋅ ⋅ 0 −1

]
]
]
]
]
]
]

]

+ (−1)
2(𝑘+𝑚+1)

𝜆 det (𝜆𝐼
𝑘+𝑚

− 𝐹
𝑘,𝑚
)

= (−1)
𝑘+𝑚+3

(−1)
𝑘+𝑚

+ 𝜆(𝜆
𝑘+𝑚

−

𝑘

∑
𝑖=1

𝜆
𝑘−𝑖

)

= 𝜆
𝑘+𝑚+1

−

𝑘

∑
𝑖=1

𝜆
𝑘+1−𝑖

− 1 = 𝜆
𝑘+𝑚+1

−

𝑘+1

∑
𝑖=1

𝜆
𝑘+1−𝑖

,

(15)

hence, (13) holds for 𝑘 + 1, too. Thus the result follows by the
induction method.

The set of all eigenvalues of 𝐹
𝑘,𝑚

is denoted by 𝜎(𝐹
𝑘,𝑚
)

and called the spectrum of 𝐹
𝑘,𝑚

; the nonnegative real number
𝜌(𝐹
𝑘,𝑚
) = max{|𝜆| : 𝜆 ∈ 𝜎(𝐹

𝑘,𝑚
)} is called spectral radius of

𝐹
𝑘,𝑚

. Here, 𝜌(𝐹
𝑘,𝑚
) is an eigenvalue of 𝐹

𝑘,𝑚
, since the entries

of 𝐹
𝑘,𝑚

are 0 or 1, [11, Theorem 8.3.1]; further

1 < 𝜌 (𝐹
𝑘,𝑚
) < 2, (16)

since

min
1≤𝑖≤𝑘+𝑚

𝑘+𝑚

∑
𝑗=1

𝜑
𝑖𝑗
< 𝜌 (𝐹

𝑘,𝑚
) < max
1≤𝑖≤𝑘+𝑚

𝑘+𝑚

∑
𝑗=1

𝜑
𝑖𝑗
,

min
1≤𝑗≤𝑘+𝑚

𝑘+𝑚

∑
𝑖=1

𝜑
𝑖𝑗
< 𝜌 (𝐹

𝑘,𝑚
) < max
1≤𝑗≤𝑘+𝑚

𝑘+𝑚

∑
𝑖=1

𝜑
𝑖𝑗
,

(17)
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where 𝜑
𝑖𝑗
denotes the 𝑖𝑗th entry of 𝐹

𝑘,𝑚
, [11, Theorem 8.1.22],

[12, Theorem 7], and [13].
Notice that if 𝜆

𝑗
∈ 𝜎(𝐹

𝑘,𝑚
) is an eigenvalue of 𝐹

𝑘,𝑚
, then

𝜆
𝑗
∈ 𝜎(𝐹
𝑘,𝑚
), because 𝑥(𝜆) has real coefficients. Further, since

𝑥(𝜆) in (13) has the constant term equal to−1, it is evident that

det𝐹
𝑘,𝑚
= (−1)

𝑘+𝑚

(−1) = (−1)
𝑘+𝑚+1

. (18)

Hence, 𝐹
𝑘,𝑚

is a nonsingular and all the eigenvalues are
nonzero.

Remark 6. Notice that, for𝑚 = 0,

(i) the 𝑘th degree characteristic polynomial 𝑥(𝜆) of the
matrix 𝐹

𝑘,0
in (12) is formulated by (13), which has

presented in [9, 10];
(ii) the authors in [10] have shown bounds for 𝜌(𝐹

𝑘,0
);

the lower bound is more accurate than the associated
bound in (16); in particular,

√
2𝑘 − 1

𝑘
< 𝜌 (𝐹

𝑘,0
) < 2, (19)

(iii) the determinant of 𝐹
𝑘,0

is computed by (18) and
derived the same result as in [6].

Example 7. Consider 𝑘 = 2, 𝑚 = 0, and the well-
known Fibonacci sequence 1, 1, 2, 3, 5, 8, . . ., as in Remark 2.
According to Remark 4(i), the 2 × 2matrix

𝐹
2,0
= [
1 1

1 0
] (20)

is derived by (12). It is evident that the characteristic poly-
nomial is given by 𝑥(𝜆) = 𝜆

2

− 𝜆 − 1 and its roots are
𝜆
1
= (1 − √5)/2 and 𝜌(𝐹

2,0
) ≡ 𝜆

2
= (1 + √5)/2, the well-

known number as the golden ratio.

Example 8. Consider 𝑘 = 2, 𝑚 = 1. By (2)-(3) the associated
sequence (𝑓(2,1)

𝑛
)
𝑛=1,2,...

is formed as𝑓
1
= 𝑓
2
= 𝑓
3
= 1 and𝑓

𝑛
=

𝑓
𝑛−3
+𝑓
𝑛−2

, for all 𝑛 ≥ 4, which is well-known as the Padovan
sequence 1, 1, 1, 2, 2, 3, 4, 5, . . . (see, Remark 2). According to
Remark 4(ii), the associated 3 × 3matrix is given by

𝐹
2,1
= [

[

0 1 1

1 0 0

0 1 0

]

]

. (21)

The characteristic polynomial is given by (13) as 𝑥(𝜆) = 𝜆3 −
𝜆 − 1 and its spectrum 𝜎(𝐹

2,1
) = {𝜌(𝐹

2,1
) = 1.32472, 𝜆

1
=

−0.66235 + 0.56227𝑖, 𝜆
2
= 𝜆
1
= −0.66235 − 0.56227𝑖}.

For the integers 𝑘 ≥ 2 and 𝑚 ≥ 0, it is worth noting
that, since the entries of the matrix (𝐼

𝑘+𝑚
+ 𝐹
𝑘,𝑚
)
𝑘+𝑚−1 are

positive integers, 𝐹
𝑘,𝑚

is an irreducible matrix [11, Lemma
8.4.1]; it follows that the spectral radius 𝜌(𝐹

𝑘,𝑚
) is a positive,

simple (without multiplicity) eigenvalue of 𝐹
𝑘,𝑚

[11, Theorem
8.4.4]. In addition, the entries of 𝐹(𝑘+𝑚)

2
−2(𝑘+𝑚)+2 are positive

integers; thus 𝐹
𝑘,𝑚

is a primitive matrix [11, Corollary 8.5.9];
that is, 𝜌(𝐹

𝑘,𝑚
) is the unique eigenvalue with maximum

modulus [11, Definition 8.5.0]. Hence, in the following, we
denote 𝜆

1
, 𝜆
2
, . . .,𝜆

𝑘+𝑚−1
, 𝜌(𝐹
𝑘,𝑚
) all the distinct eigenvalues

of 𝐹
𝑘,𝑚

, for which the following inequality holds:

0 <
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
< 𝜌 (𝐹

𝑘,𝑚
) ; 𝑗 = 1, 2, . . . , 𝑘 + 𝑚 − 1. (22)

Furthermore, rewriting (7) as

𝑓
𝑛
−

𝑘

∑
𝑖=1

𝑓
𝑛−𝑚−𝑖

=

𝑘+𝑚

∑
𝑗=1

𝛿
𝑛−𝑗
−

𝑘−1

∑
𝑖=1

𝛿
𝑛−𝑚−1−𝑖

−

𝑘−2

∑
𝑖=1

𝛿
𝑛−𝑚−2−𝑖

− ⋅ ⋅ ⋅ −

2

∑
𝑖=1

𝛿
𝑛−𝑚−(𝑘−2)−𝑖

− 𝛿
𝑛−𝑘−𝑚

,

(23)

the 𝑧-transform on both sides of (23) yields

𝐹 (𝑧)

= (𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑧
−(𝑘+𝑚−1)

+ 𝑧
−(𝑘+𝑚)

−

𝑘−1

∑
𝑖=1

𝑧
−(𝑚+1+𝑖)

−

𝑘−2

∑
𝑖=1

𝑧
−(𝑚+2+𝑖)

− ⋅ ⋅ ⋅ −

3

∑
𝑖=1

𝑧
−(𝑘+𝑚+𝑖−3)

−

2

∑
𝑖=1

𝑧
−(𝑘+𝑚+𝑖−2)

− 𝑧
−(𝑘+𝑚)

)

× (1 − 𝑧
−(𝑚+1)

− 𝑧
−(𝑚+2)

− ⋅ ⋅ ⋅ − 𝑧
−(𝑘+𝑚)

)
−1

= (𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑧
−(𝑘+𝑚−1)

−

𝑘−2

∑
𝑖=1

𝑧
−(𝑚+1+𝑖)

−

𝑘−3

∑
𝑖=1

𝑧
−(𝑚+2+𝑖)

− ⋅ ⋅ ⋅ −

2

∑
𝑖=1

𝑧
−(𝑘+𝑚+𝑖−3)

−𝑧
−(𝑘+𝑚−1)

− (𝑘 − 2) 𝑧
−(𝑘+𝑚)

)

× (1 − 𝑧
−(𝑚+1)

− 𝑧
−(𝑚+2)

− ⋅ ⋅ ⋅ − 𝑧
−(𝑘+𝑚)

)
−1

= (𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑧
−(𝑘+𝑚−1)

−

𝑘−2

∑
𝑖=1

𝑧
−(𝑚+1+𝑖)

−

𝑘−3

∑
𝑖=1

𝑧
−(𝑚+2+𝑖)

− ⋅ ⋅ ⋅ −

2

∑
𝑖=1

𝑧
−(𝑘+𝑚+𝑖−3)

−𝑧
−(𝑘+𝑚−1)

− (𝑘 − 2) 𝑧
−(𝑘+𝑚)

)

× (
1

𝑧𝑘+𝑚
(𝑧
𝑘+𝑚

− 𝑧
𝑘−1

− 𝑧
𝑘−2

− ⋅ ⋅ ⋅ − 𝑧 − 1))
−1
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= (𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑧
−(𝑚+1)

−

𝑘−3

∑
𝑖=1

𝑧
−(𝑚+2+𝑖)

−

𝑘−4

∑
𝑖=1

𝑧
−(𝑚+3+𝑖)

− ⋅ ⋅ ⋅ −

2

∑
𝑖=1

𝑧
−(𝑘+𝑚+𝑖−3)

−𝑧
−(𝑘+𝑚−1)

− (𝑘 − 2) 𝑧
−(𝑘+𝑚)

)

× (𝑧
−(𝑘+𝑚)

𝑥 (𝑧))
−1

.

(24)

From (24) it is worth noting that the poles of 𝐹(𝑧) are the
eigenvalues of 𝐹

𝑘,𝑚
, which are all simple (distinct) and the

complex eigenvalues are conjugate; furthermore, the degrees
of the polynomials of numerator and denominator of 𝐹(𝑧)
coincide. Thus, the partial-fraction decomposition of (24) is
given by

𝐹 (𝑧) = 𝑘 − 2 +
𝑐

1 − 𝜌 (𝐹
𝑘,𝑚
) 𝑧−1

+

𝑘+𝑚−1

∑
𝑗=1

𝑐
𝑗

1 − 𝜆
𝑗
𝑧−1
,

(25)

where 𝑐, 𝜌(𝐹
𝑘,𝑚
) are real and the others coefficients 𝑐

𝑗
are

complex or real numbers.
In the following theorem,we are able to present the closed

formula of the terms of the sequence (𝑓(𝑘,𝑚)
𝑛

)
𝑛=1,2,...

, which
depends on all the eigenvalues of 𝐹

𝑘,𝑚
.

Theorem 9. Let 𝜆
1
, 𝜆
2
, . . ., 𝜆

𝑘+𝑚−1
, 𝜌(𝐹
𝑘,𝑚
) be the eigenvalues

of 𝐹
𝑘,𝑚

and the fixed integers 𝑘,𝑚, with 𝑘 ≥ 2,𝑚 ≥ 0. The 𝑛th
number of the sequence (𝑓(𝑘,𝑚)

𝑛
)
𝑛=1,2,...

is given by

𝑓
𝑛
= 𝑐(𝜌 (𝐹

𝑘,𝑚
))
𝑛

+

𝑘+𝑚−1

∑
𝑗=1

𝑐
𝑗
(𝜆
𝑗
)
𝑛

, (26)

where 𝑐, 𝑐
𝑗
, for all 𝑗 = 1, 2, . . . , 𝑘 + 𝑚 − 1, are the determined

coefficients of the partial-fraction decomposition in (25).

Proof. The inverse 𝑧-transform on both sides of (25) for all
𝑛 = 1, 2, . . . yields

𝑓
𝑛
= (𝑘 − 2) 𝛿

𝑛
+ 𝑐(𝜌 (𝐹

𝑘,𝑚
))
𝑛

𝑢
𝑛

+

𝑘+𝑚−1

∑
𝑗=1

𝑐
𝑗
(𝜆
𝑗
)
𝑛

𝑢
𝑛
.

(27)

The closed formula of 𝑓
𝑛
in (26) follows from the above

equation and the definitions of 𝛿 and Heaviside step func-
tions.

3. Limiting Properties of 𝑘-Step Sum and 𝑚-
Step Gap Fibonacci Sequence

The spectral radius of 𝐹
𝑘,𝑚

in (10) is a characteristic quantity,
which appears in (26) and for some cases of 𝑘,𝑚 is computed
in Table 1.

Table 1: The spectral radius 𝜌(𝐹
𝑘,𝑚
) of 𝐹
𝑘,𝑚

with respect to 𝑘 and𝑚.

𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

𝑚 = 0 1.6180 1.8393 1.9276 1.9659
𝑚 = 1 1.3247 1.4656 1.5342 1.5701
𝑚 = 2 1.2207 1.3247 1.3808 1.4122
𝑚 = 3 1.1673 1.2499 1.2965 1.3247

From the values in Table 1 observe that the spectral radius
𝜌(𝐹
𝑘,𝑚
)

(i) increases as 𝑘 increases and𝑚 remains constant;

(ii) decreases as𝑚 increases and 𝑘 remains constant;

(iii) lies in the interval (1, 2) verifying (16).

Note that for 𝑘 = 3, 𝑚 = 0, the spectral radius 𝜌(𝐹
𝑘,𝑚
) is the

tribonacci constant and for 𝑘 = 4, 𝑚 = 0, the spectral radius
𝜌(𝐹
𝑘,𝑚
) is the tetranacci constant [2].

The significance of 𝜌(𝐹
𝑘,𝑚
) is presented in the following

theorem.

Theorem 10. For the fixed integers 𝑘, 𝑚, with 𝑘 ≥ 2, 𝑚 ≥ 0,
the positive numbers 𝑓

𝑛
of the sequence (𝑓(𝑘,𝑚)

𝑛
)
𝑛=1,2,...

in (26)
satisfy the following limit properties:

lim
𝑛→∞

𝑓
𝑛+1

𝑓
𝑛

= 𝜌 (𝐹
𝑘,𝑚
) , (28)

lim
𝑛→∞

𝑛√𝑓
𝑛
= 𝜌 (𝐹

𝑘,𝑚
) , (29)

where 𝜌(𝐹
𝑘,𝑚
) is the spectral radius of 𝐹

𝑘,𝑚
in (10).

Proof. Consider that the polar form of the determined
coefficients 𝑐

𝑗
in (25) is denoted by 𝑐

𝑗
= |𝑐
𝑗
|𝑒
𝑖𝜃
𝑗 , and the

eigenvalues (except the spectral radius) 𝜆
𝑗
= |𝜆
𝑗
| 𝑒
𝑖𝜔
𝑗 , for all

𝑗 = 1, 2, . . . , 𝑘+𝑚−1.The substitution of 𝑐
𝑗
, 𝜆
𝑗
from the polar

forms in (26) yields

𝑓
𝑛
= 𝑐(𝜌 (𝐹

𝑘,𝑚
))
𝑛

+

𝑘+𝑚−1

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑖𝜃
𝑗(
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑖𝜔
𝑗)
𝑛

= 𝑐(𝜌 (𝐹
𝑘,𝑚
))
𝑛

+

𝑘+𝑚−1

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

𝑒
𝑖(𝜃
𝑗
+𝑛𝜔
𝑗
)

= 𝑐(𝜌 (𝐹
𝑘,𝑚
))
𝑛

+

𝑘+𝑚−1

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

(cos (𝜃
𝑗
+ 𝑛𝜔
𝑗
) + 𝑖 sin (𝜃

𝑗
+ 𝑛𝜔
𝑗
)) .

(30)
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Using (30) and the property of the spectral radius 𝜌(𝐹
𝑘,𝑚
) > 0

from (22), we can write

lim
𝑛→∞

𝑓
𝑛+1

𝑓
𝑛

= lim
𝑛→∞

((𝜌 (𝐹
𝑘,𝑚
))
𝑛+1

× (𝑐 +

𝑘+𝑚−1

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
𝑗

𝜌 (𝐹
𝑘,𝑚
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛+1

× ( cos (𝜃
𝑗
+ (𝑛 + 1) 𝜔

𝑗
)

+𝑖 sin (𝜃
𝑗
+ (𝑛 + 1) 𝜔

𝑗
)))

× ((𝜌 (𝐹
𝑘,𝑚
))
𝑛

× (𝑐 +

𝑘+𝑚−1

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
𝑗

𝜌 (𝐹
𝑘,𝑚
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

× (cos (𝜃
𝑗
+ 𝑛𝜔
𝑗
) + 𝑖 sin (𝜃

𝑗
+ 𝑛𝜔
𝑗
))))

−1

) .

(31)

Since (cos(𝜃
𝑗
+ 𝑛𝜔
𝑗
))
𝑛=1,2,...

and (sin(𝜃
𝑗
+ 𝑛𝜔
𝑗
))
𝑛=1,2,...

are
bounded sequences as well as the inequality (22) implies
|𝜆
𝑗
/𝜌(𝐹
𝑘,𝑚
)| < 1 for every 𝑗 = 1, 2, . . . , 𝑘 +𝑚− 1, it is obvious

that

lim
𝑛→∞

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
𝑗

𝜌(𝐹
𝑘,𝑚
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛+1

× (cos (𝜃
𝑗
+ (𝑛 + 1) 𝜔

𝑗
) +𝑖 sin (𝜃

𝑗
+ (𝑛 + 1) 𝜔

𝑗
)))

= lim
𝑛→∞

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
𝑗

𝜌 (𝐹
𝑘,𝑚
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

cos (𝜃
𝑗
+ 𝑛𝜔
𝑗
) + 𝑖 sin (𝜃

𝑗
+ 𝑛𝜔
𝑗
))

= 0.

(32)

Thus, the validity of (28) follows from (31) and (32).
Furthermore, it is well known that for a sequence (𝑎

𝑛
)
𝑛≥1

of nonzero complex numbers, if lim
𝑛→∞

(|𝑎
𝑛+1
|/|𝑎
𝑛
|) = 𝛼,

then lim
𝑛→∞

𝑛√|𝑎
𝑛
| = 𝛼 [14, Chapter 1], whereby it is evident

that for the sequence (𝑓(𝑘,𝑚)
𝑛

)
𝑛=1,2,...

of the positive integers
(𝑓
𝑛
> 0), the equality (29) follows immediately from (28).

Remark 11. Notice that for every 𝑛 = 1, 2, . . . the formulas
of 𝑓
𝑛
in (26) and (30) are equivalent. Additionally, notice the

following.
(i) If 𝑘 + 𝑚 is odd, then the characteristic polynomial

in (13) has one real root, 𝜌(𝐹
𝑘,𝑚
), and the others are

complex conjugate. Thus, the complex eigenvalues 𝜆
𝑗

and the coefficients 𝑐
𝑗
in (25) appear in 𝑟 complex

conjugate pairs, which are denoted by 𝜆
1
, 𝜆
2
= 𝜆
1
,

𝜆
3
, 𝜆
4
= 𝜆
3
, . . ., 𝜆

𝑟−1
, 𝜆
𝑟
= 𝜆
𝑟−1

and 𝑐
1
, 𝑐
2
= 𝑐
1
, 𝑐
3
,

𝑐
4
= 𝑐
3
, . . ., 𝑐

𝑟−1
, 𝑐
𝑟
= 𝑐
𝑟−1

, respectively. Then, using
the complex conjugate properties, (30) follows

𝑓
𝑛
= 𝑐(𝜌 (𝐹

𝑘,𝑚
))
𝑛

+ 2

𝑟

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑐𝑖
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨
𝑛 cos (𝜃

𝑖
+ 𝑛𝜔
𝑖
) , (33)

where 𝑟 = (𝑘 + 𝑚 − 1)/2.
(ii) If 𝑘 + 𝑚 is even, then the characteristic polynomial

in (13) has two real roots and the others are complex
conjugate.The one real root is the unique real positive
root 𝜌(𝐹

𝑘,𝑚
); it lies in the interval (1, 2) by (16)

and has maximum modulus. The other real root
is negative and lies in the interval [−1, 0) (see in
Acknowledgements). Thus, the complex eigenvalues
𝜆
𝑗
and the coefficients 𝑐

𝑗
in (25) appear in 𝑟 complex

conjugate pairs and 𝜆
𝑗
, 𝑐
𝑗
are denoted as in (i). Then,

using the complex conjugate properties, (30) follows

𝑓
𝑛
= 𝑐(𝜌 (𝐹

𝑘,𝑚
))
𝑛

+ 𝑐
𝑘+𝑚−1

(𝜆
𝑘+𝑚−1

)
𝑛

+ 2

𝑟

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑐𝑖
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨
𝑛 cos (𝜃

𝑖
+ 𝑛𝜔
𝑖
) ,

(34)

where 𝑟 = (𝑘 + 𝑚 − 2)/2.

Example 12. Consider the Padovan sequence of the
Example 8. Notice that 𝑘 = 2, 𝑚 = 1 and 𝑘 + 𝑚 is
odd. The eigenvalues of 𝐹

2,1
are given in Example 8,

𝜌(𝐹
2,1
) = 1.32472, 𝜆

1
= −0.66235 + 0.56227𝑖 =

0.86883(cos(2.43773) + 𝑖 sin(2.43773)), and 𝜆
2

≡ 𝜆
1
.

Since |𝜆
1
| = 0.86883, it is evident that the inequality

(22) is verified. The partial-fraction decomposition
as in (25) yields 𝑐 = 0.54511, 𝑐

1
= −0.27255 +

0.07397𝑖 = 0.28241(cos(2.87657)+ 𝑖 sin(2.87657)), and
𝑐
2
= −0.27255 − 0.07397𝑖 ≡ 𝑐

1
.

Thus, for 𝑛 ≥ 1 the 𝑛th number of the Padovan sequence
is computed by (33) and given by

𝑓
𝑛
= 𝑐(𝜌 (𝐹

2,1
))
𝑛

+ 2
󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜆1
󵄨󵄨󵄨󵄨
𝑛 cos (𝜃

1
+ 𝑛𝜔
1
)

= 0.54511(1.32472)
𝑛

+ 0.56483(0.86883)
𝑛 cos (2.87657 + 2.43773𝑛) .

(35)

Now, the limited properties of the Padovan sequence are
derived by (28) and (29):

lim
𝑛→∞

𝑓
𝑛+1

𝑓
𝑛

= lim
𝑛→∞

𝑛√𝑓
𝑛
= 1.32472. (36)

Example 13. Consider the 2-step sum and 2-step gap
Fibonacci sequence. Notice that 𝑘 + 𝑚 is even. The eigen-
values of 𝐹

2,2
are 𝜌(𝐹

2,2
) = 1.22074, 𝜆

1
= −0.24812 +

1.0339𝑖 = 1.06333(cos(1.80631)+ 𝑖 sin(1.80631)), 𝜆
2
≡ 𝜆
1
,
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and 𝜆
3
= −0.72449. The partial-fraction decomposition as

in (25) yields 𝑐 = 0.59122, 𝑐
1
= −0.13687 + 0.00951𝑖 =

0.13720(cos(3.07219) + 𝑖 sin(3.07219)), 𝑐
2
= 𝑐
1
, and 𝑐

3
=

−0.31747. Thus, for 𝑛 ≥ 1 the 𝑛th number of the sequence
is computed by (34) and given by

𝑓
𝑛
= 0.59122(1.22074)

𝑛

− 0.31747(−0.72449)
𝑛

+ 0.27441(1.06336)
𝑛 cos (3.07219 + 1.80631𝑛) .

(37)

Now, the limited properties of the sequence are derived by
(28) and (29):

lim
𝑛→∞

𝑓
𝑛+1

𝑓
𝑛

= lim
𝑛→∞

𝑛√𝑓
𝑛
= 1.22074. (38)

4. Conclusions

The 𝑘-step sum and 𝑚-step gap Fibonacci sequence was
introduced. A recurrence formula was presented generating
the 𝑛th term of the sequence as the sum of 𝑘 successive
previous terms starting the sum at the 𝑚th previous term. It
was noticed that known sequences, like Fibonacci, tribonacci,
tetranacci, and Padovan sequences, are derived for specific
values of 𝑘,𝑚. A closed formula of the 𝑛th term of the
sequence was given. The limiting properties concerning the
ratio of two successive terms as well as the 𝑛th root of the
𝑛th term of the sequence were presented. It was shown that
these two limits are equal to each other and are related
to the spectral radius of the associated {0, 1}-matrix. These
limits can be regarded as the 𝑘-step sum and 𝑚-step gap
Fibonacci sequence constants, like the tribonacci constant
and the tetranacci constant.
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