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Fungicides have been used widely in order to control fungal diseases and increase crop production. However, the effects of
fungicides on microorganisms other than fungi remain unclear. The modes of action of fungicides were never well classified and
presented, making difficult to estimate their possible nontarget effects. In this paper, the action modes and effects of fungicides
targeting cell membrane components, protein synthesis, signal transduction, respiration, cell mitosis, and nucleic acid synthesis
were classified, and their effects on nontarget microorganisms were reviewed. Modes of action and potential non-target effects
on soil microorganisms should be considered in the selection of fungicide in order to protect the biological functions of soil and
optimize the benefits derived from fungicide use in agricultural systems.

1. Introduction

Soil is arguably the most important resource for food
production. It is a very complex system whose functions
not only depend on its physical properties, but also on its
biological components. In particular, soil microorganisms
are essential players in the cycling of several elements
essential to life, including C, N, and P [1].

Understanding the effect of fungicides on the beneficial
activities of microorganisms is important to assess the
hazards associated with fungicide used in agriculture. Crop
productivity and economic returns will be maximized with
the use of products controlling well fungal pathogens,
but preserving beneficial organisms. Different organisms
may possess identical or similar mechanisms and con-
stituents, and fungicides targeting nonspecific binding sites
can directly affect nontarget organisms. For example, the
toxicity of carboxylic acid fungicides is derived from the
ability of these chemicals to bind on DNA topoisomerase
II, as common enzyme that unwind, and wind, DNA to
allow protein synthesis and DNA replication. This enzyme
is found in fungi but also in prokaryotic cells [2]. Some
glucopyranosyl antibiotic fungicides are toxic to bacteria, in
which they may inhibit the synthesis of amino acids [3].

These fungicides are also toxic to certain nonfungal higher
eukaryotic organisms [4].

Indirect nontarget effects are also possible. Microorgan-
isms are either functionally or nutritionally connected with
each others, and changes in a component of a microbial com-
munity may influence the structure of the whole community.
This is particularly true for plant-associated microorganisms,
which influence on and are influenced by the plant metabolic
status [5-7].

In order to establish a proper regulation for the use of
the many fungicidal substances promoted by industry in
sustainable agriculture, fungicide action modes and possible
side effects on nonfungal microorganisms must urgently
be clarified. Fungicide action modes have never been well
classified, and the side effects of these important chemicals
are not fully understood. Therefore, fungicide use may have
negative impacts that are difficult to predict [8]. In this
paper, current knowledge on the action modes of fungicides
impacting membranes, nucleic acids and protein synthesis,
signal transduction, respiration, mitosis and cell division,
and Multisite activity, as well as on their side effects on
nontarget organisms will be summarized and organized. The
framework emerging from this analysis sheds a much needed
light on the possible side effects of the numerous fungicidal



products in use and facilitates the assessment of the risks
associated with their use. The information summarized here
will support the development of efficient agroecosystems
where the contribution of naturally occurring bioresources
is preserved.

2. Modes of Action and Side Effects of
Fungicide Groups

2.1. Effects on the Synthesis of Lipids, Sterol, and Other
Membrane Components. The cell membrane is a selectively-
permeable wall that separates the cell content from the
outside environment. Membranes perform many biological
functions in all living cells. They preclude the passage of
large molecules, provide the shape of the cell, maintain cell
water potentials, and are involved in signal transduction
[9]. Negative impacts of fungicide on the membrane of
microorganisms were found to alter the structure and
function of soil microbial communities.

The structure of lipids, the basic components of cell
membranes, was modified by fungicides of the Aromatic
Hydrocarbons (AH) group, impacting the functionality of
microbial membrane systems. For instance, Dicloran (2,6-
dichloro-4-nitroaniline)—an AH fungicide registered in
North America, Europe, and South Africa since 1975 for
the control of Basidiomycetes, Deuteromycetes, and Rhizopus
species [10]—is phototoxic. The cell membranes of treated
fungi become sensitive to solar radiation, which then
destroys the structure of linoleic acid, a common membrane
lipid. Another active AH fungicide ingredient, etridiazole
(5-ethoxy-3(trichloromethyl)-1,2,4-thiadiazole), causes the
hydrolysis of cell membrane phospholipids into free fatty
acids and lysophosphatides [11], leading to the lysis of
membranes, in fungi. Previous research proved that these
fungicides have side effects on other soil microorganisms.
Dicloran can cause mutation in Salmonella typhimurium
by disturbing hydrophobic interactions within the mem-
brane [12]. Etridiazole also reduced the nitrification rate
of ammonium-oxidizing bacteria in soil [13], with possible
effect on this component of the soil microbial community
and ramifications on its structure and function.

Sterols are another important component of cell mem-
brane in fungi. Demethylation-inhibiting (DMI) fungicides
inhibit sterol biosynthesis in fungal cells. Triadimefon
((RS)-1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-tria-
zol-1-yl)butan-2-one) demethylated at C-14, introduced a
double bond at C-22, and reduced a double bond at C-24 in
the carbon skeleton of sterols in a fungal membrane, causing
disfunction and cell lysis [14]. Although bacteria do not have
sterols, sterol-targeting fungicides have indirect side effects
on these microorganisms. Research found that triadimefon
had long-term inhibiting effects on soil bacterial community
[7]. Triticonazole ((RS)-(E)-5-(4-chlorobenzylidene)-2,2-
dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol), a
triazoles fungicide, can stimulate bacteria proliferation in
soil [15], while two other sterol-targeting fungicides, fen-
propimorph (cis-4-[(RS)-3-(4-tert-butylphenyl)-2-methyl-
propyl]-2,6-dimethylmorpholine) and propiconazole ((2RS,
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4RS;2RS,48R)-1-[2-(2,4-dichlorophenyl)-4-propyl-1,3-dio-

xolan-2-ylmethyl]-1H-1,2,4-triazole), inhibited overall bac-
terial activity [16]. Such differential effect may be ex-
plained by changes in competition among different soil mi-
croorganisms. Recent research of dimethomorph ((EZ)-4-[3-
(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloylJmoror-

pholine) revealed that this fungicide can influence the
activity of bacteria involved in N cycling, with impact on
nitrification and ammonification [17], through its different
impact on different bacterial ecotypes and changes in
bacterial community structure.

Some fungicides target fungal intracellular membrane
systems and their biological functions. A widely used fungici-
dal compound, acriflavine (3,6-diamino-10-methylacridin-
10-ium chloride), increases mitochondrial permeability and
releases cytochrome c in fungal cells, repressing plasma
membrane receptor activation, disordering proton stream
and collapsing the electrochemical proton gradient across
mitochondrial membranes [18]. As a consequence, ATP
synthesis is decreased leading to cell death. It was also shown
that acriflavine could thickened both the peripheral and
cross cell wall of the gram-negative bacteria Staphylococcus
aureus [18], suggesting the possibility of nontarget effects of
acriflavine on bacterial growth (Table 1).

2.2. Effects on Amino Acids and Protein Synthesis. Proteins
are the most important building blocks in living organisms.
They have various important biological functions such
as making up the cytoskeleton, delivering signals among
cells, and catalyzing biochemical reactions [36]. Proteins
are made of amino acids. Several fungicides interfere with
the biosynthesis of amino acids and proteins, affecting the
biological functions of impacted organisms.

Streptomycin  (5-(2,4-diguanidino-3,5,6-trihydroxy-cy-
clohexoxy)-4-[4,5-dihydroxy-6- (hydroxymethyl)-3-methyl-
amino-tetrahydropyran-2-yl]oxy-3-hydroxy-2-methyl-tet-
rahydrofuran-3-carbaldehyde), an antibiotic produced by
Streptomyces griseus that has long been used as a fungicide
[37], also has bactericidal activity. Streptomycin interferes
with amino acid synthesis. In Escherichia coli, application
of streptomycin caused misincorporation of an isoleucine
molecule in the phenylalanine polypeptide chain associated
with 70S ribosomes [38]. Another research with a thermus
thermophilus mutant strain suggested that misreading of the
genes coding for amino acid synthesis explains the negative
effect of streptomycin on bacteria [3]. Furthermore, Perez et
al. [4] found that streptomycin could also be a nonselective
excitatory amino acid (EAA) receptor antagonist. This
antibiotic selectively blocked amino acid receptors in the
anterior vestibular nerve fibers of Ambystoma tigrinum,
a salamander, suggesting that it could also be toxic to
eukaryotes, in addition to fungi and bacteria.

Oxytetracycline ((2Z,45,4aR,5S,5aR,6S,12aS)-2-[amino-
(hydroxy)methylidene]-4-(dimethylamino)-5,6,10,11,12a-
pentahydroxy-6-methyl-4,4a,5,5a-tetrahydrotetracene-1,3,
12-trione) is widely used in agriculture because of its broad-
spectrum antibiotic activity. It is also registered as fungicide
in New Zealand and VietNam, according to the information
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TaBLE 1: Action mode and possible nontarget effects of fungicides.

Action mode

Fungicide chemical
group

Common name

Nontarget effects

Mutagen to Salmonella

. Aromatic Dicloran o
Lipid hydrocarbons typhzmum.urﬁ [12.] .
- Retards nitrification by affecting
Etridiazole . 1
ammonium oxidizers [13]
L Long-term inhibiting effects on
Triazoles Triadimefon soil bacterial community [7]
Triticonazole Increases total number of
bacteria in soil [15]
Sterol Impacts nitrifying and
Lipid, sterol, and Cinnamic acid amide Dimethomorph ammonifying bacterial activities
other membrane in sandy soils [17]
components . Impacts bacterial activities
Triazole Hexaconazole related to N cycling [19]
Morpholine Fenpropimorph Inhibit general bacterial activity
Triazole Propiconazole in wetland [16]
May retard
Tebuconazole plant-gr(?vyth-promf)tlng effeFts
of Azospirillum brasilense on its
hostplant [20]
Intracellular Thickens peripheral and cross
membrane Hydrochloride Acriflavine cell wall of Staphylococcus aureus
components [18]
Glucopvranosyl Inhibits amino acid synthesis in
Amino acid and antibigtyic 4 Streptomycin bacteria [3] and is neurotoxic to
protein synthesis amphibian [4]
Tetracycline antibiotic Oxytetracycline Also used as bactericide [21]
. . Toxic to algae [22] and potential
Phenylpyrroles Fludioxonil risk to prokaryotes [23]
Signal Iprodione Affects signal transduction in
transduction Dicarboximides P bacteria [24]
Vindozolin {1211;]1])1'[8 total bacterial growth
NADH
oxido-reductase Pyrimidinamines Diflumetorim Unknown
(Complex I)
inhibitors
i May affect growth of prokaryotes
Succinate- Pyrl; e . Boscalid [26]
dehydrogenase carboxamides
Respirati (Complex IT) Benzamides Flutolanil
espiration inhibitors Gxathiin Carboxin Inhibits denitrifying bacterial
carboxamides arbo activity in wetland sediment [16]
o Have a potential risk to
Oxidative 2,6-dinitroanilines Fluazinam environmental microorganisms
phosphorylation [27]
uncouplers . Inhibits ammonifying bacterial
Dinitrophenyl . . .
Dinocap activity and stimulate general
crotonate . S .
bacterial respiration in soil [28]
o May affect nitrifying bacteria
Inhlbltor of Methyl benzimidazole Benomyl [29] and arbuscular mycorrhizal
sp}ndle carbamate fungi [30]
Mitosis and cell mlcrolt;llbules Carbendazim Reduces the diversity of soil
division assembly bacteria [31]
May affect metabolically
Phenylurea Pencycuron activated soil bacteria in short

term [32]
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TaBLE 1: Continued.

Action mode Fungicide chemical

Common name Nontarget effects

group
Affects activities of ammonifying
RNA polymerase Acylalanines Metalaxyl and nitrifying bacteria in soil
I inhibitors [33]
Nuclelc'aads Oxazolidinones Oxadixyl Unknown
synthesis Adenosin-
deaminase Hydroxypyrimidines Ethirimol Unknown
inhibitors
. . Impacts bacterial activities
Phthalonitrile Chlorothalonil related to N cycling [29]
Impacts bacterial activities
Dithiocarbamate Mancozeb related to nitrogen cycling [17]
and carbon cycling [28] in soils
Multisite activity Phthalimide Captan Inhibits denitrifying bacterial
Dithiocarbamate Thiram activity [16]
Anthraquinone Dithianon Ee;i]uces bacterial diversity in soil
Reduces the number of bacteria
Copper Copper sulfate and streptomycetes in sandy soil

(35]

provided by Pesticide Action Network of North America
(http://www.pesticideinfo.org/Detail_ChemReg.jsp?Rec_Id=

PC38140). Previous research reported inhibitory effects of
oxytetracycline on protein synthesis in bacteria through
interference with the ternary amino-acyl-tRNA complex
binding to the acceptor site of ribosomes [39], leading to
retarded bacterial growth, disordered microbial community
structure, and limited microbial ectoenzyme activity in the
soil system [21, 40]. Therefore, caution must be taken with
the application of oxytetracycline to control fungal diseases,
as it is antibiotic and impacts bacteria.

2.3. Effects on Signal Transduction. The fungicide affecting
microbial membranes or proteins, as we discussed above,
may affect signal transduction, which takes place at the
level of membranes and involves the function of certain
proteins.

Phenylpyrrole fungicidal ingredient fludioxonil (4-(2,2-
difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile),
is a nonsymtemic fungicide, also known to interfere with
the signal transduction pathways of target fungi [41]. The
work of Rosslenbroich and Stuebler [42] revealed inhibition
of spore germination, germ tube elongation, and mycelium
growth in Botrytis cinerea, by fludioxonil-related interference
in the osmoregulatory signal transmission pathway of this
fungus. This finding was supported by Ochiai et al. [43]
who found that fludioxonil can disturb the CANIKI/COSI
signal transduction pathway, leading to the dysfunction of
glycerol synthesis and inhibition of hyphae formation in
Candida albicans. Recently, Hagiwara et al. [44] reported the
inhibiting effect of fludioxonil on a large number of genes
involved in a two-component signal transduction system,
in filamentous fungi. Impact on this system suggests that

fludioxonil may have a nontarget effect on bacteria, as this
dualistic signal transduction mechanisms is also reported in
prokaryotes [45].

Effects on signal transduction are also found in dicar-
boximide fungicides. Iprodione (3-(3,5-dichlorophenyl)-N-
isopropyl-2,4-dioxoimidazolidine-1-carboxamide), a con-
tact dicarboximide fungicide widely used in a variety of
crops, inhibits glycerol synthesis and hyphal development
by cutting off signal transduction [43], as does fludioxonil.
Iprodione can modify the structure of the soil bacterial
community, as reported in a recent research [24]. Interfer-
ence with signal transduction by dicarboximide fungicide
vinclozolin ((RS)-3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-
1,3-oxazolidine-2,4-dione) caused low growth rate, abnor-
mality, and changes in the productions of hexoses and chitin
in treated B. cinerea [46]. Vinclozolin also had inhibiting
effects on soil bacterial growth and nitrogen metabolism,
in soil systems [25]. The metabolite of this fungicidal
compound, 3,5-dichloroaniline, is also toxic and persistent
[23], further suggesting possible impacts of the fungicide
vinclozolin on nontarget soil organisms.

2.4. Effects on Respiration. Several fungicides with differ-
ent modes of action were reported to inhibit microbial
respiration. Some are NADH oxidoreductase (Complex I)
inhibitors, others are succinate-dehydrogenase (Complex II)
inhibitors, cytochrome bcl (Complex III) inhibitors, and
oxidative phosphorylation uncouplers.

Only few fungicides were reported so far to inhibit
respiration by affecting Complex I system in fungal mito-
chondria. Diflumetorim ((RS)-5-chloro-N-{1-[4-(difluo-
romethoxy)phenyl]propyl}-6-methylpyrimidin-4-ylamine),
first registered in Japan in 1997 to control powdery mildew
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and rust in ornamental plants [47], inhibits NADH oxido-
reductase activity leading to fungal death [48]. Very limited
research has investigated the mode of action mode of
Complex I inhibitors, which remains poorly understood.

Three widely used Complex II inhibitors, boscalid
(2-chloro-N-(4"-chlorobiphenyl-2-yl) nicotinamide), carbo-
xin (5,6-dihydro-2-methyl-1,4-oxathiine-3-carboxanilide),
and flutolanil(a,a,a-trifluoro-3’-isopropoxy-o-toluanilide),
cause dysfunction of succinate dehydrogenase (SDH) in the
tricarboxylic cycle and mitochondrial electron transport
chain, inhibiting the activity of Complex II and respiration
in fungal cells [49-52]. Significant yield increases were
reported with the use of these fungicides, indicating their
effectiveness in the control of fungal diseases [53, 54].
Since Complex II is a common enzyme complex system
existing in many eukaryotic and prokaryotic organisms [26],
nontarget effects of Complex II inhibitors on soil bacteria
were repeatedly reported [55, 56], suggesting that cautions
must be used with these chemicals.

Whereas some fungicides affect fungal respiration at
the level of the enzyme complex system, other fungicides
may impact respiration through other targets. Fluazinam
(3-chloro-N-(3-chloro-5-trifluoromethyl-2-pyridyl)-a, o, t-
trifluoro-2,6-dinitro-p-toluidine) triggers very unusual
uncoupling activity in target cells. The metabolic state of
their mitochondria was found to be inhibited after exposure
to fluazinam, which may be caused by the conjugation
of the chemical with glutathione, in mitochondria [57].
Consequently, ATP production is inhibited and downstream
cellular metabolisms is interrupted. In fact, the uncoupling
activity of eight fluazinam derivatives was recognized
[58], which suggests that fluazinam has complicated
ramifications on fungal metabolic pathways and may be
toxic in the environment [27]. Another fungicide dinocap
(RS)-2,6-dinitro-4-octylphenyl crotonates and (RS)-2,4-
dinitro-6-octylphenyl) showed similar action mode to
fluazinam, which inhibited ammonifying bacterial activity
[28], suggesting side effects of this fungicide group on
bacteria growth.

2.5. Effects on Mitosis and Cell Division. The methyl benzim-
idazole carbamate (MBC) fungicides are known to impact
mitosis and cell division in target fungi [59, 60]. Previous
research revealed the inhibitory effects of these fungicides on
the polymerization of tubulin into microtubules. These MBC
fungicides bind on S-tubulin in microtubules inhibiting their
proliferation and suppressing their dynamic instability [61—
63]. Microtubules are the cytoskeletal polymers in eukaryotic
cells and, thus, play a vital role in many cellular functions.
The application of MBC fungicides suppresses the assembly
of spindle microtubules, disturbs the chromosomal align-
ment at the metaphase plate and microtubule-kinetochore
interacions causing chromatid loss, chromosome loss or
nondisjunction in target cells [64], which may also yield side
effects on other microorganisms as described below.
Benomyl (methyl 1-(butylcarbamoyl) benzimidazol-2-
ylcarbamate) and carbendazim (methyl benzimidazol-2-
ylcarbamate), two very popular MBC fungicides widely used
in crop production, inhibit mitosis in fungi. They can also

influence the beneficial arbuscular mycorrhiza fungi (AMF)
[30] and mammalian cells [65, 66]. Although no evidence
of a direct effects of MBC fungicides on soil bacteria was
reported yet, some research has associated these fungicides to
the inhibition of nitrification in soil, a microbially mediated
process [29]. The effect of MBC fungicides on bacteria and
other soil organisms remains to be clarified.

2.6. Effects on Nucleic Acids Synthesis. Phenylamides (PA)
fungicides affect nucleic acids synthesis by inhibiting the
activity of the RNA polymerase I system. For exam-
ple, metalaxyl (methyl N-(methoxyacetyl)-N-(2,6-xylyl)-
DL-alaninate), a widely used PA fungicide, inhibits uridine
incorporation into the RNA chain [67]. It interferes with
nucleic acid synthesis through inhibition of RNA polymerase
I activity thus blocking rRNA synthesis at the level of
uridine transcription [68]. PA fungicide applications can
increase the prevalence of fungicide resistance in pathogen
population and yield more fungicide-resistant isolates, as
shown by a recent study using AFLP (amplified fragment
length polymorphism) and SSR (simple sequence repeats)
markers [69]. Fungicides in the PA group must be used with
caution, as the side effect of this fungicide on N cycling
associated bacteria was reported [33].

Hydroxypyrimidines fungicides were also reported for
their inhibiting effects on adenosine-deaminase. As an exam-
ple, ethirimol (5-butyl-2-ethylamino-6-methylpyrimidin-4-
ol) was reported for its effects on several metabolites such as
inosine and adenine nucleotides in barley powdery mildew
(Erysiphe graminis f.sp. hordei.) [70]. Ethirimol caused
overexpression of adenine phosphoribosyltransferase, which
may further break down the balance of the nucleotide pool.
Besides, ADAase, which catalyzes the hydrolytic deamination
of adenosine, was inhibited by ethirimol. Consequently,
production of inosine was ceased, and synthesis of nucleic
acid was impaired. The gene responsible for resistance to
ethirimol, ethlS, was reported later in Erysiphe graminis
f.sp. hordei [71]; therefore, caution must be taken with the
application of hydroxypyrimidines fungicide as fungicide
resistance in target populations could be developed by
repeatedly fungicide application.

2.7. Fumgicides with Multisite Activity. Multisite activity
tungicides are widely used in agronomic activities due
to the broad spectrum of disease control activity, but
may have side effects on other microorganisms due to
their multiple biochemical sites impacts. Chlorothalonil
(tetrachloroisophthalonitrile), a widely used phthaloni-
trile fungicide, can block the transformation of alterna-
tive special structure of glutathione and reduce enzymes
activities which used special conformation of glutathione
as their reaction centers. Previous research found that
chlorothalonil can influence bacterial growth in soil,
which may have ecological consequences on N cycling
[29]. Mancozeb (manganese ethylenebis(dithiocarbamate)
(polymeric) complex with zinc salt), another Multisite
activity fungicide impacting metabolism in target cells,
can also affect bacteria involved in both C and N
cycling in soil [17, 28]. Other Multisite activity fungicides



such as captan (N-cyclohex(trichloromethylthio)-4-ene-1,2-
dicarboximide) and thiram (bis(dimethylthiocarbamoyl)
disulfide) inhibited the growth of denitrifying bacteria [16],
perhaps due to their nonspecific effects on biochemical
compounds which contain thiol in target cells. Besides,
copper-based Multisite activity fungicide, such as copper
sulfate (copper(Il) tetraoxosulfate), inhibited bacteria and
streptomycetes growth in soil [35] and may have nontarget
effects on other soil microorganisms.

3. Conclusion

Fungicidal compounds may have side effects and impact
nontarget soil microorganism. The effects of fungicides on
soil microorganisms can be important, as the feedback of
the soil microbial community can affect crops growth and
production in cropping systems. The relationships existing
between fungicides, the soil microorganisms, and other
environmental factors are complex and difficult to predict.
On the other hand, the multiplicity of fungicides’ modes
of action increases the difficulty of evaluating the risks
associated with fungicide use. Since it is desirable to optimize
the benefit of natural soil biological functions to crop
production, understanding fungicides mode of action and
impact on metabolism could help us using fungicide more
wisely in agriculture.
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