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Childhood obesity is becoming more prevalent; however, the influence of obesity or dieting during childhood on outcomes in
adulthood is poorly understood. The aim of this study was to examine the effects of short-term calorie restriction (CR) and
high-calorie feeding with high-fat or high-sucrose diets during early life on the development of glucose tolerance and diabetic
nephropathy in later life of Otsuka Long-Evans Tokushima fatty (OLETF) rats. Neither high-calorie intake nor CR at 7-13 weeks
of age affected glucose tolerance of 27-week-old OLETF rats. On the other hand, proteinuria was lower at 27 weeks of age in CR
rats than in the other rats. These results suggest that short-term CR at a young age protects against the development of renal injury
in later life. In contrast, short-term high-calorie intake or CR at a young age does not appear to affect glucose metabolism in later

life.

1. Introduction

A massive increase in the prevalence of defective glucose
metabolism, insulin resistance, and cardiovascular morbidity
is anticipated in most developed countries [1-3]. Dysfunc-
tional insulin activity is accompanied by complications such
as obesity, diabetes, and hypertension, and substantially
increases the risk of cardiovascular events. One of the main
concerns is the increasing prevalence of obesity in children
and adolescents, because it has been reported that the
prevalence has reached 50% in several countries. Several
studies have shown that body mass index (BMI) during
childhood is associated with increased risk of early onset of
type 2 diabetes and cardiovascular diseases [4, 5], and that
the risk of dying by middle age is 2-3 times higher among
obese adolescent girls than among those of normal weight
[6]. Although it has been believed that the longer duration
of diabetes in obese children is associated with an increased
risk of cardiovascular events throughout their lifetime, it is

unclear whether childhood obesity itself confers additional
risk in later life.

Calorie restriction is one of the possible treatments for
diabetes, and it is also well known to prolong the lifespan.
Calorie restriction is often used as initial therapy for diabetic
patients; however, lifestyle changes are often only started
following the diagnosis of diabetes. It is clear that starting
calorie restriction during an earlier phase has greater effects
on outcomes. However, for obese children, it would be
difficult to limit calorie intake throughout their life, and
calorie intake often starts to increase after some time. The
effects of temporary calorie restriction at a young age on
obesity-related problems, such as insulin resistance and
diabetes, in later life are still unclear.

Diabetic nephropathy, one of the main complications
of diabetes, develops in a time-dependent manner, and the
number of patients requiring dialysis or transplantation is
steadily increasing. Diabetic nephropathy is considered to
be a long-term consequence of diabetes mellitus; therefore,



interventions during an early phase are strongly recom-
mended. Both basic and clinical studies have demonstrated
that treatment with rennin-angiotensin system (RAS) block-
ers delays the developments and progression of diabetic
nephropathy [7-10]. Interestingly, it has been shown that
short-term RAS blockade prevented the development of
proteinuria in spontaneous type 2 diabetic rats even if it
was conducted just during the prediabetic stage [11]. This
supports the belief that early intervention is important to
prevent diabetic nephropathy, and also suggests that inter-
ventions conducted during early life influence the kidney
and protect it from stress in later life. This also suggests
that exposure to “diabetic stress” early in life may lead to
irreversible biologic changes and adversely affect metabolism
in later life.

However, it remains to be determined whether the effects
of either excessive or restricted calorie intake during early life
are sustained until later life, or whether such interventions
affect the incidence of insulin resistance, diabetes, and
complications, such as nephropathy. Therefore, the present
study was conducted to examine the effect of short-term
calorie restriction, high-fat feeding, and high-sucrose feeding
during early life on the development of insulin resistance
and renal injury in later life in spontaneously type 2 diabetic
Otsuka long-Evans Tokushima fatty (OLETF) rats.

2. Methods

2.1. Animals. All experimental procedures were performed
according to the guidelines for the care and use of animals
established by the Kagawa University. Six-week-old male
OLETF rats (Otsuka Co. Ltd., Tokushima, Japan) were
divided into four groups and fed either a standard chow
(n = 16), standard chow with feeding restriction (70%
compared to standard chow-fed group, n = 16), high-
sucrose (60%) chow (n = 16), or high-fat (60%) chow
(n = 16) between weeks 7 and 13 of age. We used Long-
Evans Tokushima Otsuka (LETO) rats as the lean control of
OLETF rats. After week 13, the diet was replaced with an
unrestricted normal diet and was given until 27 weeks of age.
Twenty-four-hour urine samples were collected from rats at
6 (baseline), 13, and 27 weeks of age. All animals underwent
a 24-hour acclimatization period in metabolic cages before
urine collection. We chose 27 weeks of age because our
preliminary experiments showed the OLETF rats developed
significant insulin resistance at 25-27 weeks of age. Animals
were fasted for 12 hours at 13 and 27 weeks of age and killed
to collect retroperitoneal and epididymal adipose tissues and
the kidneys. The other tissues were snap frozen in liquid
nitrogen and stored at —80°C until use.

2.2. Real-Time Reverse Transcription PCR. The mRNA ex-
pression of SIRT1 and 3 was analyzed by real-time PCR
using an ABI Prism 7000 with Power SYBR Green PCR
Master Mix (Applied Biosystems, Foster City, Calif, USA).
The oligonucleotide primer sequences for glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) and SIRTs were as
previously described [12]. All data are shown as the relative
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differences between control and treated animals after nor-
malization for GAPDH expression.

2.3. Oral Glucose Tolerance Test (OGTT). OGTT was per-
formed 1 week before the end of the experimental period,
as previously described [13]. The rats were fasted overnight,
and glucose was administered by gavage (2 g/kg). Blood
samples were collected from the tail vein before and 10,
30, 60, and 120 min after glucose administration to measure
plasma glucose and insulin concentrations.

2.4. Other Analytical Procedures. Plasma levels of triglyc-
erides, nonesterified fatty acid (NEFA), total cholesterol,
glucose (all: Wako Co., Ltd., Osaka, Japan), and insulin (Rat
Insulin ELISA Kit; Shibayagi, Gunma, Japan) were measured
using commercially available kits. Urinary protein excretion
was determined using a protein assay kit (microTP-test;
Wako Co. Ltd.).

2.5. Histological Analysis. Kidneys were fixed with 15%
formalin and embedded in paraffin. Tissue was sectioned
into 20 ym-thick slices and stained with periodic acid Schiff
(PAS). Kidney sections were evaluated by light microscopy,
as previously described [11].

2.6. Statistical Analysis. Values are presented as means =+
standard error of the mean. Differences between groups were
compared using one-way analysis of variance followed by
the Newman-Keuls post hoc test. Values of P < 0.05 were
considered statistically significant.

3. Results

The body weight of normal-diet-fed OLETF rats was sig-
nificantly greater at 13 and 27 weeks of age than that of
LETO rats (Table 1). Short-term high-sucrose feeding did
not affect body weight gain in OLETF rats. In contrast, short-
term high-fat feeding markedly increased the body weight in
OLETF rats at 13 weeks of age, although the difference was
abolished at 27 weeks of age. Short-term calorie restriction
reduced body weight gain at both 13 and 27 weeks of age. The
weight of retroperitoneal and epididymal fat was greater in
normal diet-fed, high-sucrose-fed, and high-fat-fed OLETF
rats than in LETO rats at both 13 and 27 weeks of age, and
retroperitoneal and epididymal fat weight in high-sucrose-
fed and high-fat-fed OLETF rats was greater than that in
normal-diet-fed rats. The fat weight in the calorie restriction
group was similar to that of LETO rats at 13 weeks of age,
but it was significantly greater than that in LETO rats at
27 weeks of age. Postprandial, but not fasting blood glucose
was greater in the normal-diet-fed OLETF rats than in the
LETO rats at 13 and 27 weeks of age. Fasting, but not
postprandial, blood glucose concentrations were greater in
high-sucrose-fed and high-fat-fed OLETF rats at 13 weeks
of age, although this difference was abolished at 27 weeks of
age. Postprandial blood glucose in calorie-restricted rats was
significantly lower than that in the normal-diet-fed OLETF at
13 weeks of age. There were no differences in postprandial or
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FIGURE 1: Changes in plasma glucose levels during oral glucose tolerance tests performed at 13 (a) and 27 (b) weeks of age, and the calculated
total areas under the glucose curves at 13 (c) and at 27 (d) weeks of age. Compared with the control LETO rats, the normal diet-fed, high-
sucrose-fed, and high-fat-fed OLETF rats showed higher glucose levels following the oral glucose load at 13 weeks of age. The changes in
blood glucose levels following the oral glucose load in calorie-restricted OLETF rats were almost identical to those in LETO rats at 13 weeks
of age. Blood glucose levels were significantly greater in all OLETF rats than in LETO rats, and there were no differences in blood glucose
level between any of the OLETF rats at 27 weeks of age. L: LETO + normal diet; O: OLETF + normal diet; HS: OLETF + high-sucrose diet;
HF: OLETF + high-fat diet; CR: OLETF + calorie restriction. *P < 0.05 versus LETO rats, #P < 0.05 versus normal diet-fed OLETF rats.

fasting blood glucose among OLETF rats at 27 weeks of age.
The plasma insulin level was increased by high-sucrose and
high-fat feeding compared to normal-diet feeding in OLETF
rats at 13 weeks of age. No differences in plasma insulin
levels were observed among the OLETF groups, including the
calorie-restricted group, at 27 weeks of age. Glucose tolerance
following oral administration of 2 g/kg glucose in normal
diet-fed OLETF rats was impaired compared with that of
LETO rats at both 13 and 27 weeks of age (Figure 1). Short-
term high-sucrose feeding did not affect glucose tolerance at
either 13 or 27 weeks of age. In contrast, short-term high-
fat feeding caused marked glucose intolerance at 13 weeks of
age, although the difference was abolished at 27 weeks of age.

Calorie restriction for 6 weeks markedly improved glucose
tolerance at 13 weeks of age, although these improvements
were abolished at 27 weeks of age.

Normal diet-fed OLETF rats developed significant pro-
teinuria at 27 weeks of age (Figure 2(a)). Short-term feeding
with a high-fat diet, but not the high-sucrose diet or calorie
restriction, caused significant proteinuria in 13-week-old
rats. In contrast, neither the high-fat nor the high-sucrose
diet affected urinary protein excretion at 27 weeks of age.
Interestingly, calorie restriction between weeks 7 and 13 of
age reduced proteinuria in 27-week-old rats. The number
of glomerulosclerotic lesions detected on PAS-stain tissue
sections was markedly increased in normal-diet-fed OLETF
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TaBLE 1
Time LETO OLETgi:tormal OLSI::EE) i‘;gh OLETF high fat OIr‘fs{rFi:t?(l)‘:le
Baseline 193 +3 247 + 7% 224 + 4% 216 + 5% 234 + 5%

BW (g) 13w 393 + 10 511 + 14% 524 + 9% 587 + 14%* 441 + 6**

27w 486 + 17 689 + 19% 702 + 15% 705 = 20* 639 + 8**
Fat weight/BW 13w 0.012 + 0.001 0.017 £ 0.001*  0.026 = 0.001**  0.038 = 0.001**  0.011 + 0.001

27w 0.014 + 0.001 0.022 £0.001*  0.027 = 0.001**  0.028 = 0.001**  0.021 = 0.001*
Blood glucose Baseline 98 + 2 118 +5 117 6 123+6 113+6
(postprandial; 13w 126 +2 198 + 16* 207 + 17% 218 + 15% 141 + 5%
mg/dL) 27w 141 + 4 265 + 20% 262 + 15% 249 + 24% 229 + 25%
Blood glucose 13w 84 + 4 88 +4 122 + 8** 133 + 6** 96 + 4
(fasting; mg/dL) 27w 94 +6 112+7 106 + 6 109 + 8 113 + 8
Insulin (fasting; 13w 0.7 +0.2 1.2 +0.2 3.4+ 0.2%* 6.2 + 0.9** 1.2+0.3
ng/mL) 27w 1.9+0.3 5.3 + 0.4% 5.3 + 0.5% 6.5 + 0.6 5.7 + 0.5%

*P < 0.05 versus LETO rats, *P < 0.05 versus normal-diet-fed OLETF rats.
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FIGURE 2: Urinary protein excretion levels (a) and renal morphological changes (b). Proteinuria was greater in all OLETF rats than in LETO
rats and was greater in high-fat-fed rats than in normal-diet-fed rats at 13 weeks of age. Proteinuria was further increased at 27 weeks of age
in all OLETF rats, although the increment in proteinuria in calorie-restricted OLETF rats was significantly less than that in normal-diet-fed
OLETF rats. As shown in (b), the PAS-positive area in the kidney was similar among the 27-week-old rats. L: LETO + normal diet; O: OLETF
+ normal diet; HS: OLETF + high-sucrose diet; HF: OLETF + high-fat diet; CR: OLETF + calorie restriction. *P < 0.05 versus LETO rats,
P < 0.05 versus normal-diet-fed OLETF rats.

rats and in those fed the high-fat or high-sucrose diets,
with no differences between these groups (Figure 2(b)).
Calorie restriction significantly decreased the number of
glomerulosclerotic lesions on PAS-stained tissue sections in
OLETF rats.

To determine the mechanism by which short-term
calorie restriction at a young age delayed or prevented the
development of proteinuria in obese animals, we measured
sirtuin mRNA expression in the kidney of animals at 13 and
27 weeks of age. However, we found no significant differences
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FIGURE 3: mRNA expression of SIRT1 (a and b) and 3 (c and d) in the kidneys of 13-week-old (a and ¢) and 27-week-old rats (b and d).
There were no differences in either SIRT1 or 3 expression in the kidneys between any of the groups at either time. L: LETO + normal diet;
O: OLETF + normal diet; HS: OLETF + high-sucrose diet; HF: OLETF + high-fat dietl CR: OLETF + calorie restriction.

in SIRT1 and SIRT3 expression at either 13 or 27 weeks of age
between the groups (Figure 3).

4. Discussion

The prevalence of obesity in young people is increasing,
and many children are now at risk of disorders associated
with obesity, particularly endocrine abnormalities such as
type 2 diabetes [14]. It appears that obesity in children or
adolescents is associated with impaired glucose tolerance and
insulin resistance [15, 16], as in adults and that high BMI
during childhood increases the risk for cardiovascular events
[4]. BMI in childhood and adulthood is strongly correlated;
however, an analysis of the association between adolescent
BMI and coronary heart disease in adulthood found that the
effects were independent of adult BMI [17]. This evidence
led us to hypothesize that abnormal calorie intake during
young age can lead to irreversible changes in the metabolic
systems and insulin resistance in later life. Interestingly, we

found that glucose tolerance 14 weeks after stopping the
intervention was similar in high-fat-fed, high-sucrose-fed,
and calorie-restricted type 2 diabetic rats. It is possible that
obesity or leanness during young age might have irreversible
effects on total body metabolism because the high-sucrose-
fed and high-fat-fed rats were obese with a high body fat
ratio at the end of experiment. However, our results showed
that the effects of these diets, at least on glucose metabolism,
could be diminished by replacing these high-calorie diets
with a normal diet. We did not investigate this hypothesis
in lean animals, such as LETO rats, because our preliminary
experiments showed that short-term high-fat feeding did not
significantly worsen glucose metabolism in these rats (data
not shown).

Diabetic nephropathy is a major complication in diabetic
patients. It has been shown that the probability of developing
albuminuria in patients with childhood-onset type 1 diabetes
is similar to that in patients with adult-onset type 1
diabetes [18]. Thus, we expected that the glucose intolerance



exhibited in 13-week-old high-fat-fed OLETF rats might
worsen the renal lesions in later life. Indeed, the high-fat-
fed rats excreted more protein into urine at week 13 of
age, although this difference was abolished at 27 weeks of
age, as that in glucose tolerance. Surprisingly, the level of
proteinuria was reduced by half in calorie-restricted rats,
even at 14 weeks after returning to the normal unrestricted
diet, indicating that calorie restriction protects against organ
injury—the kidney in this study—and that these effects are
sustained for longer than those on glucose metabolism. The
mechanisms involved in these beneficial effects of short-term
calorie restriction are of interest, but we found no possible
candidates that are capable of protecting the kidney against
type 2 diabetes in later life. We expected the sirtuin family
of genes to be a key factor because many studies have shown
that increased sirtuin expression contributes to the beneficial
effects of calorie restriction on the development of diabetes
[19-21]. However, we found no differences in renal SIRT1
or 3 expression among any of the experimental groups at
either 13 or 27 weeks of age. We previously reported that
RAS components in the kidney were already upregulated
at a young age in OLETF rats and that angiotensin AT1
receptor blockade during the prediabetic stage of OLETF
rats (4 to 11 weeks of age) prevented the development of
diabetic nephropathy in later life without marked effects
on body weight, blood glucose, or plasma insulin levels
[11]. These findings suggest that inhibition of the renal
RAS in the prediabetic stage confers beneficial changes in
the kidney similar to that observed following short-term
calorie restriction in the present study. The mechanisms
underlying these similar effects of calorie restriction and RAS
inhibition in the kidney should be investigated in future
studies.

5. Conclusion

Transient high-fat or high-sucrose feeding in early life does
not appear to cause irreversible or sustained changes in
either metabolic or kidney function in animals that are
genetically obese and type 2 diabetic because of overfeed-
ing. On the other hand, calorie restriction, even if it is
temporary, confers protective effects against diabetes-related
renal injury. These findings provide further support to the
effectiveness of calorie restriction, although it should be
noted that it failed to induce sustained benefits on metabolic
parameters.
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