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Reduced expression of GATA4, a transcriptional factor for structural and cardioprotective genes, has been proposed as a factor
contributing to the development of cardiomyopathy. We investigated whether the reduction of cardiac GATA4 expression reported
in diabetes alters the expression of downstream genes, namely, atrial natriuretic peptide (ANP), B-type natriuretic, peptide (BNP),
and a- and B-myosin heavy chain (MHC). db/db mice, a model of type 2 diabetes, with lean littermates serving as controls,
were studied. db/db mice exhibited obesity, hyperglycemia, and reduced protein expression of cardiac GLUT4 and IRAP (insulin-
regulated aminopeptidase), the structural protein cosecreted with GLUT4. Hearts from db/db mice had reduced protein expression
of GATA4 (~35%) with accompanying reductions in mRNA expression of ANP (~40%), BNP (~85%), and a-MHC mRNA
(~50%) whereas expression of f-MHC mRNA was increased by ~60%. Low GATA4 was not explained by an increased ligase
or atroginl expression. CHIP protein content was modestly downregulated (27%) in db/db mice whereas mRNA and protein
expression of the CHIP cochaperone HSP70 was significantly decreased in db/db hearts. Our results indicate that low GATA4 in
db/db mouse heart is accompanied by reduced expression of GATA4-regulated cardioprotective and structural genes, which may

explain the development of cardiomyopathy in diabetes.

1. Introduction

Diabetes is a major risk factor in the development of
cardiovascular disease [1]. Impairment of left ventricular
function is frequent in patients with type 2 diabetes even
in the absence of ischemic, hypertensive, and valvular heart
disease [2, 3]. Type 2 diabetes is associated with increased
adverse outcomes following ischemic events, reflected by
a heightened mortality rate [4]. Although disturbances in
energy metabolism and vascular endothelial function play
a role in the development of left ventricular dysfunction,
altered transcription of genes encoding for contractile and
structural proteins also contribute to the cardiovascular risk
of diabetic patients [5-8].

GATA4 is a zinc finger-containing transcription factor
that belongs to the GATA superfamily [9]. GATA4 is

highly expressed in cardiomyocytes where it regulates the
transcription of a- and p-myosin heavy chain (MHC)
composition, atrial natriuretic (ANP), and B-type natriuretic
(BNP) peptides, which are important in cardiac function,
blood pressure regulation, and cardioprotection [9, 10].
Accordingly, GATA4 is essential for important adaptive
responses such as cardiomyocyte survival, hypertrophy in
response to pressure overload and exercise, and protection
against ischemic insult [11-14]. In failing rat hearts, GATA4
levels are markedly reduced and recent evidence indicates
that cardiac GATA4 degradation is increased in diabetes
[15, 16].

In hearts from diabetic db/db mice, low levels of
GATA4 are thought to occur as a result of increased E-
3 ubiquitin ligase carboxyl terminus of Hsp70-interacting
protein (CHIP) activity [16]. Alternatively, a recent study



demonstrated the importance of CHIP and its cochaperone
heat shock protein 70 (HSP70), in the critical rescue of the
myocardium from acute ischemia. In mouse hearts from
CHIP-deleted mice, HSP levels are correspondingly low, and
an increased susceptibility to ischemic injury is observed
as left ventricular function is compromised [17]. Based on
this evidence, low GATA4 levels in the db/db heart would
suggest that the documented cardiomyopathy in this model
of diabetes may be accompanied by a downregulation of
GATA4-regulated structural and cardioprotective genes.
Stimulation of the oxytocin receptor is a key component
of a cardioprotective system associated with ANP, BNP, and
nitric oxide synthesis, and stimulation of glucose uptake [18—
21]. Considering the role of GATA4 in the regulation of these
natriuretic peptides and contractile proteins, a reduction in
cardiac GATA4 would suggest that the synthesis of these
genes is altered by the diabetic state. Thus, in the present
study, we hypothesize that hearts from db/db mice exhibit
specific disturbances in the expression of structural and car-
dioprotective genes resulting from low GATA4 levels. To test
this hypothesis, we used the db/db mouse model of diabetes
because of its close representation of human type 2 diabetes
and also because the GATA4-regulated downstream genes in
this model of diabetes have not been determined. The onset
of diabetes in the db/db mouse is gradual and is characterized
by obesity, hyperglycemia, hyperinsulinemia, and insulin
resistance and by 12-16 weeks of age, hearts demonstrate
increased susceptibility to ischemic injury, cardiomyopathy
from increased fibrosis, collagen accumulation and increased
apoptosis, and left ventricular dysfunction [22-24].

2. Materials and Methods

2.1. Mouse Model of Diabetes. The Midwestern University
Research and Animal Care Committee approved this study.
All animals used in this study were cared, in accordance to
the recommendations in The Guide for the Care and Use of
Laboratory Animals, National Institute of Health, Publ. No.
85-23, 1986. Diabetic mice (C57BL/Ks]-lept®-leptd®) were
obtained from Jackson Laboratories (Bar Harbor, ME) and
studied at the age of 14 weeks. The db/db mouse displays
many of the metabolic perturbations associated with type 2
diabetes as a result of two mutant copies of the leptin receptor
gene. The lean littermates, which possess one mutant and
one normal copy of the leptin (db/*), were used as controls.
Mice were provided with food and water were provided ad
libitum and maintained in a room with alternating twelve-
hour light/dark cycle and kept at 22°C.

2.2. Measurement of Blood Pressure. Systolic and diastolic
pressures were measured from restrained mice with a
pneumatic tail-cuff device (NIBP-8, Columbus instruments,
Columbus, OH). From these measurements, mean arterial
pressure (MAP) and heart rate were determined. Blood
pressure readings were obtained two days before the mice
were sacrificed.
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2.3. Blood and Tissue Sampling. Overnight-fasted mice were
sacrificed in the morning between 8 and 11 AM. Blood
was obtained from the mandibular vein, and then mice
were immediately sacrificed by cervical dislocation. Blood
was immediately centrifuged (3,000 rpm at 4°C, for 5min)
and plasma separated from the erythrocytes for the assay
of glucose (Wako Chemical, VA). The packed erythrocytes
were used for the determination of glycosylated haemoglobin
(Helena Laboratories, TX).

Hearts were rapidly removed and frozen with clamps
precooled to the temperature of liquid N, for analysis
of GATA4, ANP, BNP, a- and -MHC, Nabl, heat shock
protein70 (HSP70), glucose transporter protein (GLUT4),
insulin-regulated aminopeptidase (IRAP), and the following
E3 ubiquitin ligases: carboxyl terminus of Hsp 70-interacting
protein (CHIP), muscle ring finger protein-1 (MuRF1), and
atroginl genes. Frozen tissue was first ground to powder
under liquid nitrogen and then thoroughly homogenized
using a Teflon pestle in a glass homogenization tube cooled
in ice.

2.4. Cell Morphology and Imaging. Primary cardiomyocytes
cultures were prepared from ventricles of 2-day-old Sprague
Dawley rats using the Neonatal Cardiomyocyte Isolation
System (Cat. No. LK003300; Worthington, Lakewood, NJ)
as reported previously [20]. The cells were incubated 24 h
in 0.01% poly-LlLysine (Cat. no. P4832-covered Lab-Tek
plates, Sigma-Aldrich; Cat. no. 177437, Nunc International,
Rochester, NY) for microscopic analysis. Tissuefix solution
(Laboratory Gilles Chaput Inc., Montreal, Quebec) was used
for cell fixation. Primary anti- GATA-4 (c-20) goat antibody
(Cat. no. sc-1237, Santa Cruz Biotechnology, Santa Cruz,
CA) was used at 1:250 dilution. Secondary donkey anti-goat
IgG secondary antibody conjugated to red fluorophore Alexa
Fluor 594 was obtained from Invitrogen (Cat. no. A11058,
Life Technologies, Carlsbad, CA). GATA4 was costained
with troponin C using mouse monoclonal antibody against
cardiac troponin (1:100, Cat. no. ab7217-7, Abcam, Cam-
bridge, MA). Green secondary donkey anti-mouse IgG
antibody Alexa Fluor 488 was purchased from Invitrogen
(Cat. no. A21202, Life Technologies, Carlsbad, CA). Mount-
ing medium DAPI (4',6-diamidino-2-phenylindole) with
P7481 antifade reagent (Invitrogen, Cat. No. P7481, Life
Technologies, Carlsbad, CA) was used for the identification
of the nuclei. Cell morphology was examined under a
Model IX51 inverted microscope (Olympus, Tokyo, Japan).
Micrographs were taken with a Q Imaging QICAM-IR Fast
1394 Digital CCD camera. To measure cardiomyocyte size,
the surface of 50 cells was recorded manually using at least
7 photographs and then calculated in gm?. Micrographs and
cardiomyocyte cell size were analyzed using Image J software
(National Institutes of Health, Bethesda, MD).

2.5. Real-Time PCR. Total RNA was extracted from freeze-
clamped hearts with Trizol reagent (Invitrogen Life Tech-
nologies, Burlington, ON) according to the manufacturer’s
protocol. To remove genomic DNA, RNA samples were
incubated with 2 U deoxyribonuclease I (DNase I; Invitrogen
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TaBLE 1: PCR primer sequences.

Gene Sense primer (5'-3") Antisense primer (5'-3") Accession no.
ANP CCTGTGTACAGTGCGGTGTC CCTAGAAGCACTGCCGTCTC NM_008725
BNP CTGAAGGTGCTGTCCCAGAT GTTCTTTTGTGAGGCCTTGG NM_008726
IRAP CAAAGACCGAGCCAACCTGATC GCTAAAGAGGAACAACCAGCC NM_172827
GATA CACTATGGGCACAGCAGCTCC TTGGAGCTGGCCTGCGATGTC NM_008092
a-MHC CTGCTGGAGAGGTTATTCCTCG GGAAGAGTGAGCGGCGCATCAAGG NM_001164171
B-MHC TGCAAAGGCTCCAGGTCTGAGGGC GCCAACACCAACCTGTCCAAGTTC NM_080728
CHIP AGGGCAAGGAGGAAAAGGA TGGCAATGGCCTCATCATAA NM_019719
Atroginl ACTGGACTTCTCGACTGCCAT CTCCATCCGATACACCCACAT AF441120
MURF1 AACACAACCTCTGCCGGAA AGCCCCAAACACCTTGCA DQ229108
GLUT4 ACCCTGGGCTCTGTATCCC CCCTGACCACTGAGTGCAAA AB008453
NAB1 TGCTGACAAGAAGAGATGAG TCCTGGTTTCCACAGACTAC NM_008667
GAPDH TTCACCACCATGGAGAAGGC GGCATGGACTGTGGTCATGA NM_008084

ANP: atrial natriuretic peptide; BNP: brain natriuretic peptide; IRAP: insulin-regulated aminopeptidase; G4: GATA binding protein 4; a-MHC: alpha-myosin
heavy chain; a-MHC: beta-myosin heavy chain; CHIP: carboxy terminus of Hsc70-interacting protein; atroginl: F-box protein 32; MuRF1: muscle RING
finger protein 1; GLUT4: glucose transporter protein 4; NAB1: NGF1A-binding protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

Life Technologies, Burlington, ON)/ug RNA for 30 min at
37°C. PCR was carried out in the iCycler IQ real-time
PCR detection system (Bio-Rad Laboratories, Hercules, CA)
using SYBR green chemistry. The samples were analysed
in duplicate or triplicate. For amplification, 2 yL of diluted
c¢DNA were added to a 20 yL reaction mixture containing 1X
iQ SYBR Green Supermix (Bio-Rad Laboratories, Hercules,
CA) and 200 nM forward and reverse primers. The thermal
cycling program was 95°C for 2 min, followed by 40 cycles
of 95°C for 25s, 60°C for 25s, and 72°C for 25s. The
primers were purchased from Invitrogen Life Technologies
(Burlington, ON). Primer sets served to generate amplicons
(Table 1). Optical data were recorded during the annealing
step of each cycle. After PCR, the reaction products were
melted for 1 min at 95°C, the temperature was lowered
to 55°C, and then gradually increased to 95°C in 1.0°C
increments, 10 s per increment. Optical data were collected
over the duration of the temperature increments, with a
dramatic drop in fluorescence occurring. This was done to
ensure that only 1 PCR product was amplified per reaction.

The relative expression of the RT-PCR products was
determined by the AACt method. This method calculates
relative expression using the equation: fold induction =
27[AACH - where Ct = the threshold cycle, that is, the
cycle number at which the sample’s relative fluorescence
rises above background fluorescence and AACt = [Ct
gene of interest (unknown sample)—Ct GAPDH (unknown
sample)]—[Ct gene of interest (calibrator sample)—Ct
GAPDH (calibrator sample)]. One of the control samples
was chosen as the calibrator sample and tested in each PCR.
Each sample was run in duplicate, and mean Ct was taken in
the AACt equation. GAPDH was chosen for normalization
because this gene showed consistent expression relative to
other housekeeping genes among the treatment groups in
our array experiments.

2.6. Western Blot Analysis. Heart samples (~100mg) were
prepared by homogenisation in modified RIPA buffer

(I x PBS, 1% Igepal CA-630, 0.5% sodium deoxycholate,
0.1% SDS, 10 mg/mL PMSE aprotinin, 100 mM sodium
orthovanadate and 4% protease inhibitor). After 2 hours
in constant agitation at 4°C, the samples were centrifuged
at 10,000g for 20min at 4°C. The supernatants were
collected and the protein concentration was determined
by a modified Bradford assay. Thirty micrograms of total
protein were applied to each well of 10% SDS polyacrylamide
gel and electrophoresed for 2h at 130V (MHC: 20h
at 140v) along with a set of molecular weight markers
(RPN800, Amersham Biosciences, Baie dUrfe, PQ). The
resolved protein bands were then transferred onto PVDF
membranes (Hybond-C; Amersham Pharmacia Biotech Inc.,
Piscataway, NJ) at 20 V for 60 min at room temperature using
a transfer buffer (25 mmol/L Tris base, 192 mmol/L glycine,
and 20% methanol). The blots were blocked overnight at
4°C with blocking buffer consisting of 5% nonfat milk in
10 mmol/L Tris pH 7.5, 100 mmol/L NaCl, 0.1% Tween
20 (Amersham Pharmacia Biotech Inc, Piscataway, NJ).
The membranes were then probed with specific primary
antibodies: GATA4 (1:500, sc-25310, Santa Cruz Biotech-
nology, Santa Cruz, CA), Nabl (1:1000, sc-12147, Santa
Cruz Biotechnology), HSP70 (1:10,000, sc-32239, Santa
Cruz Biotechnology), CHIP (1:2000, sc-133083, Santa Cruz
Biotechnology), GLUT4 (1:10000, 4670-1725, AbD), IRAP
(1:10000, kindly given by Dr. Pilch, Boston University
School of Medicine, MA), MHC (1:5000, NB 300-284,
Novus Biologicals, Littleton, CO) overnight at 4°C. As an
internal control, blots were reprobed with an anti-3-GAPDH
antibody (1:20000; G9545-200UL, Sigma-Aldrich). Blots
were then washed using TBS washing buffer (10 mmol/L Tris
pH 7.5, 100 mmol/L NaCl, 0.1% Tween 20) and incubated
with horseradish peroxidase-conjugated immunoglobulin G
(IgG) (anti-mouse for GATA4, GLUT4, HSP70, and MHC,
1:10000; anti-goat for Nab1, 1:10000; anti-rabbit for IRAP
and GAPDH, 1:10000) during 1 h at room temperature. The
blots finally were detected by chemiluminescence detection
system (RPN2132, Amersham Biosciences, Baie dUrfe, PQ)
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FIGURrk 1: Body weight (a), plasma glucose (b), glycated haemoglobin (c), heart weight (d), and the heart-weight-to-body-weight ratio (e)
in control and db/db mice. Values are expressed as mean = SEM for 10-12 mice in each group. db/*, control mice; db/db, diabetic mice.

*P < 0.05.

and visualized by exposure to Kodak X-Omat film. Den-
sitometric measurement of the bands was performed using
Photoshop 7 software.

2.7. Statistical Analysis. The statistical analysis was per-
formed using the statistical software package Prism 3.0. The
unpaired t-test was used to determine differences between
group means. All values are expressed as mean + SEM with
significance defined as P < 0.05.

3. Results

3.1. Physical Characteristics, Blood Pressure, GLUT4, and
IRAP Expression in db/db Mice. The physical characteristics
of db/db mice are illustrated in Figure 1. Body weight, plasma
glucose, and glycated (Hb;ac) haemoglobin levels were all
significantly higher in db/db mice compared with control
mice, confirming the typical phenotype of this model of
diabetes. Although heart weight in db/db mice was similar
to compared with control mice, the heart-to-body-weight

ratio was significantly lower. Also consistent with hearts from
db/db mice is a significant decrease (40%, P < 0.05) in
protein expression of cardiac GLUT4 compared with control
mice, as shown in Figure 2. This reduction in GLUT4 was
associated with a concomitant decrease in mRNA (60%, P <
0.01) and protein expression (75%, P < 0.001) of IRAP
which codistributes with GLUTA4.

Blood pressure obtained in control (n = 6) and db/db
mice (n = 5) demonstrated that systolic pressure was
significantly higher in db/db mice compared with control
mice (115 + 2 versus 101 = 5mmHg, P < 0.05). However,
there were no differences in diastolic pressure (82 + 4 versus
76 + 5mmHg), MAP (92 + 5 versus 84 + 5mmHg), and
heart rate (475 = 15 versus 499 * 34 beats/min) between
db/db mice and control mice, respectively.

3.2. GATA4 and Expression of Downstream Genes in db/db
Hearts. As illustrated in Figure 3(a), GATA4 is localized in
the cell nuclei. Gene expression of GATA4 was not altered in
db/db hearts (Figure 3(b)). However, a significant reduction
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F1Gure 2: Cardiac GLUT4 and IRAP mRNA and protein expression in control and db/db mice. Values are expressed as mean + SEM obtained
from 2 separate experiments each performed with 5 hearts. db/*, control mice; db/db, diabetic mice. *P < 0.05, **P < 0.01, ***P < 0.001.

(27%, P < 0.05) in GATA4 protein expression was observed
in db/db hearts compared with control hearts (Figure 3(c)).
Figure 3(d) shows that GATA4 was present in nuclei of cells
expressing the cardiomyocyte marker, troponin C. Hearts
from db/db mice showed a tendency towards a lower weight
(Figure 1(d)), but cardiomyocyte enlargement was observed
in these hearts (Figure 3(e2), 3(e3)) compared with control
hearts (Figure 3(el)).

The consequences of reduced cardiac GATA4 expression
on downstream genes of interest are shown in Figures 4 and
5. Figure 4 shows that the reduction in GATA4 in db/db
hearts was associated with downregulation in the mRNA
expression of ANP by 40% (P < 0.05) and BNP by 85%
(P < 0.01) compared with control hearts. As illustrated
in Figure 5, mRNA expression of a-MHC in db/db hearts
was reduced by nearly 50% (P < 0.05) whereas f-MHC
expression was increased by ~60% (P < 0.05). Compared
with control hearts, a significant reduction (P < 0.05)

in protein expression of a-MHC was observed in db/db
hearts. Protein expression of f-MHC in control hearts was
not detected, which is consistent with the observation that
the dominant isoform consists of mainly the «a-MHC in
nondiseased hearts [25]. However, expression of -MHC was
markedly increased in db/db hearts.

3.3. Ubiquitin Ligase CHIP, MuRFI, Atroginl, and Nab-
1 Expression in db/db Hearts. To investigate whether the
decrease in GATA4 protein expression in hearts of db/db
mice was the result of increased proteosome activity, expres-
sion of ubiquitin ligases of CHIP, MuRF1, and atroginl
were measured. As illustrated in Figure 6, no significant
differences between db/db and control hearts were observed
in the expression of these ligases, although CHIP protein
expression was decreased by 26% in db/db hearts. However,
we measured the molecular chaperone HSP70 because of
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FIGURE 3: GATAA4 is localized in the cell nuclei of cardiomyocytes of 2-day-old rats (a). GATA4 mRNA is expression is similar to that seen in
control hearts (b). However, as illustrated in (c), protein expression of GATA4 is downregulated in db/db hearts (c). GATA4 was present in
nuclei of the cells expressing cardiomyocyte marker, troponin C (d). Hearts from db/db mice showed a tendency toward a reduced weight
(d), but cardiomyocyte surface was increased in db/db hearts (Figure 3e2) compared with control hearts (Figure 3el). Figure (e3) shows that
cardiomyocyte surface area, expressed as yum?, was significantly increased in db/db hearts compared with control hearts. Values are expressed
as mean + SEM obtained from 2 separate experiments each performed with 5 hearts. db/*, control mice; db/db, diabetic mice. *P < 0.05.

its association with CHIP, and as shown in Figure 7, both
HSP70 mRNA and protein expression were decreased by
45% and 35%, respectively, in db/db hearts compared with
control hearts (Figure 7).

The cardiac hypertrophy marker Nab-1 was measured in
db/db hearts. Nabl (NGF1A-binding protein) is a member
of a family of corepressors for early growth response (Egr)
transcription factors that interacts with the inhibitory R1
repression domain of Egrl, thus acting as an endogenous

regulator of pathological cardiac growth. As shown in
Figure 8, mRNA levels were not altered in db/db hearts.
However, Nab-1 protein levels were reduced by 65% (P <
0.01) in db/db hearts compared with control hearts.

4. Discussion

The db/db mouse is a widely accepted model for studying
the consequences of type 2 diabetes on metabolic and
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cardiovascular function because this model shares several
features with the human condition. The mice used in
this study were obese, chronically hyperglycemic, and were
studied at an age when hearts demonstrate alterations in
structure and deficiencies in ventricular performance [22,
24]. A recent study demonstrated that acute hyperglycemia
and the diabetic conditions induce degradation of cardiac
GATA4 [16], an abundant transcription factor in heart
that functions mainly as regulator of ANP, BNP, and a-
and B-MHC expression [9, 10]. However, the consequences
of reduced cardiac GATA4 levels on expression of these
structural genes and peptides in the db/db model of type
2 diabetes have not been determined. Our main results
demonstrate that the low GATA4 protein levels in db/db
hearts validate its regulatory role on the mRNA expression
of ANP, BNP, and a-MHC, indicating that these changes in
target gene expression are consistent with the transcriptional
role of GATA4. One exception, however, is that 3-MHC
expression was increased in db/db hearts. Further, we show
that decreased GATA4 levels in db/db hearts are not caused
by increased E3-ubiquitin proteosome function using the
ligases MuRF1, atroginl, and CHIP as markers. On the other
hand, a significant decrease in CHIP molecular cochaperone
HSP70 was observed in db/db hearts.

It is unclear why GATA4 protein levels are low in the
db/db heart and what the mechanisms involved in this
response are. Hyperglycemia per se has been previously
proposed as a mechanism depleting cardiac GATA4 [16].
In conditions acutely mimicking the diabetic state with
hyperglycemia or with chronic diabetes, degradation of
cardiac GATA4 levels is accelerated. This degradation is
thought to be mediated by ubiquitination through increased
expression of the ubiquitin proteasome system [16, 26]. In
agreement with this mechanism and also proposed to be a
contributing factor to the development of cardiomyopathy,
hyperglycemia upregulates the expression of E3-ubiquitin
ligase CHIP resulting in GATA4 protein degradation. In our
study, however, low levels of GATA4 were not associated with

any significant increases in the expression of CHIP as previ-
ously reported, or in the expression of the ligases MuRF-1 or
atroginl, although increased activity of these ligases has been
reported in skeletal muscle of db/db mice [27]. The reasons
for these inconsistencies are not clear at the present time,
but may relate to differences in insulin resistance, extent of
obesity, and the duration and severity of diabetes seen in
mice. Regardless, a dual role of CHIP has been documented
such as interaction with HSP70, a family of proteins that
rescue damaged proteins, prevent stress-dependent apoptosis
in heart, and improve heart function in failing ischemic
hearts [17, 28]. In transgenic mice lacking the CHIP gene,
protein expression of HSP70 in cardiac tissue is reduced
following ischemia and ischemic injury is enhanced [17].
Our results showing the low protein expression of HSP70 are
consistent with the changes occurring in db/db hearts. Hearts
were studied at 14 weeks when apoptosis is present, left
ventricular function is depressed, and sensitivity to ischemia
is increased [22, 24].

This critical role of GATA4 is supported by the recent
observations that GATA4-deleted mice lose the ability for
cardiac hypertrophy following pressure overload and exercise
stimulation, and overexpression of GATA4 induces cardiac
hypertrophy [13, 15]. Loss of GATA4 expression in the
adult mouse heart results in a reduction in left ventricular
function [13, 29] and activates proapoptotic factors [15].
The down-regulation of cardiac GATA4 protein is consistent
with earlier work [16] and we further extend this observation
in the db/db heart by demonstrating reduced expression
of ANP, BNP, and a-MHC. The direct mechanisms leading
to reduced expression of these genes are unclear although
the consequences on heart structure and function can be
substantiated. A reduction in ANP and BNP can alter
cardiac structure through it is lack of antihypertrophic and
antifibrotic properties in cardiomyocytes, and by inhibition
of DNA and collagen synthesis in cardiac fibroblasts [30]. A
deficiency in these peptides can also impair diuresis, natri-
uresis, vasodilation, and inhibit lipolysis [31, 32]. Indeed,
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both natriuretic peptides are vasodilators and suppress vaso-
constrictors such as the renin-angiotensin-aldosterone and
sympathetic nervous systems, vasopressin, and endothelin.
The increase in systolic pressure observed in diabetic mice
would be consistent with low natriuretic peptide status in
these mice. In obese patients, recent reports indicate that
plasma ANP and BNP levels are reduced which can explain
the increased sodium retention and volume expansion in
obese patients, and also contribute to the development of
heart failure in obesity [33-35]. The lower levels of BNP in
diabetes are of relevance especially given recent evidence that
transgenic mice that overexpress BNP are lean and resistant
to diet-induced obesity, possibly due to increased lipolysis
and fat oxidation in adipose cells as well as an upregulation
of mitochondrial biogenesis in muscles [36]. It is likely that

the presence of a natriuretic peptide deficit may compound
the metabolic changes like intramyocardial accumulation of
triglycerides and extracellular deposition of excess collagen
followed by activation of several signaling pathways [37, 38].
These events can stimulate the myosin isoform switching as
reported in this study.

In humans and rodents, the relative expression of «a-
and $-MHC isoforms in the heart is controlled by several
factors, including the developmental and hormonal milieu,
and physiological and pathological states [25, 39-42]. In
the failing mouse heart and in models of pressure-induced
hypertrophy, a shift from the normally predominant «a-MHC
toward 3-MHC, the major isoform in contractile function
and marker of hypertrophy, is observed [5, 25, 43]. In our
study, hearts from diabetic mice exhibited a ~50% decrease
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FiGgure 6: Cardiac CHIP mRNA and protein expression (a, b), atrogin]l mRNA expression (c), and MuRF1 mRNA expression (d) in control
and db/db mice. Values are expressed as mean = SEM obtained from 2 separate experiments each performed with 5 hearts. db/*, control

mice; db/db, diabetic mice.

in the expression of a-MHC and a ~60% increase in f-MHC
expression. Our data are consistent with the results from an
earlier report examining the role of chronic diabetes on f3-
MHC expression using the chemically induced diabetic rat
[44]. However, increased expression of f-MHC is generally
associated with hypertrophy of the heart, which was not
the case in db/db mice. Slightly lower heart weights were
observed and the heart-weight-to-body-weight ratio was
markedly lower in db/db mice. However, in a recent study,
we and others have demonstrated that hearts from 16-week-
old db/db were atrophied as a result of increased apoptosis
[23, 24]. The decrease in the hypertrophy marker NAB1
would be consistent with the progression of atrophy of the
heart in this model. Ubiquitination within the heart can also
account for the atrophy in view of recent evidence linking
atrophy of tissues in the db/db mouse with insulin resistance

and excess glucocorticoid synthesis, conditions known to
stimulate atroginl and MuRF1 production [27, 45-48].
Interestingly, the hypertension observed in db/db mice is
not associated with cardiac hypertrophy, suggesting that the
increase in systolic pressure may be due to the secondary
effects of a low natriuretic peptide status in the db/db mouse.

In conclusion, we show that the GATA4-related reg-
ulatory downstream transcripts ANP, BNP, and «-MHC
are reduced in hearts from db/db mice. This reduction in
GATA4 levels was not associated with any increase in the
E3-ubiquitin proteosome ligases. However, cardiac levels
of the CHIP cochaperone HSP70 levels were decreased in
hearts from db/db mice. Together, our results suggest that
the downregulation of the GATA4 and associated proteins
could in part explain the development of cardiomyopathy in
diabetes.
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