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This paper aimed to study the record of the climatic variability during the last twomillenniawithin the sebkha ofDkhila. Six climatic
stages were recognized along the 104 cm core: the Warming Present (WP), the Late Little Ice Age (Late LIA), the Early Little Ice
Age (ELIA), the Medieval Climatic Anomaly (MCA), the Dark Age (DA), and the RomanWarm Period (RWP). TheWP stretches
along the uppermost 1 cmwith a high grey scale as sign of a dry climate.The Late LIA is located between 1 cm and 6 cm.The ELIA is
located between 6 cm and 40 cm.TheMCA spanning from 40 cm to 72 cm is marked by a sharp increase of the GS revealing a wet
period.TheDA appears along the part between 72 cm and 84 cm; a shift from light to dark sediments is recorded.The RWP appears
between 84 cm and 104 cm. Based on the grain size distribution, two low frequency cycles were identified indicating radical global
changes of climatic conditions, the differential tectonics, and the groundwater fluctuations. On the other hand, high frequency
cycles indicate local modifications of the climatic conditions.

1. Introduction

It was previously proven [1–4] that the sebkha Dkhila (as part
of the sebkha Sidi El Hani) is dominated by a hydrogeological
basin feeding this depression by salty water. Consequently,
the hydrogeological context remains stable regardless of the
climatic change. In such a case, the playa would not record
the climatic variability because the high salinity imposed by
coming up of saline water does not radically change with
respect to climatic changes. At the level of the watershed sur-
rounding the depression, previous investigations [5] showed
the outcrop of wet aeolian sediments mainly dominated by
groundwater involvement rather than the climatic variability.
Subsequently, it is not evident to find an obvious record of
climate changes within the watershed. The aim in this paper
is to overcome these handicaps and to infer the climatic

variability during the last two millennia based on the visual
description of cores, the magnetic properties, and the grain-
size distribution.

2. Study Area

The sebkha of Dkhila is part of the sebkha of Sidi El Hani,
which is in turn part of the system Mechertate-Chrita-Sidi
El Hani. Though it has always been treated as a single unit,
the sebkha of Sidi El Hani as such is actually made up of
three communicated playas; from north to the south, one
finds the playas of Sidi El Hani (sensu stricto), of Souassi Sou,
and of Dkhila (Figure 1). The sebkha of Mhabeul is located
in the southeast of Tunisia (Figure 1). It is an inland saline
environment located in southeast Tunisia (Figure 1). Based
on a 65 cm core, it was used by Marquer et al. [6] to infer
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Figure 1: Geographical location of sebkhas Dkhila and Mhabeul.

the climatic variability during the last two millennia. Since
it is the only known sebkha of which we have the record of
the climatic variability during the last millennia, this sebkha
serves as reference to find out themajor climatic events in the
sebkha Dkhila.

3. Methods and Materials

Coring technique proves efficient to study the sedimentary
dynamics and the record of the climatic variability [1, 7]. In
the laboratory, cores underwent nondestructive and destruc-
tive analyses.

The sediment darkness is a result of a high ratio of
the organic matter content, which reflects high degree of
confinement. As it was used by Marquer et al. [6], an
arbitrary method was used in this study to evaluate this
darkness on the basis of the grey scale (GS). Minimum grey-
scale values are associated with high magnitude flood. This
could characterize periods with high frequency of intense
precipitation events, most probably during the wet seasons.
Maximum grey-scale values are associated with more stable
climatic conditions, marked by flood events of lower mag-
nitude or lower-frequency scale. The evaluation of darkness
needed software of image treatment becauseminor grey-scale
variability could be detected only by such a sophistication
(e.g., [6]). But, in the case of the Dkhila core, only visual
method was used; consequently, it was more convenient to
speak about the major grey-scale variability. Since we have
been paving the way for comparison between the sebkha
Dkhila core and the sebkha Mhabeul one, the minor grey
scale detected by software in sebkha Mhabeul core had to be
converted to the major grey scale detected by the naked eye.

Wet process analyses were carried out by the FRITSCH
laser grain-size analyzer. Then, the descriptive grain-size
distribution was carried out based on the ternary diagram
sand/silt/clay of Shepard [8]. The core was also investigated
in terms of genetic grain-size distribution. This investigation
distinguished between the aeolian, the geochemical, and the
hydraulic sedimentations based on modes of the grain-size
distribution [1, 9–12]. Sun et al. [9] considered the fraction
centered around 6 𝜇m as fine aeolian component and the
fraction centered around 60𝜇mas coarse aeolian component,
whereas the coarse hydraulic component is centered around
380 𝜇m and the fine hydraulic fraction is centered around
1 𝜇m. Based on their cumulative curves, Cailleux and Tricart
[13] distinguished between 23 types of sedimentation: six
estuary and deltaic, seven marine, two glacial, three aeolian,
and five fluvial types. Added to the traditional sand/silt/clay
subdivision used in the literature, Manté et al. [11] coined
the term colloids as the fraction between 0.063 𝜇m and
1 𝜇m. This fraction is of a geochemical origin. Grain-size
components of aeolian deposits depend on the nature of
winds (i.e., high- and low-altitude air flows and near-ground
winds) and transport distances (long or short distance)
[9, 14, 15]. Based on the method of features of Allen and
Haslett [10], the descriptive classification of Flemming [16]
and the three reference cumulative curves of aeolian types
(their transformation toward frequency curves) discussed by
Cailleux and Tricart [13] and Essefi [1] distinguished between
three types of aeolian sediments. First, the aeolian sand could
be transported by strong wind. Its most important features
are the mode at 500𝜇m and the two shoulders at 250𝜇m
and 1600 𝜇m.Consequently, this aeolian sediment is classified
according to sand/silt/clay diagram of Flemming [16] as
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Figure 2: Correlation between sebkhas Mhabeul and Dkhila based on the gray-scale variability and three sandy reference bands.

sand. Second, the slightly silty aeolian sand [16] could be
transported by amoderate wind.Themost important features
are the mode at 315 𝜇m and the two shoulders at 200𝜇m and
800𝜇m.Third, the silty aeolian sand [16] could be transported
by calm wind. The most apparent features are the mode at
160 𝜇m and the two shoulders at 250𝜇m and 1000 𝜇m. To
conclude, the fractions centered around 6, 60 [9], 160, 315,
and 500 𝜇m [1] mark the aeolian component. The hydraulic
component is marked by the fractions 1 𝜇m and 380 𝜇m [9].
The geochemical fraction is marked by colloids, which are
smaller than 1 𝜇m [11].

Themagnetic susceptibility wasmeasured by the Barting-
ton MS2B probe in the laboratory of Sedimentary Dynamics
and Environment, National engineering School of Sfax, at a
frequency of 0.47 kHz. The use of the magnetic susceptibility

is twofold. On the one hand, it allows the detection of
high magnetic signature probably related to tephra layers,
which may serve in dating the core. The use of magnetic
susceptibility in tephrostratigraphy was recently discussed by
Essefi et al. [17]. On the other hand, it may have a climatic or
sedimentary significance.

4. Results

4.1. Correlation between Sebkhas Mhabeul and Dkhila. The
correlation between core (104 cm) from sebkha Dkhila and a
core from sebkha Mhabeul (65 cm) (Figure 2) shows that the
climatic variability recorded during the last two millennia in
65 cm is recorded in core of sebkhaDkhila in 104 cm.The rate
of sedimentation is higher in this location of sebkha Dkhila
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Figure 6: Grain-size distribution of the Early Little Ice Agealong the core from sebkha Dkhila.

than in sebkha Mhabeul. By following the major grey-scale
variability and the three reference bands along both cores,
the six climatic stages recognized in sebkha Mhabeul were
also found out along the core of sebkha Dkhila. First, the
Warming Present (WP) stretches along the uppermost 1 cm
with its high grey scale as sign of a dry climate. Second,

the Late Little Ice Age (Late LIA) is located between 1 cm
and 6 cm. As in sebkha Mhabeul core, this period is limited
at the bottom by the first reference sandy band. Third,
Early Little Ice Age (ELIA) is located between 6 cm and
40 cm. Climatologically, the intermediate values of GS having
a tendency toward increasing indicate that this stage may
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Figure 7: Grain-size distribution of the Medieval Climatic Anomalyalong the core from sebkha Dkhila.
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Figure 8: Grain-size distribution of the Dark Agealong the core from sebkha Dkhila.

be classified as moderate with a tendency toward aridity.
Fourth, the Medieval Climatic Anomaly (MCA) spanning
from 40 cm to 72 cm is marked by a sharp increase of the GS
revealing a wet period. Fifth, Dark Age (DA) appears along
the part between 72 cm and 84 cm; a shift from light to dark
sediments is recorded. As for the grain-size distribution, the
second reference sandy band is detected in the top of the
DA. Sixth, the RomanWarm Period (RWP) appears between
84 cmand 104 cm.According themajor grey scale, this period
may be divided into substages.The first (from 84 cm to 94 cm
in sebkhaDkhila core) ismarked by highGS values associated
with dark sediments suggesting stable climatic conditions.
The second (from 94 cm to 104 cm in the sebkha Dkhila core)
is marked by a third sandy reference band and low GS values
as signs of wet climate.

4.2. Occurrence of Sedimentary Facies during the Climatic
Stages. The descriptive grain-size distribution (Figure 3)
shows the evolution of the sedimentary dynamics within the
sebkha of Dkhila. The top (H1), the middle (H8), and the
bottom (H62) of the core are basically a mixture facies (F1)
with dominance of the sandy fraction.The second facies (F2)
is basically clayey represented by the samples H58, H59, H60,
andH61.The third facies (F3) is basically a mixture of silt and
clay represented by the samples H2, H4, and H10. The fourth
facies is basically silty represented by the samples H3, H5, H6,
H7, and H9.

4.3. Evolution of the Genetic Grain-Size Distribution during
the Climatic Stages. Based on the mean of the grain-size

distribution and the magnetic susceptibility, the core of
sebkha Dkhila may be subdivided into different sedimentary
facies (Figure 4). These facies are the record of climatic
change, groundwater fluctuations, and differential tectonics.

The same sedimentary or transportation processes usu-
ally give birth to unimodal frequency curves of grain-size
distribution. When involving more than one sedimentary
or transportation process and sediments with a polymodal
distribution, a polymodal distribution is the sum of all kinds
of sedimentary components [9, 18–23]. The aeolian deposits
possess clear grain-size distribution features different from
other sediments (e.g., [18, 23–27]). Most modal peaks of
grain-size frequency curves of aeolian deposits in lacustrine
sediments are between 10 and 100 𝜇m [19, 21, 22, 28–31].
Hence, we regard the primary modal peaks (between 10
and 100 𝜇m, mode at about 40 𝜇m) of ISL1A core samples
as the aeolian component within lacustrine sediments. In
arid regions, rivers with low discharge are normally not able
to transport coarse particles (e.g., >60𝜇m) to the central
part of a lake [30, 32]. Liu et al. [21] interprets the coarse-
grained materials with mode at about 35–40 𝜇m as aeolian
component within lacustrine sediments in other arid and
closed lakes on the QTP.

4.3.1. Warming Present (WP) and the Late Little Ice Age (Late
LIA). The first facies is located at the first 5 cm; it is sandy
silt. TheWP period and Little Ice Age (Late LIA) [33] expand
to 400 yrBP; that is, 320 years are dominated by a sandy sed-
imentation. The top of the cycle (Figure 5) shows an obvious
coarsening; it is characterized by a primary mode (M: ca.
10 𝜇m) as an indication of the fine aeolian sedimentation.This
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Figure 9: Grain-size distribution of the RomanWarm Period along the core from sebkha Dkhila.

component coincides with the silty fraction of the sample.
The secondary mode (m: less than 140 𝜇m) is an indication of
the coarse aeolian sedimentation. This component coincides
with the silty fraction of the sample.

4.3.2. Early Little Ice Age. Theclayey samplesH2 andH4 (Fig-
ures 6(a) and 6(c)) belong to the facies F3; they are expressed
by a fine sedimentation (M: ca. 2.5 𝜇m), which coincides with
theminimumof accommodation.This decrease of accommo-
dation is due to stable climatic conditions and/or water table
rise. Genetically, this component is probably of hydraulic
origin. However fine, H3 and H6 show a tendency towards
coarsening (Figures 6(b) and 6(e)); genetically speaking,
these silt facies F4 are characterized by the dominance of
the fine aeolian fraction (M: ca. 6 𝜇m) and the appearance of
the coarse aeolian sedimentation (m: ca. 160 𝜇m). It is worth
noting however that, belonging to the same facies F4, H5 and
H7 are genetically distinguished fromH3 and H6.The coarse
aeolian sedimentation (m: ca. 160 𝜇m) is absent. This is one
of the pitfalls of the descriptive grain-size distribution. As a

matter of fact, Flemming [16] critically studied the credibility
of ternary diagrams sand/silt/clay in the interpretation of
sedimentary dynamics and depositional environments.

4.3.3. Medieval Climatic Anomaly (MCA). The MCA is
marked by an increase of the mean of the grain-size distri-
bution (Figure 7). The obvious coarsening with a primary
mode (M: ca. 160 𝜇m) is an indication of the coarse aeolian
sedimentation and a secondary mode (m: ca. 2.5 𝜇m) is an
indication of the fine hydraulic sedimentation and an absent
(A: ca. 10–100𝜇m). This mixture of sand/silt/clay shows a
tendency toward the coarse fraction.

4.3.4. Dark Age (DA). The samples H9 and H10 are silty
belonging to the facies F4 and F3, respectively. The top of
this period H9 is coarser (Mean: 6.58𝜇m); it is expressed by
a coarse aeolian fraction (Figure 8(b)). The bottom of this
period becomes finer (Mean: 6.58𝜇m); it is characterized by
a primary mode (M: ca. 2.90 𝜇m) as indication of the fine
hydraulic sedimentation.
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4.3.5. Roman Warm Period. This period shows an obvious
fining (F2: H58, H59, H60, andH61) of themean of the grain-
size distribution. The clayey facies F2 is dominated by the
geochemical (less than 1𝜇m) and hydraulic (centered around
ca. 1.8 𝜇m) fractions (Figures 9(a), 9(b), 9(c), and 9(d)). The
stable climatic conditions are in favor of the sedimentation of
the fine fraction.

5. Conclusion

The VCD was a useful tool for correlation between Dkhila
cores and a core from sebkha Mhabeul in order to guess the
climatic variability during the last two millennia in this clay
pan. This method has permitted the guessing of the climatic
variability in sebkhaDkhila during the last twomillennia.The
six climatic stages recognized in sebkha Mhabeul core were
identified in the core of Dkhila clay pan. Furthermore, the
studied core proves that sebkhaDkhila ismore subsiding than
sebkha Mhabeul. These climatic stages are combined with a
radical change of the sedimentary dynamics detected based
on the genetic study of the grain-size distribution.

References

[1] E. Essefi,Multidisciplinary study of Sidi El Hani Saline Environ-
ment: the History and the Climatic Variability [Master thesis],
Faculty of sciences of Sfax, University of Sfax, 2009.

[2] E. Essefi, J. Touir, M. A. Tagorti et al., “Modeling of the
chaotic behavior of Sidi El Hani discharge playa, Tunisian Sahel:
which exogenous factor commands this saline environment?
The subsurface flow or the climatic variability?” in Proceedings
of the International Congress Geotunis, 2009.

[3] E. Essefi, J. Touir, M. A. Tagorti, and C. Yaich, “Effect of the
groundwater contribution, the climatic change, and the human
induced activities on the hydrological behavior of discharge
playas: a case study Sidi El Hani discharge playa, Tunisian
Sahel,” Arabian Journal of Geoscience, 2012.

[4] M. A. Tagorti, E. Essefi, J. Touir, R. Guellala, and C. Yaich,
“Geochemical controls of groundwaters upwelling in saline
environments: case study the discharge playa of Sidi El Hani
(Sahel, Tunisia),” African Earth Science Journal, 2013.

[5] E. Essefi, Wet aeolian sedimentology and sequence stratigraphy
in Eastern Tunisia: implications for wet aeolian sedimentology
and sequence stratigraphy on mars [Ph.D. thesis], National
Engineering School of Sfax, 2013.

[6] L. Marquer, S. Pomel, A. Abichou, E. Schulz, D. Kaniewski,
and E. Van Campo, “Late Holocene high resolution palaeocli-
matic reconstruction inferred from SebkhaMhabeul, southeast
Tunisia,”Quaternary Research, vol. 70, no. 2, pp. 240–250, 2008.

[7] E. Essefi, A. G. Fairén, G. Komatsu, F. Rekhiss, and C. Yaich,
“Study of cores from a spring mound at the mars analog of
Boujmal, eastern Tunisia: coring martian spring mounds as
potential efficient tool for a geologic exploration of early Mars,”
3rd Conference on Early Mars, 7029 (abstracts), 2012.

[8] F. P. Shepard, “Nomenclature based on sand-silt-clay ratios,”
Journal of Sedimentary Petrology, vol. 24, pp. 151–158, 1954.

[9] D. Sun, J. Bloemendal, D. K. Rea et al., “Grain-size distribution
function of polymodal sediments in hydraulic and aeolian
environments, and numerical partitioning of the sedimentary
components,” Sedimentary Geology, vol. 152, no. 3-4, pp. 263–
277, 2002.

[10] J. R. L. Allen and S. K. Haslett, “Granulometric characterization
and evaluation of annually banded mid-Holocene estuarine
silts, Welsh Severn Estuary (UK): coastal change, sea level and
climate,”Quaternary Science Reviews, vol. 25, no. 13-14, pp. 1418–
1446, 2006.
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