
International Scholarly Research Network
ISRN Geometry
Volume 2011, Article ID 505161, 16 pages
doi:10.5402/2011/505161

Research Article
On Almost ϕ-Lagrange Spaces

P. N. Pandey and Suresh K. Shukla

Department of Mathematics, University of Allahabad, Allahabad 211 002, India

Correspondence should be addressed to Suresh K. Shukla, shuklasureshk@gmail.com

Received 12 October 2011; Accepted 13 November 2011

Academic Editors: A. Belhaj and M. Margenstern

Copyright q 2011 P. N. Pandey and S. K. Shukla. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We initiate a study on the geometry of an almost ϕ-Lagrange space (APL-space in short). We obtain
the expressions for the symmetric metric tensor, its inverse, semispray coefficients, solution curves
of Euler-Lagrange equations, nonlinear connection, differential equation of autoparallel curves,
coefficients of canonical metrical d-connection, and h- and v-deflection tensors in an APL-space.
Corresponding expressions in a ϕ-Lagrange space and an almost Finsler Lagrange space (AFL-
space in short) have also been deduced.

1. Introduction

In the last three decades, various meaningful generalizations of Finsler spaces have been
considered. These generalizations have been foundmuch applicable to mechanics, theoretical
physics, variational calculus, optimal control, complex analysis, biology, ecology, and so
forth. The geometry of Lagrange spaces is one such generalization of the geometry of Finsler
spaces which was introduced and studied by Miron [1, 2]. He [1, 2] introduced the most
natural generalization of Lagrange spaces named as generalized Lagrange space. Since the
introduction of Lagrange spaces and generalized Lagrange spaces, many geometers and
physicists have been engaged in the exploration, development, and application of these con-
cepts [3–13]. Antonelli and Hrimiuc [14, 15] introduced a special type of regular Lagrangian
called ϕ-Lagrangian. Applications of such Lagrangian have been discussed by Antonelli et al.
in the monograph [16]. In the present paper, we generalize the notion of ϕ-Lagrangian and
introduce the concept of almost ϕ-Lagrange spaces. We hope that the results obtained in the
paper will be interesting for the researchers working on the application of Lagrange spaces
in various fields of science.

Let Fn = (M,F(x, y)) be an n-dimensional Finsler space, and let ϕ : R
+ → R be a

smooth function. The composition L := ϕ(F2) defines a differentiable Lagrangian. This was
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regarded by Antonelli and Hrimiuc [14, 15] as ϕ-Lagrangian associated to the Finsler space
Fn. They [14] proved that if the function ϕ has the following properties:

(a) ϕ′(t)/= 0,

(b) ϕ′(t) + ϕ′′(t)/= 0, for every t ∈ Im
(
F2

)
,

(1.1)

then L is a regular Lagrangian and thus Ln = (M,L(x, y)) is a Lagrange space, called a ϕ-
Lagrange space.

In this paper, we consider a more general Lagrangian as follows:

L
(
x, y

)
= ϕ

(
F2

)
+Ai(x)yi +U(x), (1.2)

where ϕ is the same as discussed earlier, Ai(x) is a covector, andU(x) is a smooth function.
In Section 2, we show that if the function ϕ has the properties (1.1), then L(x, y) is a

regular Lagrangian and thus the pair Ln = (M,L(x, y)) is a Lagrange space. We call this space
as an almost ϕ-Lagrange space (shortly APL-space).

An APL-space reduces to a ϕ-Lagrange space if and only if Ai(x) = 0 andU(x) = 0.
If ϕ(t) = t, for all t ∈ Im(F2), then the Lagrangian in (1.2) takes the form

L
(
x, y

)
= F2 +Ai(x)yi +U(x). (1.3)

This defines a regular Lagrangian, and the pair Ln = (M,L(x, y)) is called an almost Finsler
Lagrange space (shortly AFL-space). Such Lagrange space was introduced by Miron and
Anastasiei (vide Chapter IX of [17]).

We take

gij =
1
2
∂̇i∂̇jF

2, aij =
1
2
∂̇i∂̇jL, ∂̇i ≡ ∂

∂yi
. (1.4)

Henceforth, we will indicate all the geometrical objects related to Fn by a small circle “◦” put
over them.

In a Finsler space, the geodesics, parameterized by arc length (the extremals of the
length integral), coincide with the extremals of action integral or with the autoparallel curves
of the Cartan nonlinear connection [16]:

◦
Ni

j =
◦
γ
i

j0 −
◦
C
i

jk

◦
γ
k

00, (1.5)

where

◦
γ
i

jk =
1
2
gih

(
∂jghk + ∂kgjh − ∂hgjk

)
; ∂j ≡ ∂

∂xj
,

◦
C
i

jk =
1
2
gih∂̇hgjk,

◦
γ
i

j0 =
◦
γ
i

jky
k,

◦
γ
i

00 =
◦
γ
i

jky
jyk.

(1.6)
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These geodesics are the integral curves of the spray [16] (i.e., (2) p-homogeneous):

◦
G
i

=
1
4
gij

(
yk∂̇j∂kF

2 − ∂jF2
)
, (1.7)

that is, solutions of the differential equations

d2xi

ds2
+ 2

◦
G
i(
x(s),

dx

ds

)
= 0. (1.8)

We have the following equalities:

(a)
◦
G
i

=
1
2

◦
γ
i

00,

(b)
◦
Ni

j = ∂̇j
◦
G
i

.

(1.9)

In a general Lagrange space Ln = (M,L(x, y)), the geodesics are the extremals of the action
integral and coincide with the integral curves of the semispray [17, 18] (i.e., may not be a
spray):

Gi =
1
4
aij

(
yk∂̇j∂kL − ∂jL

)
. (1.10)

As in a Finsler space, a remarkable nonlinear connection can be considered in a Lagrange
space:

Ni
j = ∂̇jG

i. (1.11)

Such nonlinear connection is a canonical nonlinear connection [17, 18] as it depends only on
the fundamental function L(x, y) of the Lagrange space.

In general, the autoparallel curves of (Ni
j) are different from the geodesics of Ln =

(M,L(x, y)) (cf. [17]).
Given a nonlinear connection (Ni

j) on a Lagrange space Ln = (M,L(x, y)), there is
a unique h- and v-metrical d-connection (cf. [17, 19]) CΓ(N) = (Ni

j , L
i
jk, C

i
jk) with torsions

Ti
jk

= 0 and Si
jk

= 0, called the canonical metrical d-connection. This connection is linear and
its coefficients are given by

Lijk =
1
2
aih

(
δjahk + δkajh − δhajk

)
, (1.12)

Ci
jk =

1
2
aih

(
∂̇jahk + ∂̇kajh − ∂̇hajk

)
, (1.13)

where δi = ∂i −Nr
i ∂̇r is the Lagrange differentiation operator.
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If
◦
CΓ(

◦
N) = (

◦
N

i

j ,
◦
L
i

jk,
◦
C
i

jk) is the Cartan connection of the Finsler space Fn = (M,
F(x, y)), then its coefficients are given by

◦
L
i

jk =
1
2
gih

( ◦
δjghk +

◦
δkgjh −

◦
δhgjk

)
, (1.14)

◦
C
i

jk =
1
2
gih

(
∂̇jghk + ∂̇kgjh − ∂̇hgjk

)
, (1.15)

where
◦
δi = ∂i −

◦
N

r

i ∂̇r .
The h- and v-deflection tensor fields Di

j and dij , respectively, of a Lagrange space Ln

are defined by (cf. [19])

Di
j := y

i
|j = y

sLisj −Ni
j , (1.16)

dij := y
i|j = δij + ysCi

sj , (1.17)

where | and |, respectively, denote the h- and v-covariant derivatives with respect to CΓ.

If
◦
D
i

j is the h-deflection tensor field and
◦
d
i

j is the v-deflection tensor field of the Finsler
space Fn, then

◦
D
i

j := y
i
◦
|j
= ys

◦
L
i

sj −
◦
N

i

j = 0, (1.18)

◦
d
i

j := y
i
◦
|j = δij , (1.19)

where ◦
| and

◦
|, respectively, denote the h- and v-covariant derivatives with respect to

◦
CΓ.

For basic terminology and notations related to a Finsler space and a Lagrange space,
we refer to the books [17, 20].

2. Almost ϕ-Lagrange Spaces

As discussed earlier, we consider the Lagrangian given by (1.2) in which the function ϕ
satisfies (1.1). We prove that it is a regular Lagrangian and the pair Ln = (M,L(x, y)) is a
Lagrange space which we term as an almost ϕ-Lagrange space (APL-space in short).

Theorem 2.1. If the function ϕ satisfies the conditions (1.1), then L(x, y), given by (1.2), is a regular
Lagrangian and Ln = (M,L(x, y)) is a Lagrange space.

Proof. Differentiating (1.2) partially with respect to yi, we get

∂̇iL = ϕ′
(
F2

)
∂̇iF

2 +Ai(x). (2.1)
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Again differentiating (2.1) partially with respect to yj , we obtain

∂̇j ∂̇iL = ϕ′′
(
F2

)
∂̇iF

2∂̇jF
2 + ϕ′

(
F2

)
∂̇i∂̇jF

2, (2.2)

which, in view of (1.4), provides

aij = 2F2ϕ′′
(
F2

)
∂̇iF∂̇jF + ϕ′

(
F2

)
gij . (2.3)

Now

F∂̇iF =
1
2
∂̇iF

2 =
1
2
∂̇i
(
gjky

jyk
)
= gikyk :=

◦
yi. (2.4)

In view of (2.4), (2.3) takes the form

aij = ϕ′ ·
(
gij +

2ϕ′′

ϕ′
◦
yi

◦
yj

)
. (2.5)

Under the hypothesis, the matrix (aij) is invertible and its inverse is (see Lemma 6.2.2.1, page
891 in [20])

aij =
1
ϕ′

(
gij − 2ϕ′′

ϕ′ + 2F2ϕ′′y
iyj

)
. (2.6)

This proves the theorem.

Remarks 1. (i) If Ai(x) = 0 and U(x) = 0 in (1.2), then expression (2.5) remains unchanged.
Hence, the symmetric metric tensor of a ϕ-Lagrange space is the same as that of anAPL-space.

(ii) If ϕ(F2) = F2, then ϕ′ = 1 and ϕ′′ = 0. Hence, the symmetric metric tensor of an
AFL-space coincides with that of the associated Finsler space.

3. Semispray, Integral Curves of Euler-Lagrange Equations

In this section, we obtain the coefficients of the canonical semispray of the APL-space Ln =
(M,L(x, y)) and deduce corresponding expressions for a ϕ-Lagrange space and an AFL-
space. Next, we obtain the differential equations whose solution curves are the integral
curves of Euler-Lagrange equations in an APL-space. We deduce corresponding differential
equations for a ϕ-Lagrange space and an AFL-space.

If we differentiate (1.2) partially with respect to xk, we have

∂kL = ϕ′
(
F2

)
∂kF

2 + yi∂kAi(x) + ∂kU(x). (3.1)
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Differentiating (3.1) partially with respect to yj , we obtain

∂̇j∂kL = 2ϕ′′
(
F2

)
F∂̇jF∂kF

2 + ϕ′
(
F2

)
∂̇j∂kF

2 + ∂kAj(x), (3.2)

which, in view of (2.4), takes the form

∂̇j∂kL = 2ϕ′′
(
F2

) ◦
yj∂kF

2 + ϕ′
(
F2

)
∂̇j∂kF

2 + ∂kAj(x). (3.3)

Using (3.1) and (3.3) in (1.10), we have

Gi =
1
4
aij

{
2ϕ′′

(
F2

) ◦
yjy

k∂kF
2 + ϕ′

(
F2

)(
yk∂̇j∂kF

2 − ∂jF2
)
− 2ykFjk − ∂jU

}
, (3.4)

where

Fjk(x) =
1
2
(
∂jAk − ∂kAj

)
(3.5)

is electromagnetic tensor field of the potentials Ai(x).
Applying (2.6) in (3.4) and using

◦
yiy

i = F2, gij
◦
yj = yi, and yj∂̇j∂kF

2 = 2∂kF2 (by
Euler’s theorem on homogeneous functions), we obtain

Gi =
1
2
ϕ′′

ϕ′

(
1 − 2ϕ′′F2

ϕ′ + 2F2ϕ′′

)
yiyk∂kF

2 +
1
4

{
gij

(
yk∂̇j∂kF

2 − ∂jF2
)
− 2ϕ′′F2

ϕ′ + 2F2ϕ′′y
iyk∂kF

2

}

− 1
4
aij

(
2Fjkyk + ∂jU

)
.

(3.6)

Using (1.7) in (3.6) and simplifying, we get

Gi =
◦
G
i

− 1
4
aij

(
2Fjkyk + ∂jU

)
. (3.7)

Thus, we have the following.

Theorem 3.1. The canonical semispray of an APL-space has the local coefficients given by

Gi =
◦
G
i

− 1
4
aij

(
2Fjkyk + ∂jU

)
, (3.8)

where
◦
G
i

are the local coefficients of the spray of Fn.
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For a ϕ-Lagrange space, Ai(x) = 0 and U(x) = 0. Hence, from (3.5), we have Fjk = 0.
Therefore, (3.7) reduces to

Gi =
◦
G
i

. (3.9)

Thus, we may state the following.

Corollary 3.2 (see [14]). The canonical semispray of a ϕ-Lagrange space becomes a spray and coin-
cides with that of the associated Finsler space.

For an AFL-space, aij = gij (see Remark (ii)). Hence, (3.7) takes the form

Gi =
◦
G
i

− 1
4
gij

(
2Fjkyk + ∂jU

)
. (3.10)

Thus, we have the following.

Corollary 3.3 (see [17, 20]). The canonical semispray of an AFL-space has the local coefficients given
by (3.10).

In a Lagrange space, the integral curves of the Euler-Lagrange equations:

Ei(L) := ∂iL − d

dt

(
∂̇iL

)
= 0 (3.11)

are the solution curves of the equations [20]

d2xi

dt2
+ 2Gi(x, y) = 0. (3.12)

Using (3.7) in (3.12), we obtain

d2xi

dt2
+ 2

◦
G
i

=
1
2

(
2Fiky

k + aij∂jU
)
, (3.13)

where Fik = a
ijFjk.

Using (1.9) (a) in (3.13), we have

d2xi

dt2
+

◦
γ
i

00 =
1
2

(
2Fiky

k + aij∂jU
)
. (3.14)

Thus, we have the following.

Theorem 3.4. In an APL-space Ln = (M,L(x, y)), the integral curves of the Euler-Lagrange
equations Ei(L) = 0 are the solution curves of (3.14).



8 ISRN Geometry

For a ϕ-Lagrange space, equations (3.14) take the following simple form:

d2xi

dt2
+

◦
γ
i

00 = 0. (3.15)

This enables us to state the following.

Corollary 3.5 (see [14]). In a ϕ-Lagrange space, the integral curves of the Euler-Lagrange equations
are the solution curves of (3.15).

For an AFL-space, aij = gij . Therefore, equations (3.14) become

d2xi

dt2
+

◦
γ
i

00 = F
i
ky

k +
1
2
gij∂jU, (3.16)

where Fi
k
= gijFjk.

Thus, we have the following.

Corollary 3.6 (see [17, 20]). In an AFL-space, the integral curves of the Euler-Lagrange equations
Ei(L) = 0 are the solution curves of (3.16).

4. Nonlinear Connection, Autoparallel Curves

In this section, we find the coefficients of the nonlinear connection of anAPL-space and obtain
the differential equations of the autoparallel curves of the nonlinear connection. Correspond-
ing results have been deduced for a ϕ-Lagrange space and an AFL-space.

Partial differentiation of (2.5) with respect to yk yields

∂̇kaij =: 2Cijk = 2ϕ′ ◦Cijk + 2ϕ′′
(
gij

◦
yk + gjk

◦
yi + gki

◦
yj

)
+ 4ϕ′′′ ◦yi

◦
yj

◦
yk. (4.1)

Using (3.7) in (1.11) and taking (1.9) (b), (2.6), (4.1),
◦
Cpqjy

j = 0, yi
◦
yi = F

2, and gij
◦
yj = y

i into
account, we obtain

Ni
j =

◦
N

i

j −
1
2
Fij +

[
1
2ϕ′

◦
C
i

qjg
qr +

1
2
ϕ′′

ϕ′2 g
ir ◦yj +

ϕ′′

2ϕ′(ϕ′ + 2F2ϕ′′)
(
δrj y

i + δijy
r
)

+
ϕ′2ϕ′′′ − 2ϕ′′3F2 − 4ϕ′ϕ′′2

2ϕ′2(ϕ′ + 2F2ϕ′′)2 yi
◦
yjy

r

](
2Frkyk + ∂rU

)
.

(4.2)

If we take

Sirj =
1
2ϕ′

◦
C
i

qjg
qr +

1
2
ϕ′′

ϕ′2
gir

◦
yj +

ϕ′′
(
δrj y

i + δijy
r
)

2ϕ′(ϕ′ + 2F2ϕ′′) +
ϕ′2ϕ′′′ − 2ϕ′′3F2 − 4ϕ′ϕ′′2

2ϕ′2(ϕ′ + 2F2ϕ′′)2 yi
◦
yjy

r, (4.3)
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the last expression becomes

Ni
j =

◦
N

i

j −
1
2
Fij + S

ir
j

(
2Frkyk + ∂rU

)
, (4.4)

that is,

Ni
j =

◦
N

i

j − V i
j ,

(4.5)

where

V i
j =

1
2
Fij − Sirj

(
2Frkyk + ∂rU

)
. (4.6)

Thus, we have the following.

Theorem 4.1. The canonical nonlinear connection of an APL-space Ln has the local coefficients given
by (4.5).

For a ϕ-Lagrange space, we have Frk = 0, Fij = 0 andU = 0 and hence V i
j = 0. Therefore,

(4.5) reduces to

Ni
j =

◦
N

i

j . (4.7)

Thus, we have the following.

Corollary 4.2 (see [14]). The canonical nonlinear connection of a ϕ-Lagrange space coincides with
the nonlinear connection of the associated Finsler space.

For an AFL-space, (4.3) reduces to

Sirj =
1
2

◦
C
i

qjg
qr (4.8)

and hence (4.6) gives

V i
j =

1
2
Fij −

◦
C
i

qjF
q

k
yk − 1

2

◦
C
i

qjg
qr∂rU := Bij . (4.9)

Therefore, (4.5) takes the form

Ni
j =

◦
N

i

j − Bij . (4.10)

Thus, we have the following.
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Corollary 4.3 (see [17, 20]). The canonical nonlinear connection of an AFL-space Ln has the local
coefficients given by (4.10).

Transvecting (4.5) by yi and using
◦
N

i

jy
j =

◦
γ
i

00, we obtain

Ni
jy

j =
◦
γ
i

00 − V i
0 , (4.11)

where V i
0 = V

i
j y

j .
The autoparallel curves of the canonical nonlinear connectionN = (Ni

j) of a Lagrange
space are given by the following system of differential equations (vide [20]):

d2xi

dt2
+Ni

j

(
x, y

)
yj = 0. (4.12)

Equations (4.12), in view of (4.11), take the form

d2xi

dt2
+

◦
γ
i

00 = V
i
0 . (4.13)

Thus, we have the following.

Theorem 4.4. The autoparallel curves of the canonical nonlinear connection N = (Ni
j) of an APL-

space Ln = (M,L(x, y)) are given by the system of differential equations (4.13).

For a ϕ-Lagrange space, V i
j = 0 and hence V i

0 = 0. Therefore, (4.13) reduces to

d2xi

dt2
+

◦
γ
i

00 = 0. (4.14)

Thus, we have the following.

Corollary 4.5 (see [14]). The autoparallel curves of the canonical nonlinear connection of a ϕ-
Lagrange space Ln = (M,L(x, y)) are given by the system of differential equations (4.14).

For an AFL-space,

V i
j = B

i
j =:

1
2
Fij −

◦
C
i

qjF
q

k
yk − 1

2

◦
C
i

qjg
qr∂rU (4.15)

and hence, by virtue of
◦
C
i

qjy
j = 0, we have V i

0 = (1/2)Fijy
j . Therefore, equations (4.12) take

the form

d2xi

dt2
+

◦
γ
i

00 =
1
2
Fijy

j . (4.16)

Thus, we deduce the following.
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Corollary 4.6 (see [17, 20]). The autoparallel curves of the nonlinear connection N = (Ni
j) of an

AFL-space Ln = (M,L(x, y)) are given by the system of differential equations (4.16).

If we compare (3.14), (3.15), and (3.16), respectively, with (4.13), (4.14), and (4.16), we
observe that, in an APL-space as well as in an AFL-space, solution curves of Euler-Lagrange
equations do not coincide with the autoparallel curves of the canonical nonlinear connection
whereas in a ϕ-Lagrange space they do. Therefore, in a ϕ-Lagrange space, geodesics are
autoparallel curves whereas in an APL-space and in an AFL-space they are not so.

5. Canonical Metrical d-Connection

Let CΓ(N) = (Ni
j , L

i
jk, C

i
jk) be the canonical metrical d-connection of the APL-space Ln =

(M,L(x, y)), and let
◦
CΓ(

◦
N) = (

◦
N

i

j ,
◦
L
i

jk,
◦
C
i

jk) be the Cartan connection of the associated Finsler
space Fn = (M,F(x, y)). In this section, we obtain the expressions for the coefficients of
CΓ(N) and we investigate some properties of CΓ(N). We deduce corresponding results for a
ϕ-Lagrange space and an AFL-space.

Using (4.1) in (1.13) and taking (1.15) into account, we find

Ci
jk =

◦
C
i

jk +
ϕ′′

ϕ′
(
δij

◦
yk + δ

i
k

◦
yj

)
+

ϕ′′

ϕ′ + 2F2ϕ′′ gjky
i +

2
(
ϕ′′′ϕ′ − 2ϕ′′2)

ϕ′(ϕ′ + 2F2ϕ′′) y
i ◦yj

◦
yk. (5.1)

For any C∞-class function ψ : R
+ → R, taking f(x, y) = ψ(F2(x, y)), we have

◦
δkf = f ′F2

◦
|k

(5.2)

which, in view of F2
◦
|k
= 0 (see proposition 9.4, page 1037 of [20]), gives

◦
δkf = 0. (5.3)

Since 0 = y
i
◦
|k :=

◦
δk

◦
yi −

◦
L
r

ik

◦
yr (see proposition 9.4, page 1037 of [20]), we have

◦
δk

◦
yi =

◦
L
r

ik

◦
yr.

(5.4)

If we operate
◦
δk on (2.5) and utilize (5.3) and (5.4), it follows that

◦
δkaij = ϕ′ ◦δkgij + 2ϕ′′ ◦yr

( ◦
L
r

ik

◦
yj +

◦
L
r

jk

◦
yi

)
. (5.5)
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In view of δi = ∂i −Nr
i ∂̇r , (4.5), and

◦
δi = ∂i −

◦
N

r

i ∂̇r , we get

δkaij =
◦
δkaij + V r

k ∂̇raij , (5.6)

which, on account of (4.1) and (5.5), becomes

δkaij = ϕ′ ◦δkgij + 2ϕ′′ ◦yr

( ◦
L
r

ik

◦
yj +

◦
L
r

jk

◦
yi

)
+ 2V r

kCijr . (5.7)

Using (5.7) in (1.12) and taking (1.14) and ailCjkl = Ci
jk
into account, we obtain

Lijk =
◦
L
i

jk + V
r
kC

i
jr + V

r
j C

i
kr + V

r
p a

ipCrkj . (5.8)

Equations (5.1) and (5.8) enable us to state the following.

Theorem 5.1. The coefficients of the canonical metrical d-connection CΓ(N) of an APL-space Ln are
given by (5.1) and (5.8).

For a ϕ-Lagrange space, V i
j = 0. Hence, (5.1) remains unchangedwhereas (5.8) reduces

to

Lijk =
◦
L
i

jk. (5.9)

Thus, we have the following.

Corollary 5.2 (see [14]). The coefficients of the canonical metrical d-connection CΓ(N) of a ϕ-
Lagrange space Ln are given by (5.1) and (5.9).

For an AFL-space, ϕ(F2) = F2, ϕ′(F2) = 1, ϕ′′(F2) = 0, and aij = gij . Therefore, we

have Cijk =
◦
Cijk and V r

j = Brj .
In view of these facts, (5.1) reduces to

Ci
jk =

◦
C
i

jk, (5.10)

whereas (5.8) gives the following:

Lijk =
◦
L
i

jk + B
r
k

◦
C
i

jr + B
r
j

◦
C
i

kr + B
r
pg

ip
◦
Crkj , (5.11)

where Br
k
is given by (4.9). Thus, we have the following.

Corollary 5.3 (see [17, 20]). The coefficients of the canonical metrical d-connection CΓ(N) of an
AFL-space Ln are given by (5.10) and (5.11).
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Now, we investigate some properties of the canonical metrical d-connection CΓ(N)
of an APL-space and deduce the corresponding properties for a ϕ-Lagrange space and an
AFL-space.

Theorem 5.4. The canonical metrical d-connection CΓ(N) of an APL-space has the following
properties:

(1) Di
k := yi|k = V i

k + V
p

k C
i
pry

r + V p
r C

i
kpy

r + V p
s a

isCpkry
r , (5.12)

yi|k = V s
k

(
asi + Csijy

j
)
− V s

i Ckspy
p − V s

pCskiy
p, (5.13)

where yi =: aijyj ,

(2) dik := yi|k =
ϕ′ + ϕ′′F2

ϕ′ δik + B
◦
yky

i, yi|k = aik + Cikjy
j , (5.14)

where B = 2{ϕ′ϕ′′ + F2(ϕ′′′ϕ′ − ϕ′′2)}/ϕ′(ϕ′ + 2F2ϕ′′),

(3) L|k = Xk +
2ϕ′

(
ϕ′ + 2F2ϕ′′)V

r
k yr, L|k =

2ϕ′
(
ϕ′ + 2F2ϕ′′)yk +Ak, (5.15)

where Xk = yr∂kAr −Np

kAp + ∂kU.

Proof. (1) Using (5.8) and (4.5) in (1.16), we have

Di
k = yr

(
◦
L
i

rk + V
p

k
Ci
rp + V

p
r C

i
kp + V

p
s a

isCpkr

)
−

◦
N

i

k + V
i
k, (5.16)

which, in view of (1.18), reduces to

Di
k = V i

k + y
r
(
V
p

k
Ci
rp + V

p
r C

i
kp + V

p
s a

isCpkr

)
. (5.17)

Next, if we use (2.5) in yi = aijyj , then it follows that

yi =
(
ϕ′ + 2F2ϕ′′

) ◦
yi. (5.18)

Now, applying successively δi = ∂i −Nr
i ∂̇r , (4.5), and

◦
δi = ∂i −

◦
N

r

i ∂̇r in yi|k = δkyi − yrLrik and
keeping (5.8) and (5.18) in view, we have

yi|k =
◦
δk

{(
ϕ′ + 2F2ϕ′′

) ◦
yi

}
−
(
ϕ′ + 2F2ϕ′′

) ◦
yr

◦
L
r

ik + V
r
k ∂̇ryi − yr

(
V s
kC

r
is + V

s
i C

r
ks + V

s
p a

rpCski

)
.

(5.19)
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Differentiating yi = aijyj partially with respect to yr , we have

∂̇ryi = air + 2Cirjy
j . (5.20)

Also,

ylC
l
jk = alhyhCl

jk = yhChjk. (5.21)

In view of (5.3), we have

◦
δk

(
ϕ′ + 2F2ϕ′′

)
= 0. (5.22)

Using (5.20), (5.21), and (5.22) in (5.19), we obtain

yi|k =
(
ϕ′ + 2F2ϕ′′

)( ◦
δk

◦
yi −

◦
yr

◦
L
r

ik

)
+ V s

k

(
asi + Csijy

j
)
−
(
V s
i Cksp + V s

pCksi

)
yp, (5.23)

which, in view of (5.4), gives the desired result.
(2) Using (5.1) in (1.17), we get

dik =
ϕ′ + ϕ′′F2

ϕ′ δik + B
◦
yky

i, (5.24)

where B = 2{ϕ′ϕ′′ + F2(ϕ′′′ϕ′ − ϕ′′2)}/ϕ′(ϕ′ + 2F2ϕ′′).
In view of (5.20) and (5.21), it follows, from yi|k = ∂̇kyi − yrCr

ik, that

yi|k = aik + 2Cikjy
j − Cijky

j , (5.25)

that is, yi|k = aik + Cikjy
j as Cijk is totally symmetric.

(3) Utilizing successively δi = ∂i −Nr
i ∂̇r , (4.5), and

◦
δi = ∂i −

◦
N

r

i ∂̇r in L|k = δkL, we get

L|k =
◦
δkL + V r

k ∂̇rL. (5.26)

Using (1.2) and (2.1) in (5.26), we have

L|k =
◦
δk

(
ϕ +Ary

r +U
)
+ V r

k

(
2ϕ′ ◦yr +Ar

)
, (5.27)

which, in view of (5.3), gives

L|k =
◦
δk

(
Ary

r +U
)
+ V r

k

(
2ϕ′ ◦yr +Ar

)
. (5.28)
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Using
◦
δk = ∂k −

◦
N

r

k∂̇r and (5.18) in (5.28) and keeping (4.5) in view, we find

L|k = yr∂kAr −Np

k
Ap + ∂kU +

2ϕ′

ϕ′ + 2F2ϕ′′V
r
k yr. (5.29)

If we take Xk = yr∂kAr −Np

kAp + ∂kU, then the last expression takes the form

L|k = Xk +
2ϕ′

ϕ′ + 2F2ϕ′′V
r
k yr. (5.30)

Next, using (2.1) in L|k = ∂̇kL, we get

L|k = 2ϕ′ ◦yk +Ak, (5.31)

which, in view of (5.18), gives the required result.

Corollary 5.5 (see [14]). The canonical metrical d-connection CΓ(N) of a ϕ-Lagrange space has the
following properties:

(1) Di
k := yi|k = 0, yi|k = 0, (5.32)

(2) dik := yi|k =
ϕ′ + ϕ′′F2

ϕ′ δik + B
◦
yky

i, yi|k = aik + Cikjy
j , (5.33)

where B = 2{ϕ′ϕ′′ + F2(ϕ′′′ϕ′ − ϕ′′2)}/ϕ′(ϕ′ + 2F2ϕ′′),

(3) L|k = 0, L|k =
2ϕ′

(
ϕ′ + 2F2ϕ′′)yk. (5.34)

Proof. Applying Ai(x) = 0,U(x) = 0, and V i
j = 0 in Theorem 5.4, we have the corollary.

Corollary 5.6. The canonical metrical d-connection CΓ(N) of an AFL-space has the following
properties:

(1) Di
k = Bik + B

p
r

◦
C
i

kpy
r, yi|k = gsi

(
Bsk − Blpyp

◦
C
s

lk

)
, (5.35)

where yi = gijyj ,

(2) dik = δik, yi|k = gik, (5.36)

(3) L|k = yr∂kAr −Np

k
Ap + ∂kU + 2Brkyr, L|k = 2yk +Ak. (5.37)
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Proof. Using ϕ(F2) = F2, ϕ′(F2) = 1, ϕ′′(F2) = 0 = ϕ′′′(F2), aij = gij , Cijk =
◦
Cijk,

◦
Cijky

j = 0,
◦
C
i

jky
k = 0, and V r

j = Brj in Theorem 5.4, we have the corollary.
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