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In this note we study the growth of the number of periodic points for non-degenerate actions of
commuting hyperbolic toral automorophisms.

1. Introduction

There are well-known formulae for the number of fixed points for powers of a given
orientation preserving hyperbolic linear toral automorphism T : T

d → T
d. In particular,

if A ∈ SL(d,R) is the associated hyperbolic matrix, then the number of fixed points for Tn is
given by

Card{Tnx = x} = |det(An − 1)|. (1.1)

Since the hyperbolicity of T is equivalent to the fact that the eigenvalues for A do not lie on
the unit circle, it is easy to see that the number of fixed points for Tn grows exponentially fast
in n. We then recall that the growth rate of the number of periodic points for T is given by

h(T) = lim
k→+∞

1
k
log Card

{
x : Tkx = x

}
> 0, (1.2)

where h(T) is the topological entropy of T : T
d → T

d (or, equivalently, the sum of the
logarithms of the eigenvalue of the matrix A with absolute value at least 1).

In this note, we want to consider fixed points for commuting hyperbolic toral
automorphisms. This necessarily requires the torus to have dimension d ≥ 3, and for
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simplicity of exposition we shall initially assume that d = 3. Let us, therefore, consider a
pair of commuting hyperbolic matrices A1, A2 ∈ SL(3,Z) (i.e., A1A2 = A2A1 and neither
matrix has an eigenvalue of modulus one) and associate the natural Z

2-action on the three
dimensional torus T

3 = R
3/Z

3 defined by

A : Z
2 × T

3 −→ T
3 given by A(n1, n2, x) = An1

1 An2
2 x + Z

3. (1.3)

Wewill also ask for this action to be nondegenerate, that is, if n1, n2 ∈ Z satisfyAn1
1 An2

2 = I, then
this necessarily implies that n1 = n2 = 0. We say that A1 and A2 are independent.

We can now consider the growth of the number of fixed points for the action associated
to any element (n1, n2) ∈ Z

2.

Definition 1.1. We denote the number of fixed points of by An1
1 An2

2 on T
3 by

N(n1, n2) = Card
{
x ∈ T

3 : A(n1, n2, x) = x
}
. (1.4)

Wewant to give uniform estimates on the rate of growth of the number of fixed points
for the actions A(n1, n2, ·) : T

3 → T
3 in terms of (n1, n2) ∈ Z

2. In particular, we want to give

a lower bound on the growth of the fixed points in terms as ‖(n1, n2)‖2 =
√
n2
1 + n2

2 → +∞. In
the present context, we can assume without loss of generality that the eigenvalues α1, α2, α3

of A1 and the eigenvalues β1, β2, β3 of A2 are real.

Definition 1.2. We denote

λ := sup
0≤θ≤2π

{
max
i=1,2,3

{
cos θ log|αi| + sin θ log

∣∣βi
∣∣}
}
,

λ := inf
0≤θ≤2π

{
max
i=1,2,3

{
cos θ log|αi| + sin θ log

∣∣βi
∣∣}
}
.

(1.5)

Our main result, in the particular case d = 3, is the following.

Theorem 1.3. Let A1, A2 ∈ SL(3,Z) be commuting independent hyperbolic matrices. The growth
rates of the fixed points

λ = lim sup
‖(n1,n2)‖2 →+∞

1
‖(n1, n2)‖2

logN(n1, n2),

λ = lim inf
‖(n1,n2)‖2 →+∞

1
‖(n1, n2)‖2

logN(n1, n2) > 0

(1.6)

satisfy 0 < λ < λ < +∞.

Related problems have been studied forZ
d-actions in algebraic and symbolic examples

by Miles and Ward [1]. Interestingly, whereas their analysis relies on deep results in
diophantine approximation, in the present context the required analysis is completely
elementary.



ISRN Geometry 3

Table 1: The number of fixed pointsN(n1, n2) for |n1|, |n2| ≤ 4. The columns correspond to n1 and the rows
correspond to n2.

−4 −3 −2 −1 0 1 2 3 4
4 533 27 203 377 533 448 1261 11857 68411
3 377 91 13 64 91 27 559 3913 21463
2 203 64 13 7 13 13 203 1247 6656
1 27 13 7 1 1 7 64 377 2009
0 533 91 13 1 ∞ 1 13 91 533
−1 2009 377 64 7 1 1 7 13 27
−2 6656 1247 203 13 13 7 13 64 203
−3 21463 3913 559 27 91 64 13 91 377
−4 68411 11857 1261 448 533 377 203 27 533

The quantity λ is related to the supremum of the sum of the Lyapunov exponents for
the action. In particular, the bound λ > 0 can then be deduced from ([2], Lemma 4.3 (a)).

Remark 1.4. The values θ and θ realizing the supremum and infimum, respectively, in (1.6)
can be understood as giving the “approximate directions” of largest and smallest growth in
the number of fixed points points.

Remark 1.5. There is no analogous result for rates of mixing. The reason for this is simply
because any hyperbolic toral automorphism mixes superexponentially with respect to the
Haar measure and C∞ test functions. In particular, the rate of mixing is infinite and there is
no useful way to distinguish between the actions. By the same token, there is no analogous
result for rates of equidistribution for closed orbits [3, Theorem 1.6].

The calculations in this paper were inspired by a lecture by TomWard, who presented
tables similar to those in this note in the context of Z

2-subshifts of finite type.

2. Examples

Let us consider some examples that illustrate Theorem 1.3.

Example 2.1. Consider the commuting matrices A1, A2 ∈ SL(3,Z) given by

A1 =

⎛
⎝

1 −1 0
−1 2 −1
0 −1 2

⎞
⎠, A2 =

⎛
⎝

2 0 −1
0 1 1
−1 1 2

⎞
⎠. (2.1)

The number of fixed points N(n1, n2) for |n1|, |n2| ≤ 4 is presented in Table 1.

The eigenvalues of A1 are α1 = 3.24698 . . ., α2 = 1.55496 . . ., and α3 = 0.198062 . . .,
and the eigenvalues of A2 are β1 = 0.198062 . . ., β2 = 3.24698 . . ., and β3 = 1.55496 . . . (which
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Figure 1: A plot of {maxi=1,2,3{cos θ log |αi| + sin θ log |βi|} as a function of 0 ≤ θ < 2π .

happen to be a permutation of those for A1). Corresponding to these eigenvalues are the
common eigenvectors

e1 =

⎛
⎝

−0.327985 . . .
0.736976 . . .
−0.591009 . . .

⎞
⎠, e2 =

⎛
⎝

−0.591009 . . .
0.327985 . . .
0.736976 . . .

⎞
⎠, e3 =

⎛
⎝

0.736976 . . .
0.591009 . . .
0.327985 . . .

⎞
⎠. (2.2)

Using these eigenvalues we can now plot the function θ �→ {maxi=1,2,3{cos θ log |αi| +
sin θ log |βi|} (cf. Figure 1) and then read off the values of λ and λ as the maximum and
minimum values, respectively.

In this example, we see that λ = 0.60501 . . . (occurring at θ = 4.07742 . . .) and λ =
2.00219 . . . (occurring at θ = 5.34124 . . .).

Example 2.2 (cf. [4]). We can let

A1 =

⎛
⎝

0 1 0
0 0 1
1 −11 5

⎞
⎠, A2 =

⎛
⎝

2 −1 0
0 2 −1
−1 11 −5

⎞
⎠. (2.3)

The number of fixed points N(n1, n2) for |n1|, |n2| ≤ 4 is presented in Table 2.

The eigenvalues for A are α1 = 4.70928, α2 = 0.0967881, and α3 = 2.19394, and the
eigenvalues for A2 are β1 = −2.70928, β2 = 1.90321, and β3 = −0.193937. These correspond to
the eigenvectors

⎛
⎝

−0.0440649
−0.207514
−0.977239

⎞
⎠,

⎛
⎝

−0.995305
−0.0963337
−0.00932395

⎞
⎠,

⎛
⎝

0.185754
0.407532
0.894099

⎞
⎠. (2.4)

In this case, we can compute λ = 0.689643 . . . (occurring at θ = 4.17448 . . .) and λ =
2.2481 . . . (occurring at θ = 5.43348 . . .) (cf. Figure 2).
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Table 2: The number of fixed pointsN(n1, n2) for |n1|, |n2| ≤ 4. The columns correspond to n1 and the rows
correspond to n2.

−4 −3 −2 −1 0 1 2 3 4
4 25600 8132 464 4652 10880 21388 40592 75356 133120
3 5476 1928 460 296 988 2008 3700 6152 7004
2 1040 452 128 4 80 172 256 76 2000
1 68 152 20 8 4 8 20 232 1404
0 640 148 16 4 ∞ 4 16 148 640
−1 1404 232 20 8 4 8 20 152 68
−2 2000 76 256 172 80 4 128 452 1040
−3 7004 6152 3700 2008 988 296 460 1928 5476
−4 133120 75356 40592 21388 10880 4652 464 8132 25600

1 2 3 4 5 6
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Figure 2: A plot of {maxi=1,2,3{cos θ log |αi| + sin θ log |βi|} as a function of 0 ≤ θ < 2π .

3. Proof of Theorem 1.3

We begin by fixing our notation. Let A1, A2 ∈ SL(3,Z) be commuting hyperbolic matrices
(i.e., none of the eigenvalues has modulus unity. In this particular case, it is not possible to
have ergodic nonhyperbolic toral automorphisms.) We shall assume the associated action is
nondegenrate (i.e., An1

1 An2
2 = I implies (n1, n2) = (0, 0)).

We next recall the following standard results.

Lemma 3.1. Under the above hypotheses,

(1) the eigenvalues α1, α2, α3 of A1 are real, and the eigenvalues β1, β2, β3 of A2 are real;

(2) each of the common eigenvectors e1, e2, e3 for A1 and A2 has irrational slope (i.e., each
Rvi + Z

3 is dense in T
3);

(3) each of the real numbers log |αi|/ log |βi|, i = 1, 2, 3, is irrational.

Proof. The first result is a consequence of a standard general result for more general Cartan
actions, applied in the particular case of Z

2-actions [4].
For the second part, we can restrict to the case e1, with the other cases being similar. It is

easy to see that we can make an appropriate choice of n,m ∈ Z
3 such that matrixAn

1A
m
2 either

has |αn
1β

m
1 | > 1 > |αn

2β
m
2 |, |αn

3β
m
3 | or |αn

1β
m
1 | < 1 < |αn

2β
m
2 |, |αn

3β
m
3 |. In particular, T = A(n1, n2, ·)

corresponds to a linear hyperbolic toral automorphism T for which Rvi +Z
3 is a leaf of either
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the one-dimensional stable or one-dimensional unstable manifold foliation. In particular, this
is dense by the well known minimality of the stable and unstable manifolds.

Finally, for the last part, the irrationality of the ratio of the logarithm of the eigenvalues
is a consequence of the nontriviality assumption and part 2. More precisely, if we assume for
a contradiction that logαi/ log βi is a rational p/q, say, then by comparing the actions of A1

and A2 on the dense Re1 + Z
3 set, we then see from the second part that Ap

1A
q

2 = I. This
contradicts the nondegeneracy condition, completing the proof.

In particular, we see from parts 2 and 3 of Lemma 3.1 that for all (n1, n2) ∈ Z
2 − (0, 0)

we have that An1
1 An2

2 has no eigenvalues of modulus 1.
We recall the following standard result for the fixed points of the single transformation

A(n1, n2, ·) : T
3 → T

3.

Lemma 3.2. For each (n1, n2) ∈ Z
2 − {(0, 0)}, we can write

N(n1, n2) =
∣∣det(I −An1

1 An2
2

)∣∣. (3.1)

Proof. This is a standard result, which can also be easily deduced from the Lefschetz fixed
point theorem.

Lemma 3.2 is particularly useful in computing the numerical values of fixed points in
the tables we have for the examples. We also have the following simple, but useful, corollary.

Lemma 3.3. For each (n1, n2) ∈ Z
2 − {(0, 0)}, we can write

N(n1, n2) =
∣∣1 − (αn1

1 βn2
1 + αn1

2 βn2
2 + αn1

2 βn2
2

)
+
(
α−n1
1 β−n1

1 + α−n2
2 β−n2

2 + α−n3
3 β−n3

3

) − 1
∣∣. (3.2)

Proof. The matrix An1
1 An2

2 has eigenvalues αn1
1 βn2

1 , αn1
2 βn2

2 , and αn1
3 βn2

3 . Multiplying out this
expression for N(n1, n2) gives

N(n1, n2) =
∣∣det(I −An1

1 An2
2

)∣∣

=
∣∣(1 − αn1

1 βn2
1

)(
1 − αn1

2 βn2
2

)(
1 − αn1

3 βn2
3

)∣∣

=
∣∣1 − (αn1

1 βn2
1 + αn1

2 βn2
2 + αn1

2 βn2
2

)

+
(
(α1α2)n1

(
β1β2

)n2 + (α1α3)n1
(
β1β3

)n2 + (α2α3)n1
(
β2β3

)n2
) − 1

∣∣

=
∣∣1 − (αn1

1 βn2
1 + αn1

2 βn2
2 + αn1

2 βn2
2

)
+
(
α−n1
1 β−n2

1 + α−n1
2 β−n2

2 + α−n1
3 β−n2

3

) − 1
∣∣,

(3.3)

where we have used the identities α1α2α3 = detA1 = 1 and β1β2β3 = detA2 = 1 for the last
line.

We want to use this lemma to estimate the growth ofN(n1, n2). In particular, we want
to get bounds based on the largest of the terms (in modulus) contributing to the right hand
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side of (3.2). In order to formulate these estimates, it is convenient to introduce the vectors in
R

2 defined by

v1 =
(
log|α1|
log

∣∣β1
∣∣
)
, v2 =

(
log|α2|
log

∣∣β2
∣∣
)
, v3 =

(
log|α3|
log

∣∣β3
∣∣
)
. (3.4)

Each of these has irrational slope, by the final part of Lemma 3.1.

Lemma 3.4. All of the vectors v1, v2, and v3 are nonzero and satisfy v1 + v2 + v2 = 0.

Proof. For the first part, we need only observe that if vi = 0, say, then this would require
|αi| = |βi| = 1, that is, at least one of the eigenvalues for the matrices is of modulus one which
would contradict the hyperbolicity assumption.

For the second part, we observe that since α1α2α3 = detA1 = 1 and β1β2β3 = detA2 = 1
we immediately see that v1 + v2 + v2 = 0.

We now parameterize the unit vectors in R
2 by

wθ =
(
cos θ
sin θ

)
, for 0 ≤ θ < 2π. (3.5)

We can then write that

〈vi,wθ〉 = cos θ logαi + sin θ log βi, for i = 1, 2, 3. (3.6)

In particular, if we write (n1, n2) = (R cos θ, R sin θ), say, where R = ‖(n1, n2)‖2, then we can
write

∣∣αn1
i βn2

i

∣∣ = exp
(
R
(
cos θ log|αi| + sin θ log

∣∣βi
∣∣)). (3.7)

To prove Theorem 1.3, it suffices to show that the vectors v1, v2, v3 are not collinear.
Since v1 + v2 + v3 = 0 and the vectors v1, v2, v3 are nonzero, and additionally we know that
the vectors are noncollinear, it is then easy to see that this is enough to know that for any
0 ≤ θ < 2π there is some i such that 〈vi, vθ〉 > 0 (se Figure 3). For typical θ, there will be a
single dominant term of the form (3.7) contributing to the right hand side of (3.2).

Assume for a contradiction that the vectors v1, v2, and v3 are collinear. Then we can
choose δ /= 0 such that

δ =
log|α1|
log

∣∣β1
∣∣ =

log|α2|
log

∣∣β2
∣∣ =

log|α3|
log

∣∣β3
∣∣ . (3.8)

First we observe that δ cannot be irrational since otherwise {n log |α1| +m log |β1| : n,m ∈
Z}will be dense on the real line R. However, since R

+v1+Z
3 is dense in T

3 this means that we
can choose nk,mk ∈ Z such that Ank , Bmk → I as k → +∞, but with Ank , Bmk /= I. However,
this is clearly false in the lattice SL(3,Z). On the other hand, if δ = p/q were a rational then
by again considering the action on the dense set R

+w1 + Z
3 we see that ApBq = I, which

contradicts the nondegeneracy hypothesis.
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〈v 1
, w

θ
〉

v1

v2

v3

wθ

Figure 3: The projection of wθ onto one of the vectors v1, v2, v3 must have a strictly positive component.

4. Generalizations to Z
k-Actions

Wewill consider the more general setting of higher-dimensional actions. The basic results are
similar to the case of Theorem 1.3.

Hypothesis 1. Let 2 ≤ k ≤ d − 1.

(1) We shall assume that A1, . . . , Ak ∈ SL(d,Z) are commuting matrices, that is, AiAj =
AjAi for 1 ≤ i, j ≤ k.

(2) We shall assume that each matrix An1
1 · · ·Ank

k
, (n1, . . . , nk) ∈ Z

k − (0, . . . , 0) is ergodic
(i.e., they do not have eigenvalues, which are roots of unity).

(3) We shall assume that the action is nondegenerate, that is, if there exist n1, . . . , nk ∈ Z

such that

An1
1 An2

2 · · ·Ank

k
= I then n1 = · · · = nk = 0. (4.1)

(4) We shall assume that the action is irreducible, that is, no A(n1, . . . , nk) : T
d → T

d

preserves a proper invariant toral subgroup of T
d.

(5) We shall additionally assume, mainly for convenience, that the matrices are
semisimple (i.e., they diagonalize over the complex numbers) and Ai has complex
eigenvalues α(i)

1 , . . . , α
(i)
d

for i = 1, . . . , k.

The special case that bears closest comparison with the special case of k = 2 and d = 3
is when k = d− 1. In particular, in this caseAi has real eigenvalues α

(i)
1 , . . . , α

(i)
d

for i = 1, . . . , k.
We now generalize two definitions from the first section.
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Definition 4.1. LetA : Z
k×T

d → T
d be the action given byA(n1, . . . , nd, x) = An1

1 · · ·Ank

k x+Z
d,

then we denote

N(n1, . . . , nk) = Card
{
x ∈ T

d : A(n1, . . . nk, x) = x
}
. (4.2)

Definition 4.2. We can define

λ = inf
‖v‖2=1

{
sup
w

〈v,w〉
}
, λ = sup

‖v‖2=1

{
sup
w

〈v,w〉
}
, (4.3)

where the supreme ranges over all unit vectors v in R
k.

The natural generalization of Theorem 1.3 is the following.

Theorem 4.3. The growth rates of the number of fixed points

λ := lim sup
‖(n1,...,nk)‖2 →+∞

1
‖(n1, . . . , nk)‖2

logN(n1, . . . , nk)},

λ := lim inf
‖(n1,...,nk)‖2 →+∞

1
‖(n1, . . . , nk)‖2

logN(n1, . . . , nk)} > 0

(4.4)

satisfy 0 < λ < λ < +∞.

To begin the proof, we need the following standard generalization of Lemma 3.2.

Lemma 4.4. For each (n1, . . . , nk) ∈ Z
2 − {(0, . . . , 0)}, we can write

N(n1, . . . , nk) =
∣∣det(I −An1

1 · · ·Ank

k

)∣∣. (4.5)

Proof. This is again a standard application of the Lefschetz formula.

In particular, we can use Lemma 4.4 to write

N(n1, . . . , nk) =
∣∣det(I −An1

1 · · ·Ank

k

)∣∣ =
d∏
j=1

∣∣∣∣∣1 −
d−1∏
i=1

(
α
(i)
j

)ni

∣∣∣∣∣. (4.6)

It is convenient to use the parameterization (n1, . . . , nk) = (p1R, . . . , pkR), where

(1) 0 ≤ p1, . . . , pk ≤ 1 with p21 + · · · + p2k = 1;

(2) R = ‖(n1, . . . , nk)‖2.
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We can now introduce the notation vp = (p1, . . . , pk) and vj = (log |α(1)
j |, . . . , log |α(k)

j |),
for j = 1, . . . , k. We can now easily see from (4.6) that for any δ > 0, there exists R0 = R0(δ)
such that

N(n1, . . . , nk) ≥
∏

j:〈vp,vj〉>0
(
exp

(
R
〈
vp, vj

〉) − 1
) ∏

j:〈vp,vj〉<0
(
1 − exp

(
R
〈
vp, vj

〉))

≥ (1 − δ)
∏

j:〈vp,vj〉≥0
exp

(
R
〈
vp, vj

〉)

≥ (1 − δ) exp

⎛
⎝R

〈
vp,

⎛
⎝ ∑

j:〈vp,vj〉≥0
vj

⎞
⎠
〉⎞
⎠,

(4.7)

for R ≥ R0. In particular, we see that

N(n1, . . . , nk) ≥ (1 − δ) exp
(
λ‖(n1, . . . , nk)‖2

)
, (4.8)

where

λ = inf
p

⎧
⎨
⎩

〈
vp,

⎛
⎝ ∑

j:〈vp,vj〉≥0
vj

⎞
⎠
〉⎫⎬
⎭. (4.9)

Similarly, we see that for R ≥ R0,

N(n1, . . . , nk) ≤ (1 + δ) exp
(
λ‖(n1, . . . , nk)‖2

)
, (4.10)

where

λ = sup
p

⎧
⎨
⎩

〈
vp,

⎛
⎝ ∑

j:〈vp,vj〉≥0
vj

⎞
⎠
〉⎫⎬
⎭. (4.11)

To see that λ > 0, we need to know that v1, . . . , vk are not confined to a codimension one
hyperplane in R

k orthogonal to some vp. Assume for a contradiction that there is a unit vector
vp such that 〈vp, vi〉 = 0 for i = 1, . . . , k. Let vp = (v(1)

p , . . . , v
(k)
p ), then by Dirichlet’s theorem of

simultaneous diophantine approximation, for any ε > 0, we choose 1 ≤ q ≤ ([1/ε] + 1)k and
(n1, . . . , nk) ∈ Z

k with

∥∥(n1, . . . , nk) − qvp

∥∥
∞ ≤ ε. (4.12)
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In particular, the eigenvalues (α1
j )

n1 · · · (αk
j )

nk , j = 1, . . . , k, for the matrixAn1
1 · · ·Ank

k ∈ SL(d,R)
satisfy

∣∣∣log
∣∣∣
(
α
(1)
j

)n1 · · ·
(
α
(k)
j

)nk
∣∣∣
∣∣∣ =

∣∣∣∣∣
k∑
l=1

nl log
∣∣∣α(l)

j

∣∣∣
∣∣∣∣∣ ≤ kε + q

∣∣∣∣∣
k∑
l=1

vl log
∣∣∣α(l)

j

∣∣∣
∣∣∣∣∣

︸ ︷︷ ︸
=|〈vp,vi〉|=0

.
(4.13)

In particular, the algebraic integers, and its conjugates, occurring as zeros of the characteristic
polynomial det(zI − An1

1 · · ·Ank

k ) = 0 can be arbitrarily close to one. It only remains to show
this cannot happen, which we deduce from the following two results.

Lemma 4.5 (Krönecker, [5]). Any algebraic integer α whose conjugate roots α = α1, . . . , αd all lie
on the unit circle must necessarily be a root of unity.

Proof. We include the simple proof for completeness. Let us define a sequence of monomials

Pn(x) :=
d∏
i=1

(
x − αn

i

)
= xd + a

(n)
d−1x

d−1 + · · · + a
(n)
k

xk + · · · + a
(n)
1 x + a

(n)
0 . (4.14)

In particular, since

∣∣∣a(n)
k

∣∣∣ =
∣∣∣∣∣

∑
i1<···<id−k

α
(n)
i1

· · ·α(n)
id−k

∣∣∣∣∣ ≤ K := d! , (4.15)

we see that {Pn(x) : n ≥ 1} is a finite set as is the set of roots α of these polynomials. Thus
for any such root, the pigeonhole principle applied to {αn : n ≥ 0} shows that there exists
0 ≤ p < q ≤ K + 1 such that αp = αq, and thus αq−p = 1.

We can also prove the following variant.

Lemma 4.6. Given d ≥ 2, there exists ε > 0 such that if α is an algebraic number of degree, which
is not an algebraic integer, then the conjugate values α = α1, . . . , αd cannot all be contained in the
annulus

A(ε) = {z ∈ C : 1 − ε ≤ |z| ≤ 1 + ε}. (4.16)

Proof. Since the proof is elementary, we include it for convenience. Assume for a contradiction
that for some d ≥ 2 we can find an infinite sequence of monomials

Pn(x) = xd + a
(n)
d−1x

d−1 + · · · + a
(n)
k xk + · · · + a

(n)
1 x + a

(n)
0 ∈ Z[x]], for n ≥ 2, (4.17)
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Table 3: The number of fixed pointsN(n1, n2) for |n1|, |n2| ≤ 4. The columns correspond to n1 and the rows
correspond to n2.

−4 −3 −2 −1 0 1 2 3 4
4 13395375 1295405 61440 2645 15 125 48735 6452480 560164815
3 1613760 722000 37500 3920 540 1280 37500 524880 269340
2 141135 182405 3375 1280 15 1805 59535 2415125 79626240
1 48735 3920 15 125 15 405 19440 1245005 56745375
0 10786560 188180 960 20 ∞ 20 960 188180 10786560
−1 56745375 1245005 19440 405 15 125 15 3920 48735
−2 79626240 2415125 59535 1805 15 1280 3375 182405 141135
−3 269340 524880 37500 1280 540 3920 37500 722000 1613760
−4 560164815 6452480 48735 125 15 2645 61440 1295405 13395375

whose roots α(n)
1 , . . . , α

(n)
d

∈ A(1/n) do not lie on the unit circle. In particular, since Pn(x) =∏d
i=1(x − α

(n)
i ), we see that

∣∣∣a(n)
k

∣∣∣ =
∣∣∣∣∣

∑
i1<···<id−k

α
(n)
i1

· · ·α(n)
id−k

∣∣∣∣∣ ≤ K :=
(
1 +

1
n

)d!

. (4.18)

Since for each k, we have a(n)
k

∈ Z∩ [−K,K], for all n ≥ 1, we can use the pigeonhole principle
to choose an infinite subsequence with P(x) := Pn1(x) = Pn2(x) = Pn3(x) = · · · for which the
coefficients all agree. But this contradicts the zeros of each polynomial not lying on the unit
circle.

Remark 4.7. In fact, Schinzel and Zassenhaus showed that if α is not a root of unity, then
|α| ≥ 1 + 1/42+d/2. (cf. [6]).

Remark 4.8. The formula (4.1) and the description of the growth of periodic points for a single
hyperbolic matrix were a core ingredient in Manning’s famous work on the classification of
Anosov toral automorphisms [7].

Example 4.9 (cf. [2]). We can consider the action on T
6 defined by the matrices

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 2 5 3 5 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −6 −6 −3 −6 2
−2 4 4 0 7 −2
2 −6 −6 −2 −10 3
−3 8 9 3 13 −4
4 −11 −12 −3 −17 5
−5 14 14 3 22 −7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.19)

The number of fixed points N(n1, n2) for |n1|, |n2| ≤ 4 is presented in Table 3.
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1 2 3 4 5 6

2

2.5

3

Figure 4: A plot of {maxi=1,2,3{cos θ log |αi| + sin θ log |βi|} as a function of 0 ≤ θ < 2π .

The matrix A1 has eigenvalues

α1 = 3.68631 . . . , α2 = −1.32361 . . . , α3 = 0.0607659 . . . + 0.998152i . . . ,

α4 = 0.0607659 . . . − 0.998152i . . . , α5 = −0.75551 . . . , α6 = 0.271274 . . . ,
(4.20)

and the matrix A2 has corresponding eigenvalues

β1 = −0.463258 . . . , β2 = −22.1542 . . . , β3 = 0.910592 . . . − 0.413307i . . . ,

β4 = 0.910592 . . . + 0.413307i . . . , β5 = −0.0451382 . . . , β6 = −2.15862 . . .
(4.21)

In this example, we see that λ = 1.06415 . . . (occurring at θ = 0.258896 . . .) and λ =
3.11069 . . . (occurring at θ = 4.62214 . . .) (cf. Figure 4).

5. A Sector Theorem and Directional Growth

A natural refinement is to estimate the number of fixed points for (n1, n2) lying in a sector of
the form S(θ1, θ2) := {(n1, n2) ∈ Z

2 : n2 tan(θ1) ≤ n1 ≤ n2 tan(θ2)}, for 0 ≤ θ1 < θ2 ≤ 2π .

Definition 5.1. We can denote

λ(θ1, θ2) = sup
θ1≤θ≤θ2

{
max
i=1,2,3

{
cos θ log|αi| + sin θ log

∣∣βi
∣∣}
}
,

λ(θ1, θ2) = inf
θ1≤θ≤θ2

{
max
i=1,2,3

{
cos θ log|αi| + sin θ log

∣∣βi
∣∣}
}
.

(5.1)

We then have the following natural refinement of Theorem 1.3.
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Theorem 5.2 (Sector Theorem). Let A1, A2 ∈ SL(3,Z) be commuting independent hyperbolic
matrices. Let 0 ≤ θ1 < θ2 ≤ 2π . The growth rates of the fixed points in the sector S(θ1, θ2)

λ(θ1, θ2) := lim sup
‖(n1,n2)‖2 →+∞,(n1,n2)∈S(θ1,θ2)

1
‖(n1, n2)‖2

logN(n1, n2),

λ(θ1, θ2) := lim inf
‖(n1,n2)‖2 →+∞,(n1,n2)∈S(θ1,θ2)

1
‖(n1, n2)‖2

logN(n1, n2)

(5.2)

satisfy 0 < λ(θ1, θ2) < λ(θ1, θ2) < +∞.

Proof. The proof follows easily bymodifying the proof of Theorem 1.3. Recall that the number
of fixed points of the single transformation A(n1, n2, ·) : T

3 → T
3, this time restricting to

(n1, n2) ∈ S, can be written as

N(n1, n2) =
∣∣det(I −An1

1 An2
2

)∣∣

=
∣∣1 − (αn1

1 βn2
1 + αn1

2 βn2
2 + αn1

2 βn2
2

)
+
(
α−n1
1 β−n1

1 + α−n2
2 β−n2

2 + α−n3
3 β−n3

3

) − 1
∣∣.

(5.3)

We can again consider the vectors v1, v2, v3, but this time we only need to consider unit
vectors vθ with θ1 ≤ θ ≤ θ2. We can again write that 〈vi,wθ〉 = cos θ logαi + sin θ log βi
for i = 1, 2, 3. In particular, if we write (n1, n2) = (R cos θ, R sin θ) ∈ S(θ1, θ2), say, where
R = ‖(n1, n2)‖2, then we have that

∣∣αn1
i βn2

i

∣∣ = exp
(
R
(
cos θ log|αi| + sin θ log

∣∣βi
∣∣)). (5.4)

We now want to estimateN(n1, n2) in terms of the largest expression of the form (5.4)where
(n1, n2) ∈ S(θ1, θ2). In particular, modifying the proof of Theorem 1.3, we observe that

λ(θ1, θ2) = sup
θ1≤θ≤θ2

max
i=1,2,3

{〈vi,wθ〉} ≥ inf
θ1≤θ≤θ2

max
i=1,2,3

{〈vi,wθ〉} = λ(θ1, θ2), (5.5)

as required.

Definition 5.3. Let us denote

λ(θ) := max
i=1,2,3

{
cos θ log|αi| + sin θ log

∣∣βi
∣∣}. (5.6)

We then have the following corollary.
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Corollary 5.4 (Directional growth). Let A1, A2 ∈ SL(3,Z) be commuting independent hyperbolic
matrices. Let 0 ≤ θ < 2π . The following limits exist and agree:

λ(θ) := lim
ε→ 0

lim sup
‖(n1,n2)‖2 →+∞,(n1,n2)∈S(θ−ε,θ2+ε)

1
‖(n1, n2)‖2

logN(n1, n2),

λ(θ) := lim
ε→ 0

lim inf
‖(n1,n2)‖2 →+∞,(n1,n2)∈S(θ−ε,θ+ε)

1
‖(n1, n2)‖2

logN(n1, n2),

(5.7)

and λ(θ) = λ(θ) = λ(θ).

Proof. This follows immediately from Theorem 5.2 and continuity of λ(θ).

Remark 5.5. We have that for each fixed choice (n1, n2) ∈ S(θ1, θ2) that

h(A(n1, n2, ·)) = lim
k→+∞

1
k
logCard{x : A(kn1, kn2)x = x}. (5.8)

We see that for any ε > 0 we have that

λ(θ1, θ2) − ε ≤ h(A(n1, n2))
‖(n1, n2)‖2

≤ λ(θ1, θ2) + ε (5.9)

providing ‖(n1, n2)‖2 is sufficiently large. In particular, by continuity we see that we have the
limit

lim
R→+∞

h(A([R cos θ, R sin θ]))
R

= λ(θ). (5.10)

References

[1] R. Miles and T.Ward, “Uniform periodic point growth in entropy rank one,” Proceedings of the American
Mathematical Society, vol. 136, no. 1, pp. 359–365, 2008.
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